Nonparametric tests

Dr. Yen-Yi Ho

Department of Statistics, University of South Carolina

Outline

- One-Sample Test
- Sign Test
- Signed Rank Test
- Two-Sample Test
- Wilcoxon Rank-Sum Test
- Permutation Test

Nonparametric one and two-sample tests

If data do not come from a normal population (and if the sample is not large), we cannot use a t-test. One useful approach to creating test statistics is through the use of rank statistics.

Resampling methods provide alternative approaches for testing simple hypotheses and obtaining confidence intervals. For example, the t approach can be used with a permutation test to test $H_{0}: \mu_{1}=\mu_{2}$ versus any of the alternatives, regardless of whether the data are normal or not. This is covered in Section 16.9 (pp. 712-716).

Non-parametric methods

- Many non-parametric methods convert raw values to ranks and then analyze ranks
- In case of ties, mid-rank are used, e.g. if the raw data were $105120120121 \rightarrow$ ranks would be 12.52 .54

Parametric Test	Nonparametric Counterpart
1-sample t	Sign test, Wilcoxon signed-rank
2-sample t	Wilcoxon 2-sample rank-sum
	(Mann-Whitney-Wilcoxon Test)
k-sample ANOVA	Kruskal-Wallis
Pearson r	Spearman ρ

Sign test for one population

The sign test assumes the data come from from a continuous distribution with model

$$
Y_{i}=\eta+\epsilon_{i}, i=1, \ldots, n .
$$

- η is the population median and ϵ_{i} follow an unknown, continuous distribution.
- Want to test $H_{0}: \eta=\eta_{0}$ where η_{0} is known versus one of the three common alternatives: $H_{a}: \eta<\eta_{0}, H_{a}: \eta \neq \eta_{0}$, or $H_{a}: \eta>\eta_{0}$.
- Test statistic is $B^{*}=\sum_{i=1}^{n} l\left\{y_{i}>\eta_{0}\right\}$, the number of y_{1}, \ldots, y_{n} larger than η_{0}.
- Test statistic is $B^{*}=\sum_{i=1}^{n} l\left\{y_{i}>\eta_{0}\right\}$, the number of y_{1}, \ldots, y_{n} larger than η_{0}.
- Under $H_{0}, B^{*} \sim \operatorname{bin}(n, 0.5)$.

Sign test

- Test statistic is $B^{*}=\sum_{i=1}^{n} I\left\{y_{i}>\eta_{0}\right\}$, the number of y_{1}, \ldots, y_{n} larger than η_{0}.
- Under $H_{0}, B^{*} \sim \operatorname{bin}(n, 0.5)$.
- Reject H_{0} if B^{*} is "unusual" relative to this binomial distribution.

Question: How would you form a "large sample" test statistic from B^{*} ? You would not need to do that here, but this is common with more complex test statistics with non-standard distributions.

Example: eye relief data

- Data are time in minutes that a drug takes to relieve $n=20$ irritated eyes, measured redness.
- Rao (1998) page 178.
- $H_{a}: \eta=5$ versus $H_{a}: \eta \neq 5$

Data:

$$
\begin{array}{cccccccccc}
0.4 & 4.6 & 2.2 & 1.2 & 4.5 & 5.7 & 8.0 & 2.1 & 4.8 & 3.0 \\
8.8 & 11.4 & 1.3 & 1.4 & 2.1 & 1.3 & 12.5 & 2.4 & 4.6 & 2.8
\end{array}
$$

The P-value

P-value is: the probability of observing a result as or more extreme than you observed (in the direction toward the alternative hypothesis) by chance alone assuming H_{0} is true.
Type of hypothesis test $\quad p$-Value is tail area associated with $Z_{o b s}$

$$
\begin{aligned}
& \text { Right-tailed test } \\
& H_{0}: \mu \leq \mu_{0} \text { versus } H_{a}: \mu>\mu_{0} \\
& p \text {-value }=P\left(Z \geq Z_{\mathrm{obs}}\right) \\
& \text { Area to right of } Z_{\mathrm{obs}}
\end{aligned}
$$

Left-tailed test

$H_{0}: \mu \geq \mu_{0}$ versus $H_{a}: \mu<\mu_{0}$
p-value $=P\left(Z \leqslant Z_{\text {obs }}\right)$
Area to left of $Z_{\text {obs }}$

Two-tailed test

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \text { versus } H_{a}: \mu \neq \mu_{0} \\
& p \text {-value }=P\left(Z \geqslant\left|Z_{\text {obs }}\right|\right)+P\left(Z \leqslant-\left|Z_{\text {obs }}\right|\right) \\
& \\
& =2 \cdot P\left(Z \geqslant\left|Z_{\text {obs }}\right|\right)
\end{aligned}
$$

Sum of the two tail areas.

P-value for The Sign Test

$$
\begin{aligned}
& B^{+}=\sum I\left(y>m_{0}\right), \quad B^{-}=\sum I\left(y \leq m_{0}\right) \\
& H_{0}: m=m_{0} \quad \text { vs } \quad H_{a}: m>m_{0} \quad H_{0}: m=m_{0} \quad \text { vs } \quad H_{a}: m<m_{0} \\
& P \text {-value }=P\left(B^{-} \leq B_{o b s}^{-}\right) \\
& H_{0}: m=m_{0} \quad \text { vs } \quad H_{a}: m \neq m_{0} \\
& P \text {-value }=2 * P\left[B_{\min } \leq \min \left(B_{o b s}^{+}, B_{o b s}^{-}\right)\right]
\end{aligned}
$$

R code

```
eye<-c(0.4, 4.6, 2.2, 1.2, 4.5, 5.7, 8.0, 2.1,
4.8, 3.0, 8.8, 11.4, 1.3, 1.4, 2.1, 1.3, 12.5,
2.4, 4.6, 2.8)
plot(density(eye))
B<-sum(eye >= 5)
binom.test(B, length(eye), 0.5, alternative="less")
```

Distribution of Time to Eye Relief ($\mathbf{n}=\mathbf{2 0}$)

Wilcoxon signed rank test

- Again, test $H_{0}: \eta=\eta_{0}$. However, this method assumes a symmetric pdf around the median η.
- Test statistic built from ranks of
$\left\{\left|y_{1}-\eta_{0}\right|,\left|y_{2}-\eta_{0}\right|, \ldots,\left|y_{n}-\eta_{0}\right|\right\}$, denoted R_{1}, \ldots, R_{n}.
- The signed rank for observation i is

$$
R_{i}^{+}=\left\{\begin{array}{ll}
R_{i} & y_{i}>\eta_{0} \\
0 & y_{i} \leq \eta_{0}
\end{array}\right\}
$$

- The "signed rank" statistic is $W^{+}=\sum_{i=1}^{n} R_{i}^{+}$.
- If W^{+}is large, this is evidence that $\eta>\eta_{0}$.
- If W^{+}is small, this is evidence that $\eta<\eta_{0}$.

Singed Rank Test

i	X_{i}	$X_{i}-5$	$\left\|X_{i}-5\right\|$	Rank (R_{i})	Signed Rank	z_{i}
1	0.40	-4.60	4.60	18.0	-18.0	0
2	4.60	-0.40	0.40	2.5	-2.5	0
3	2.20	-2.80	2.80	9.0	-9.0	0
4	1.20	-3.80	3.80	16.0	-16.0	0
5	4.50	-0.50	0.50	4.0	-4.0	0
6	5.70	0.70	0.70	5.0	5.0	1
7	8.00	3.00	3.00	12.0	12.0	1
8	2.10	-2.90	2.90	10.5	-10.5	0
9	4.80	-0.20	0.20	1.0	-1.0	0
10	3.00	-2.00	2.00	6.0	-6.0	0
11	8.80	3.80	3.80	17.0	17.0	1
12	11.40	6.40	6.40	19.0	19.0	1
13	1.30	-3.70	3.70	14.5	-14.5	0
14	1.40	-3.60	3.60	13.0	-13.0	0
15	2.10	-2.90	2.90	10.5	-10.5	0
16	1.30	-3.70	3.70	14.5	-14.5	0
17	12.50	7.50	7.50	20.0	20.0	1
18	2.40	-2.60	2.60	8.0	-8.0	0
19	4.60	-0.40	0.40	2.5	-2.5	0
20	2.80	-2.20	2.20	7.0	-7.0	0

Discussion

	t-test	Signed Rank	Sign
Assumptions	Large sample or normal	Symmetric	None
Statistical Power	+++	++	+

- Both the sign test and the signed-rank test can be used with paired data (e.g. we could test whether the median difference is zero).
- When to use what? Use t-test when data are approximately normal, or in large sample sizes. Use sign test when data are highly skewed, etc. Use signed rank test when data are approximately symmetric but non-normal (e.g. heavy or light-tailed, multimodal yet symmetric, etc.)
Note: The sign test and signed-rank test are more flexible than the t-test because they require less strict assumptions, but the t-test has more power when the data are approximately normal.

Eye relief

Which of the three tests (t-test, sign, signed rank) is most appropriate?

Mann-Whitney-Wilcoxin test (pp. 795-796)

The Mann-Whitney test assumes

$$
Y_{11}, \ldots Y_{1 n_{1}} \stackrel{\text { iid }}{\sim} F_{1} \text { independent } Y_{21}, \ldots, Y_{2 n_{2}} \stackrel{\text { iid }}{\sim} F_{2},
$$

where F_{1} is the cdf of data from the first group and F_{2} is the cdf of data from the second group. The null hypothesis is $H_{0}: F_{1}=F_{2}$, i.e. that the distributions of data in the two groups are identical.

The alternative is commonly taken to be $H_{1}: F_{1} \neq F_{2}$.
One-sided tests can also be performed.

Building the test statistic

The Mann-Whitney test is intuitive. The data are

$$
y_{11}, y_{12}, \ldots, y_{1 n_{1}} \text { and } y_{21}, y_{22}, \ldots, y_{2 n_{2}}
$$

For each observation j in the first group count the number of observations in the second group c_{j} that are smaller; ties result in adding 0.5 to the count.
Assuming H_{0} is true, on average half the observations in group 2 would be above $Y_{1 j}$ and half would be below if they come from the same distribution. That is $E\left(c_{j}\right)=0.5 n_{2}$. The sum of these guys is $U=\sum_{j=1}^{n_{1}} c_{j}$ and has mean $E(U)=0.5 n_{1} n_{2}$. The variance is a bit harder to derive, but is $\operatorname{Var}(U)=n_{1} n_{2}\left(n_{1}+n_{2}+1\right) / 12$.

Large sample inference

Something akin to the CLT tells us

$$
Z_{0}=\frac{U-E(U)}{\sqrt{n_{1} n_{2}\left(n_{1}+n_{2}+1\right) / 12}} \dot{\sim} N(0,1),
$$

when H_{0} is true. Seeing a U far away from what we expect under the null gives evidence that H_{0} is false; U is then standardized as usual (subtract off then mean we expect under the null and standardize by an estimate of the standard deviation of U).

A p-value can be computed as usual as well as a Cl .
Note: This test essentially boils down to replacing the observed values with their ranks and carrying out a simple pooled t-test!

Example: Fecal calprotectin

- Fecal calprotectin being evaluated as a possible biomarker of disease severity
- Calprotectin measured in 26 subjects, 8 observed to have no/mild activity by endoscopy
- Calprotectin has upper detection limit at 2500 units
- A type of missing data, but need to keep in analysis

2-Sample Example (Continued)

- Study Question: Are calprotectin levels different in participants with no or mild activity compared to subjects with moderate or severe activity?
- Statement of the null hypothesis

2-Sample Example (Continued)

- Study Question: Are calprotectin levels different in participants with no or mild activity compared to subjects with moderate or severe activity?
- Statement of the null hypothesis
- H_{0} : Populations with no/mild activity have the same distribution of calprotectin as populations with moderate/severe activity ($\mathrm{F}_{\text {no/mild }}=\mathrm{F}_{\text {moderate/severe }}$)

2-Sample Example (Continued)

- R output

```
Wilcoxon rank sum test
data: calpro by endo2
W = 23.5, p-value = 0.006257
alternative hypothesis: true location shift is
```

- A common interpretation: People with moderate/severe activity have higher median fecal calprotectin levels than people with $n o /$ mild activity $(p=0.006)$.

Confidence Intervals for the median difference

Bootstrap

- General method, not just for medians
- Non-parametric, does not assume symmetry
- Iterative method that repeatedly samples from the original data
- Algorithm:
(1) sample with replacement from sample 1 and sample 2
(2) Calculate the difference in medians, save result
(3) Repeat Steps 1 and 2, $B=1000$ times
- A (naive) $95 \% \mathrm{Cl}$ is given by the $2.5^{\text {th }}$ and $97.5^{\text {th }}$ quantile of 1000 bootstrap median differences.

Permutation

Null distribution: Distribution of the test statistic when the null hypothesis is true.
Idea: generate the null distribution by random shuffling group label.

$$
H_{0}: \mu_{1}=\mu_{2}
$$

Observed Data
$\begin{array}{lllllll}\text { Group } & \text { g1 } & \text { g1 } & \text { g1 } & \text { g2 } & \text { g2 } & \text { g2 }\end{array}$
Value $\begin{array}{lllllll}-1.928 & -0.047 & -1.572 & -0.33 & 1.003 & -0.305\end{array}$
Permuted Data

Group*	g2*	g^{*}	$\mathrm{~g} 1^{*}$	$\mathrm{~g} 2^{*}$	$\mathrm{~g} 1^{*}$	$\mathrm{~g} 1^{*}$
Value	-1.928	-0.047	-1.572	-0.33	1.003	-0.305

Randomly assign the group labels $\rightarrow T^{*}$

$$
\text { P-value }=\operatorname{Pr}\left(\left|T^{\star}\right| \geq\left|T_{\text {obs }}\right|\right)
$$

Permutation Test

Permuted Null Distribution

Distribution of 1636 g_at probe by cancer molecular subtypes

Permutation Test is A Good Friend

Good: Do not assume distribution for the test statistic Bad: Computational intense (longer computation time)

Reference: Mewhort et al. Randomization tests and the unequal-N/unequal-variance problem (2009). Behavior Research Methods: 41: 664

