Chapter 11: Weighted Least Squares

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

11.1: Weighted least squares

- Chapters 3 and 6 discuss transformations of x_1, \ldots, x_k and/or Y.
- This is "quick and dirty" but may not solve the problem.
- Or can create an uninterpretable mess (book: "inappropriate").
- More advanced remedy: weighted least squares regression.
- Model is as before

$$Y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik} + \epsilon_i,$$

but now

$$\epsilon_i \stackrel{ind.}{\sim} N(0, \sigma_i^2).$$

Note the subscript on σ_i ...

- Here $var(Y_i) = \sigma_i^2$. Give observations with higher variance *less* weight in the regression fitting.
- Say $\sigma_1, \ldots, \sigma_n$ are known. Let $w_i = 1/\sigma_i^2$ and define the weight matrix

$$\mathbf{W} = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_n \end{bmatrix} = \begin{bmatrix} \sigma_1^{-2} & 0 & \cdots & 0 \\ 0 & \sigma_2^{-2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^{-2} \end{bmatrix}.$$

• Maximizing the likelihood (pp. 422-423) gives the estimates for β :

$$\mathbf{b}_{w} = (\mathbf{X}\mathbf{W}\mathbf{X}')^{-1}\mathbf{X}'\mathbf{W}\mathbf{Y}.$$

- However, $\sigma_1, \ldots, \sigma_n$ are almost always unknown.
- If the mean function is appropriate, then $E(e_i^2) = \sigma_i^2(1 h_{ii})$ where e_i is obtained from ordinary least squares, so e_i^2 estimates σ_i^2 and $|e_i|$ estimates σ_i (pp. 424-425) as $h_{ii} \to 0$ as $n \to \infty$.
 - Look at plots of $|e_i|$ from a normal fit against predictors in the model and the fitted values \hat{Y}_i to see how σ_i changes with predictors or fitted values.
 - For example, if $|e_i|$ increases linearly with $\hat{Y}_i = \mathbf{x}_i' \mathbf{b}$, then we'll fit $|e_i| = \alpha_0 + \alpha_1 x_{i1} + \cdots + \alpha_k x_{ik} + \delta_i$ and obtain the fitted values $|\widehat{e_i}|$.
- If e_i^2 increases linearly with only x_{i4} , then we'll fit $e_i^2 = \alpha_0 + \alpha_4 x_{i4} + \delta_i$ and obtain the fitted values $\hat{e_i^2}$.

- 1 Regress Y against predictor variable(s) as usual (OLS) & obtain e_1, \ldots, e_n & $\hat{Y}_1, \ldots, \hat{Y}_n$.
- 2 Regress $|e_i|$ against predictors x_1, \ldots, x_k or fitted values \hat{Y}_i .
- 3 Let \hat{s}_i be the fitted values for the regression in 2.
- 4 Define $w_i = 1/\hat{s}_i^2$ for i = 1, ..., n.
- Define w_i = 1/ŝ_i² for i = 1,..., n.
 Use b_w = (X'WX)⁻¹X'WY as estimated coefficients automatic in SAS. SAS will also use the correct cov(b_w) = (X'WX)⁻¹ (p. 423). This is developed formally in linear models.

SAS code: initial fit

```
* SAS example for Weighted Least Squares;
* Blood pressure data in Table 11.1
data bloodp; input age dbp @@; datalines;
  27
       73 21
                66
                    22
                          63
                              24
                                   75
                                       25
                                             71
                                                 23
                                                      70
                                                          20
                                                                65
  20
       70
          29
                79
                    24
                          72
                              25
                                   68
                                       28
                                             67
                                                 26
                                                      79
                                                          38
                                                                91
  32
       76 33
                69
                    31
                          66 34
                                   73
                                       37
                                             78
                                                 38
                                                      87
                                                          33
                                                               76
  35
       79
           30
                73
                    31
                          80
                              37
                                   68
                                       39
                                             75
                                                 46
                                                      89
                                                          49
                                                               101
  40
       70
           42
                72
                    43
                          80
                              46
                                   83
                                       43
                                             75
                                                 44
                                                      71
                                                          46
                                                                80
  47
       96
           45
                92
                    49
                          80
                              48
                                   70
                                       40
                                             90
                                                 42
                                                      85
                                                          55
                                                               76
  54
       71
           57
                99
                    52
                          86
                              53
                                   79
                                       56
                                             92
                                                 52
                                                      85
                                                          50
                                                               71
  59
                     52
                              58
                                       57
       90
           50
                91
                         100
                                   80
                                            109
; run;
* Regress the response, dbp, against the predictor, age;
* The plots show definite nonconstant error variance
proc reg data=bloodp;
 model dbp=age;
 output out=temp r=residual;
 plot dbp*age r.*age;
run;
```


SAS code: determining w_i

* Plot of absolute residuals against age shows that absolute residuals increase approximately linearly; data temp; set temp; absr = abs(residual); run; symbol1 v=dot h=0.8; axis1 order=(0 to 20 by 5); proc gplot data=temp; PLOT absr*age/ vaxis=axis1; run;

SAS code: WLS fit

```
* Regress absolute residuals against the age
* This second regression is done on the data set temp ;
proc reg data=temp;
 model absr=age;
 output out=temp1 p=s_hat ;
run:
* Define weights using the fitted values from this second regression ;
data temp1; set temp1; w=1/(s_hat**2); run;
* Using the WEIGHT option in PROC REG to get the WLS estimates ;
* This last regression is done on the data set temp1
proc reg data=temp1;
 weight w;
 model dbp=age / clb;
 output out=temp2 r=residual;
 plot dbp*age r.*age;
run;
```

SAS output: WLS fit

The REG Procedure Dependent Variable: dbp

Weight: w

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	83.34082	83.34082	56.64	<.0001
Error	52	76.51351	1.47141		
Corrected Total	53	159.85432			
Root MS	E	1.21302	R-Square	0.5214	
Depende	nt Mean	73.55134	Adj R-Sq	0.5122	
Coeff V	ar	1.64921			

Parameter Estimates

		Parameter	Standard				
Variable	DF	Estimate	Error	t Value	Pr > t	95% Confidence	e Limits
Intercept	1	55.56577	2.52092	22.04	<.0001	50.50718	60.62436
age	1	0.59634	0.07924	7.53	<.0001	0.43734	0.75534

- $se(b_1)$ reduced from 0.097 (OLS) to 0.079 (WLS). WLS verified via bootstrap on pp. 462–463 (just FYI).
- R^2 no longer interpreted the same way in terms of amount of total variability explained by model.
- In WLS, standard inferences about coefficients may not be valid for small sample sizes when weights are estimated from the data.
- If MSE of the WLS regression is near 1, then our estimation of the "error standard deviation" function is okay. Here it's 1.21.

Fitting the model directly...

- A drawback of this approach is that the weights $w_i = 1/\hat{s}_i^2$ have associated variability that is not reflected in $cov(\mathbf{b}_w)$.
- It is possible to fit the implied model

$$Y_i = \beta_0 + \beta_1 a_i + \epsilon_i, \quad \epsilon_i \sim N(0, \tau_0 + \tau_1 a_i),$$

directly in SAS. One option is to have SAS maximize the associated likelihood in PROC NLMIXED.

• Note that a similar, and possibly more appropriate, model

$$Y_i = \beta_0 + \beta_1 a_i + \epsilon_i, \quad \epsilon_i \sim N(0, e^{\tau_0 + \tau_1 a_i}),$$

was used for the Breusch-Pagan test H_0 : $\tau_1=0$ described in Sections 3.6 and 6.8. This model can also be fit easily in PROC NLMIXED.

 However, things like F-tests go out the window and everything relies on asymptotics (which for large enough samples work fine).

SAS code: fitting model directly

```
* Model fit directly using PROC NLMIXED ;

* Starting values obtained from regressions 1 and 2;

proc nlmixed data=bloodp;

parms beta0=50 beta1=0.5 tau0=-1 tau1=0.2;

mu=beta0+beta1*age; sigma=tau0+tau1*age;

model dbp ~ normal(mu,sigma*sigma);

run:
```

With abridged output

The NLMIXED Procedure

Fit Statistics

-2 Log Likelihood	362.5
AIC (smaller is better)	370.5
BIC (smaller is better)	378.5

Parameter Estimates

		Standard							
Parameter	Estimate	Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Gradient
beta0	55.5317	2.4689	54	22.49	<.0001	0.05	50.5819	60.4815	3.678E-6
beta1	0.5973	0.07811	54	7.65	<.0001	0.05	0.4407	0.7539	0.000108
tau0	-2.0367	1.7585	54	-1.16	0.2519	0.05	-5.5622	1.4889	4.053E-6
tau1	0.2414	0.05557	54	4.34	<.0001	0.05	0.1300	0.3528	0.000067