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Regression Diagnostics II

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I
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Linear Regression Assumptions

Y = Xβ + ε, ε ∼ Nn(0, σ2I )

Assumptions

Linear relationship

Independent observations

Normally distributed residuals

Equal variance across X’s

Plus need to check for influential points and outliers: one or a
few observations should not dominate the model fit
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Outliers

Outliers are bizarre data points. Observations may be outlying
relative only to other predictors xi = (1, xi1, . . . , xik)′ or
relative to the model, i.e. Yi relative to Ŷi .

Studentized deleted residuals are designed to detect outlying
Yi observations; leverages detect outlying xi points.

Outliers have the potential to influence the fitted regression
function; they may strengthen inference and reduce error in
predictions if the outlying points follow the modeling
assumptions and are representative.

If not, outlying values may skew inference unduly and yield
models with poor predictive properties.

3 / 26



- - :

Leverage
Leverage is the potential for a single observation to influence a
regression statistics such a coefficient or predicted values. Leverage
is determined by an observation’s position in the X space.

Ŷi =
n∑

j=1

hijyj

Ŷ2 = h21 × Y1 + h22Y2 + h23 × Y3 + ...

1 0
1 1
1 2
1 3
1 4
1 10

Table: Design Matrix

1 2 3 4 5 6
1 0.34 0.29 0.24 0.18 0.13 -0.18
2 0.29 0.25 0.22 0.18 0.14 -0.08
3 0.24 0.22 0.19 0.17 0.15 0.03
4 0.18 0.18 0.17 0.17 0.16 0.13
5 0.13 0.14 0.15 0.16 0.17 0.24
6 -0.18 -0.08 0.03 0.13 0.24 0.87

Table: Hat matrix

We measure “leverage” by the potential for an observation to
influence it’s own predicted value.
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Hat Matrix

Because H = X (X ′X )−1X ′ is symmetric and idempotent,

hii =
∑
i

h2ij = h2ii +
∑
j 6=i

h2ij ≥ 0

hii (1− hii ) ≥ 0

Hence, 0 ≤ hii ≤ 1

In addition,
∑
i

hii = p∑
i

hii = trace(H) = trace(X (X ′X )−1X ′) [trace(AB) = trace(BA)]

= trace[(X ′X )(X ′X )−1] = trace(Ip) = p

The rule of thumb is that any leverage hii that is larger than twice
the mean leverage p/n, i.e. hii > 2p/n, is flagged as having “high”
leverage.

5 / 26



- - :

Outliers & influential points

Often outliers are “flagged” and deemed suspect as mistakes
or observations not gathered from the same population as the
other observations.

Sometimes outliers are of interest in their own right and may
illustrate aspects of a data set that bear closer scrutiny.

Although an observation may be flagged as an outlier, the
point may or may not affect the fitted regression function
more than other points.

A DFFIT is a measure of influence that an individual point
(xi ,Yi ) has on the regression surface at xi .

Cook’s distance is a consolidated measure of influence the
point (xi ,Yi ) has on the regression surface at all n points
x1, . . . , xn.
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10.2 Studentized deleted residuals

The standardized residuals

ri =
Yi − Ŷi√

MSE (1− hii )

have a constant variance of 1.
Typically, |ri | > 2 is considered “large.” hii = x′i (X

′X)−1xi is
the i th leverage value.
A refinement of the standardized residual that has a
recognizable distribution is the studentized deleted residual

ti = ri

√
MSE

MSE (i)
=

ei√
MSE(i)(1− hii )

where MSE(i) is the mean squared error calculated from a

multiple regression with the same predictors but the i th

observation removed.
The studentized deleted residual ti will be larger than a
regular studentized residual ri if and only if MSE(i) < MSE . 7 / 26
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10.4 DFFITS

The i th DFFIT , denoted DFFITi , is given by

DFFITi =
Ŷi − Ŷi(i)√
MSE(i)hii

= ti

√
hii

1− hii
,

where Ŷi is fitted value of regression surface (calculated using
all n observations) at xi and Ŷj(i) is fitted value of regression
surface omitting the point (xi ,Yi ) at the point xj .

DFFITi is standardized distance between fitted regression
surfaces with and without the point (xi ,Yi ).

Rule of thumb that DFFITi is “large” when |DFFITi | > 1 for
small to medium-sized data sets and |DFFITi | > 2

√
p/n for

large data sets. We will often just note those DFFITi ’s that
are considerably larger than the bulk of the DFFITi ’s.
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10.4 Cook’s distance

The i th Cook’s distance, denoted Di , is an aggregate measure
of the influence of the i th observation on all n fitted values:

Di =

∑n
j=1(Ŷj − Ŷj(i))

2

p(MSE )
.

This is the sum of squared distances, at each xj , between
fitted regression surface calculated with all n points and fitted
regression surface calculated with the i th case removed,
standardized by p(MSE ).

Look for values of Cook’s distance significantly larger than
other values; these are cases that exert disproportionate
influence on the fitted regression surface as a whole.
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DFBETAS

Measure of how much an observation has effected the estimate of
a regression coefficient (there is one DFBETA for each regression
coefficient, including the intercept). Values larger than 2/sqrt(n)
in absolute value are considered highly influential.

DFBETAi = β̂ − β̂−i
DFBETASi =

β̂−β̂−i

se(β̂−i )

>x<-rnorm(100)

>y<-rnorm(100)

>fit<-lm(y ~ x)

>infm<-influence.measures(fit)

>infm[[1]][1:5,]

dfb.1_ dfb.x dffit cov.r cook.d hat

1 -0.15927196 0.195599293 -0.24623646 1.003610 0.0299565058 0.02710032

2 -0.03987014 -0.003134912 -0.04020223 1.027726 0.0008151043 0.01006118

3 0.03316866 0.046934547 0.05890024 1.046815 0.0017502792 0.02739478

4 0.03891405 0.068888356 0.08091733 1.055429 0.0033016469 0.03633509

5 0.03152137 0.003616565 0.03195008 1.029053 0.0005151360 0.01012979
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Influence Plot Using DFBETAS

●

●
●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

0 5 10

−
10

−
5

0

circle size is proportional to DFBETAS

x

y

11 / 26



- - :

Chapter 7 example: Body fat

n = 20 healthy females 25–34 years old.

x1 = triceps skinfold thickness (mm)

x2 = thigh circumference (cm)

x3 = midarm circumference (cm)

Y = body fat (%)

Obtaining Yi , the percent of the body that is purely fat, requires
immersing a person in water. Want to develop model based on
simple body measurements that avoids people getting wet.
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Full model

> fit<-lm(bodyfat ~ tricept + thigh + midarm, data=bodyfat)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 189.944 107.067 1.774 0.0963 .

tricept 6.453 3.212 2.009 0.0629 .

thigh -4.741 2.770 -1.711 0.1076

midarm -3.267 1.688 -1.935 0.0721 .

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 2.383 on 15 degrees of freedom

Multiple R-squared: 0.7987,Adjusted R-squared: 0.7584

F-statistic: 19.84 on 3 and 15 DF, p-value: 1.768e-05

Two of the three regression effects are negative. Holding midarm
and triceps constant, increasing the thigh circumference 1 mm
decreases bodyfat. Does this make sense?
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Full model

> cordata<-cor(bodyfat)

> cordata

tricept thigh midarm bodyfat

tricept 1.0000000 0.9201905 0.5050211 0.8314028

thigh 0.9201905 1.0000000 0.1286432 0.8586697

midarm 0.5050211 0.1286432 1.0000000 0.1945733

bodyfat 0.8314028 0.8586697 0.1945733 1.0000000

There is high correlation among the predictors. For example r = 0.92 for
triceps and thigh. These two variables are essentially carrying the same
information. Maybe only one or the other is really needed.

In general, one predictor may be essentially perfectly predicted by the

remaining predictors (a high “partial correlation”), and so would be

unnecessary if the other predictors are in the model.
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Detecting multicollinearity

A formal method for determining the presence of multicollinearity
is the variance inflation factor (VIF). VIF’s measure how much
variances of estimated regression coefficients are inflated when
compared to having uncorrelated predictors. We will start with the
standardized regression model of Section 7.5.

Let Y ∗i =
1√
n − 1

Yi − Ȳ

sY
and x∗ij =

1√
n − 1

xij − x̄j
sj

,

where s2Y = (n − 1)−1
∑n

i=1(Yi − Ȳ )2,
s2j = (n − 1)−1

∑n
i=1(xij − x̄j)

2, and x̄j = n−1
∑n

i=1 xij .
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VIF’s

These variables are centered about their means and “standardized”
to have Euclidean norm 1.

For example, ||x∗j ||2 = (x∗1j)
2 + · · ·+ (x∗nj)

2 = 1.

Note that in general (Y∗)′(Y∗) = (x∗j )′(x∗j ) = 1 and

(x∗j )′(x∗s ) = corr(xj , xs)
def
= rjs .
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VIF’s

Consider the standardized regression model

Y ∗i = β∗1x
∗
i1 + · · ·+ β∗kx

∗
ik + ε∗i .

Define the k × k sample correlation matrix R for the standardized
predictors, and the n × k design matrix X∗ to be:

R =


1 r21 · · · rk1
r12 1 · · · rk2
...

...
. . .

...
r1k r2k · · · 1

 , X∗ =


x∗11 x∗12 · · · x∗1k
x∗21 x∗22 · · · x∗2k

...
...

. . .
...

x∗n1 x∗n2 · · · x∗nk

 .
Since (X∗)′(X∗) = R, the least-squares estimate of
β∗ = (β∗1 , . . . , β

∗
k)′ is given by b∗ = R−1(X∗)′Y∗. Hence

Cov(b∗) = R−1(σ∗)2.
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VIF’s

Now note that if all predictors are uncorrelated then
R = Ik = R−1. Hence the ith diagonal element of R−1 measures
how much the variance of b∗i is inflated due to correlation between
predictors. We call this the ith variance inflation factor:
VIFi = (R−1)ii . Usually the largest VIFi is taken to be a measure
of the seriousness of the multicollinearity among the predictors.
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Detecting multicollinearity

Predictor xj has a variance inflation factor of

VIFj =
1

1− R2
j

,

where R2
j is R2 from regressing xj on the remaining predictors

x1, x2, . . . , xj−1, xj+1, . . . , xk .

High R2
j (near 1) ⇒ xj is linearly associated with other predictors

⇒ high VIFj .

VIFj ≈ 1⇒ xj is not involved in any multicollinearity.

VIFj > 10⇒ xj is involved in severe multicollinearity.

20 / 26



- - :

VIF in R

>vif(fit) # variance inflation factors

>tricept thigh midarm

>806.7198 611.0817 125.7097

What do you conclude?
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Remedies for multicollinearity

Drop one or more predictors from the model (Chapter 9).

More advanced: principal components regression uses
indexes (new predictors) that are linear combinations of the
original predictors as predictors in a new model. The indexes
are selected to be uncorrelated. Disadvantage: the indexes
might be hard to interpret.

More advanced: ridge regression (Section 11.2).

More advanced: ensemble methods
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Standard Diagnostics Plots in R
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Standard Diagnostics Plots in R
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Standard Diagnostics Plots in R
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Standard Diagnostics Plots in R
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