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Hypothesis testing

Recall the one-sample normal model

Y1, . . . ,Yn
iid∼ N(µ, σ2).

We may perform a t-test to determine whether µ is equal to
some specified value µ0.

The test statistic gives information about whether µ = µ0 is
plausible:

t∗ =
Ȳ − µ0

s/
√

n
.

If µ = µ0 is true, then t∗ ∼ tn−1.
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Hypothesis testing

Test of hypothesis: answer a yes, or no question regarding a
population parameter.

Rationale: Since ȳ is our best estimate of the unknown µ,
ȳ − µ0 will be small if µ = µ0. But how small is small?

Standardizing the difference ȳ − µ0 by an estimate of
sd(Ȳ ) = σ/

√
n, namely the standard error of Ȳ , se(Ȳ ) = s/

√
n

gives us a known distribution for the test statistic t∗ before we
collect data.

Reminder
If µ = µ0 is true, then t∗ ∼ tn−1.
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Three types of test

Two sided: H0 : µ = µ0 versus Ha : µ = µ0.

One sided, “<”: H0 : µ = µ0 versus Ha : µ < µ0.

One sided, “>”: H0 : µ = µ0 versus Ha : µ > µ0.

If the t∗ we observe is highly unusual (relative to what we might
see for a tn−1 distribution), we may reject H0 and conclude Ha.

Let α be the significance level of the test, the maximum
allowable probability of rejecting H0 when H0 is true.
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Rejection rules

Two sided: If |t∗| > tn−1(1− α/2) then reject H0, otherwise
fail to reject H0.
One sided, Ha : µ < µ0. If t∗ < tn−1(α) then reject H0,
otherwise fail to reject H0.
One sided, Ha : µ > µ0. If t∗ > tn−1(1− α) then reject H0,
otherwise fail to reject H0.
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P-value approach

We can also measure the evidence against H0 using a p-value,
which is the probability of observing a test statistic value as
extreme or more extreme that the test statistic we did observe,
if H0 were true.

A small p-value provides strong evidence against H0.

Rule: p-value < α⇒ reject H0, otherwise accept H0.
p-values are computed according to the alternative hypothesis.
Let T ∼ tn−1; then

Two sided: 2×min{P(T < t∗),P(T > t∗)}
One sided, Ha : µ < µ0: p = P(T < t∗).
One sided, Ha : µ > µ0: p = P(T > t∗).
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Example
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Summer Daily High Temperature in New York City

Example: We wish to test whether the true mean high
temperature is greater than 75o using α = 0.01:

H0 : µ = 75 versus Ha : µ > 75.

t∗ =
77.667− 75
8.872/

√
30

= 1.646 < t29(0.99) = 2.462.

What do we conclude? Note that p = 0.05525 > 0.01.
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Proof

Consider that we do not reject H0 if∣∣∣∣ X̄ − µ0

s/
√

n

∣∣∣∣ ≤ t1−α/2,n−1

implying ∣∣X̄ − µ0
∣∣ ≤ t1−α/2,n−1s/

√
n

implying

X̄ − t1−α/2,n−1s/
√

n < µ0 < X̄ + t1−α/2,n−1s/
√

n
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Connection between CI and two-sided test

An α-level two-sided test rejects H0 : µ = µ0 if and only if µ0
falls outside the (1− α)100% CI about µ.

Example (continued): Recall that the 90% CI for New York’s
high temperature is (74.91,80.42) degrees.

At α = 0.10, would we reject H0 : µ = 73 and conclude
Ha : µ 6= 73?
At α = 0.10, would we reject H0 : µ = 80 and conclude
Ha : µ 6= 80?
At α = 0.05, would we reject H0 : µ = 80 and conclude
Ha : µ 6= 80?
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R Code

> summer.temps <- c(59,81,85,75,81,77,92,83,92,76,74,73,57,68,80,69,
+ 83,78,87,88,93,71,73,76,81,82,73,64,80,79)
> mean(summer.temps)
[1] 77.66667
> sd(summer.temps)
[1] 8.872015
> t.test(summer.temps, mu=75, conf.level=0.9)
One Sample t-test

data: summer.temps
t = 1.6463, df = 29, p-value = 0.1105
alternative hypothesis: true mean is not equal to 75
90 percent confidence interval:
74.91442 80.41891

sample estimates:
mean of x
77.66667
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Paired data

Example: n = 7 pairs of mice were injected with a cancer cell.
Mice within each pair came from the same litter and were
therefore biologically similar. For each pair, one mouse was
given an experimental drug and the other mouse was
untreated. After a time, the mice were sacrificed (killed) and the
tumors weighed.

When we have two paired samples (when each observation in one
sample can be naturally paired with an observation in the other
sample), we can use one-sample methods to obtain inference on the
mean difference.
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One-sample inference on differences

Let (Y1j ,Y2j) be the pair of tumor weights from control and
treatment mice within litter j , j = 1, . . . ,7.

The difference of tumor weights in control versus treatment
within each litter is

Dj = Y1j − Y2j .

If the differences follow a normal distribution, then we have the
model

Dj = µD + ej , j = 1, . . . ,n, where ε1, . . . , εn
iid∼ N(0, σ2).

Note that µD is the mean difference.

To test whether the control results in a higher mean tumor
weight, form

H0 : µD = 0 versus Ha : µD > 0.
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SAS code

ods graphics on;
data mice plots;
input control treatment @@;
datalines;
1.321 0.841 1.423 0.932 2.682 2.011 0.934 0.762 1.230 0.991 1.670
1.120 3.201 2.312
;
proc ttest h0=0 alpha=0.01 sides=u;
paired control*treatment;
run;
ods graphics;
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Paired example, continued

For this test, the p-value is 0.0008. At α = 0.05, we reject H0 and
conclude that the true mean difference of tumor weights is greater
than 0.

Restated: the treatment produces a significantly lower mean tumor
weight.

A 95% CI for the true mean difference µD is (0.27,0.73). With 95%
confidence, the mean tumor weight for untreated mice is between
0.27 and 0.73 grams higher than for treated mice.
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Section A.7 Two independent samples

Assume we have two independent (not paired) samples from
two normal populations. Label them 1 and 2. The model is

Yij = µi + εij , where i = 1,2 and j = 1, . . . ,ni .

The “within sample heterogeneity” follows

εij
iid∼ N(0, σ2).

Both populations have the same variance σ2.
The two sample sizes (n1 and n2) may be different.
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Pooled approach

An estimator of the variance σ2 is the “pooled sample variance”

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2

.

Then

t =
(Ȳ1 − Ȳ2)− (µ1 − µ2)√

s2
p

[
1
n1

+ 1
n2

] ∼ tn1+n2−2.

We are interested in the mean difference µ1 − µ2, i.e. the
difference in the population means.

A (1− α)100% CI for µ1 − µ2 is

(Ȳ1 − Ȳ2)± tn1+n2−2(1− α/2)

√
s2

p

[
1
n1

+
1
n2

]
.
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Pooled approach: Hypothesis test

Often we wish to test whether the two populations have the
same mean, i.e. H0 : µ1 = µ2. Of course, this implies
H0 : µ1 − µ2 = 0. The test statistic is

t∗ =
Ȳ1 − Ȳ2√

s2
p

[
1
n1

+ 1
n2

] ,
and is distributed tn1+n2−2 under H0. Let T ∼ tn1+n2−2. The tests
are carried out via:

Ha Rejection rule p-value
µ1 6= µ2 |t∗| > tn1+n2−2(1− α/2) P(|T | > |t∗|)
µ1 < µ2 t∗ < −tn1+n2−2(1− α) P(T < t∗)
µ1 > µ2 t∗ > tn1+n2−2(1− α) P(T > t∗)
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Unequal variances: Satterthwaite approximation

What if it is not reasonable to assume the populations have the
same variance–i.e., σ2

1 6= σ2
2? The model is

Yij = µi + εij , εij
ind .∼ N(0, σ2

i )

where i = 1,2 denotes the population and j = 1, . . . ,ni the
measurement within the population.

Use s2
1 and s2

2 to estimate σ2
1 and σ2

2. Define the test statistic

t∗ =
Ȳ1 − Ȳ2√

s2
1

n1
+

s2
2

n2

.
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Unequal variances: Satterthwaite approximation

Under the null H0 : µ1 = µ2, this test statistic is approximately
distributed t∗ ∼ tdf where

df =

(
s2

1
n1

+
s2

2
n2

)2

s4
1

n2
1(n1−1) +

s4
2

n2
2(n2−1)

.

Note that df = n1 + n2 − 2 when n1 = n2 and s1 = s2.

Satterthwaite and pooled variance methods typically give
similar results when s1 ≈ s2.
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Testing Ho : σ1 = σ2

We can formally test H0 : σ1 = σ2 using Bartlett’s F-test or
Levene’s test, but in practice graphical methods such as
box plots are often used.
The “var.test” function in R

F ∗ =
max{s2

1, s
2
2}

min{s2
1, s

2
2}

This test assumes normal data and is sensitive to this
assumption.
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Two sample T test example
Example: Data were collected on pollution around a chemical
plant (Rao, p. 137). Two independent samples of river water
were taken, one upstream and one downstream. Pollution level
was measured in ppm. Do the mean pollution levels differ at
α = 0.05?
upstream <- c(24.5,29.7,20.4,28.5,25.3,21.8,20.2,21.0,21.9,22.2)
downstream <- c(32.8,30.4,32.3,26.4,27.8,26.9,29.0,31.5,
31.2,26.7,25.6,25.1,32.8,34.3,35.4)
boxplot(upstream, downstream)
# Do the spreads seem equal across groups?

Up Down

20
25

30
35
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Pollution Example (Continued)

> # Assuming equal variances:
> t.test(upstream, downstream, var.equal=TRUE)

Two Sample t-test

data: upstream and downstream
t = -4.6433, df = 23, p-value = 0.0001132
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-9.150113 -3.509887

sample estimates:
mean of x mean of y

23.55 29.88
> # Not assuming equal variances:
> t.test(upstream, downstream)

Welch Two Sample t-test

data: upstream and downstream
t = -4.6339, df = 19.31, p-value = 0.0001742
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-9.186009 -3.473991

sample estimates:
mean of x mean of y

23.55 29.88
> # A 99% CI for the difference in means:
> t.test(upstream, downstream, var.equal=TRUE, conf.level=0.99)$conf.int
[1] -10.157121 -2.502879
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T procedure assumptions

Note: Recall our t-procedures require that the data come from
normal population(s).

Fortunately, the t procedures are robust: they work
approximately correctly if the population distribution is “close” to
normal.

Also, if our sample sizes are large, we can use the t procedures
(or simply normal-based procedures) even if our data are not
normal because of the central limit theorem.

If the sample size is small, we should perform some check of
normality to ensure t tests and CIs are okay.

Question: Are there any other model assumptions that can or
should be checked? For example, what if pollution
measurements were taken on consecutive days?
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Boxplots for checking normality

To use t tests and CIs in small samples, approximate
normality should be checked.
We can check with a histogram or boxplot: verify
distribution is unimodal and approximately symmetric.
Note: For normal data, the probability of seeing an outlier
on a R using defaults is 0.0070. For a sample size
nj = 150 from normal data, we expect to see
0.0070× 150 ≈ 1 outlier. Certainly for small sample sizes,
we expect to see none.
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Q-Q plot for checking normality

A more precise plot: normal Q-Q plot. Idea: the human eye
is very good at detecting deviations from linearity.
Plot ordered data {y(i)} against normal quantiles
zi = Φ−1{i/(n + 1)} for i = 1, . . . ,n.
Idea: zi ≈ E(Z(i)), the expected order statistic under
standard normal assumption.
A plot of y(i) versus zi should be reasonably straight if data
are normal.
However, in small sample sizes there is a lot of variability in
the plots even with perfectly normal data...
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What to Use

The t-test relies on a normality assumption. When sample size
is small, consider:

Wilcoxon Rank Sum Test
Permutation Test

→ The crucial assumption is independence between
observations.

26 / 26


