Simple Linear Regression (Chapter 1 \& 2)

Dr. Yen-Yi Ho

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

When to Use What Statistics

Statistical Analyses	Independent Variables		Dependent Variables		Control \# of IVs
	\# of DVs	Type of Data			
Chi square	1	categorical	1	categorical	0
t-Test	1	dichotomous	1	continuous	0
ANOVA	$1+$	categorical	1	continuous	0
ANCOVA	$1+$	categorical	1	continuous	$1+$
MANOVA	$1+$	categorical	$2+$	continuous	0
MANCOVA	$1+$	categorical	$2+$	continuous	$1+$
Correlation	1	dichotomous or continuous	1	continuous	0
Multiple regression	$2+$	dichotomous or continuous	1	continuous	0
Path analysis	$2+$	continuous	$1+$	continuous	0
Logistic Regression	$1+$	categorical or continuous	1	dichotomous	0

DV: dependent variable, response variable, outcome, phenotype (Y) IV: independent variable, predictor variable, covariate (X) Does the difference in gene expression exist between patients with/without a mutation?

When to Use What Statistics

Statistical Analyses	Independent Variables		Dependent Variables		Control \# of IVs
	\# of DVs	Type of Data			
Chi square	1	categorical	1	categorical	0
t-Test	1	dichotomous	1	continuous	0
ANOVA	$1+$	categorical	1	continuous	0
ANCOVA	$1+$	categorical	1	continuous	$1+$
MANOVA	$1+$	categorical	$2+$	continuous	0
MANCOVA	$1+$	categorical	$2+$	continuous	$1+$
Correlation	1	dichotomous or continuous	1	continuous	0
Multiple regression	$2+$	dichotomous or continuous	1	continuous	0
Path analysis	$2+$	continuous	$1+$	continuous	0
Logistic Regression	$1+$	categorical or continuous	1	dichotomous	0

DV: dependent variable, response variable, outcome, phenotype (Y) IV: independent variable, predictor variable, covariate (X) Does the difference in gene expression exist between patients with/without a mutation?
Determine the association between disease status (Yes, No) and genotype (AA, Aa, aa).

When to Use What Statistics

Statistical Analyses	Independent Variables		Dependent Variables		Control \# of IVs
	\# of DVs	Type of Data			
Chi square	1	categorical	1	categorical	0
t-Test	1	dichotomous	1	continuous	0
ANOVA	$1+$	categorical	1	continuous	0
ANCOVA	$1+$	categorical	1	continuous	$1+$
MANOVA	$1+$	categorical	$2+$	continuous	0
MANCOVA	$1+$	categorical	$2+$	continuous	$1+$
Correlation	1	dichotomous or continuous	1	continuous	0
Multiple regression	$2+$	dichotomous or continuous	1	continuous	0
Path analysis	$2+$	continuous	$1+$	continuous	0
Logistic Regression	$1+$	categorical or continuous	1	dichotomous	0

DV: dependent variable, response variable, outcome, phenotype (Y) IV: independent variable, predictor variable, covariate (X)
Does the difference in gene expression exist between patients with/without a mutation?
Determine the association between disease status (Yes, No) and genotype (AA, Aa, aa).
Predict daughter's height from father's height.

- Toluca makes replacement parts for refrigerators.
- We consider one particular part, manufactured in varying lot sizes.
- It takes time to set up production regardless of lot size; this time plus machining \& assembly makes up work hours.
- We want to relate work hours to lot size.
- $n=25$ pairs $\left(X_{i}, Y_{i}\right)$ were obtained.

Roughly linear trend, no obvious outliers.

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- Y_{i} the value of the response variable in the $i^{\text {th }}$ trial
- β_{0}, β_{1} are parameters
- X_{i} is known; it is the value of the predictor variable in the $i^{\text {th }}$ trial
- ϵ_{i} is a random error term with $E\left(\epsilon_{i}\right)=0$ and finite variance $\sigma^{2}\left(\epsilon_{i}\right)=\sigma^{2}$
- $i=1,2, \ldots n$
- $\hat{Y}=E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}$

Least Square Linear Regression

Least Squares Estimation

Seek to minimize

$$
Q=\sum_{i=1}^{n}\left[Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right]^{2}
$$

Minimize by maximizing -Q.

$$
\begin{aligned}
& \frac{d Q}{d \beta_{0}}=0 \\
& \frac{d Q}{d \beta_{1}}=0
\end{aligned}
$$

Normal Equations

The result of this maximization step are called the normal equations.

$$
\begin{aligned}
\sum Y_{i} & =n b_{0}+b_{1} \sum X_{i} \\
\sum X_{i} Y_{i} & =b_{0} \sum X_{i}+b_{1} \sum X_{i}^{2}
\end{aligned}
$$

The solution to the normal equations:

$$
\begin{aligned}
b_{1} & =\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}} \\
b_{0} & =\bar{Y}-b_{1} \bar{X}
\end{aligned}
$$

The fitted model is

$$
\widehat{\text { hours }}=62.37+3.570 \times \text { lot size } .
$$

- A lot size of $X=65$ takes $\hat{Y}=62.37+3.570 \times 65=294$ hours to finish, on average.
- For each unit increase in lot size, the mean time to finish increases by 3.57 hours.
- Increasing the lot size by 10 parts increases the time by 35.7 hours, about a week.
- $b_{0}=62.37$ is only interpretable for lots of size zero. What does that mean here? (We don't observe any data with lot size $=0$)

Alternative Model: Centering

Toluca Data

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
& Y_{i}=\beta_{0}^{*}+\beta_{1}\left(X_{i}-\bar{X}\right)+\epsilon_{i}
\end{aligned}
$$

$$
\hat{Y}=62.37+3.570 X
$$

$$
\hat{Y}=312.28+3.570(X-70)
$$

- $b_{0}^{*}=b_{0}+b_{1} \bar{X}=\bar{Y}$.
- β_{0}^{*} is the mean outcome when $X=70$ (reference group).
- Interpretation for β_{1} has not changed.

```
>fit1<-lm(dat[,2] ~ dat[,1])
>summary(fit1)
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 62.366 26.177 2.382 0.0259 *
dat[, 1] 3.570 0.347 10.290 4.45e-10 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 48.82 on 23 degrees of freedom
Multiple R-squared: 0.8215,Adjusted R-squared: 0.8138
F-statistic: 105.9 on 1 and 23 DF, p-value: 4.449e-10
>xstar<-dat[,1]-mean(dat[,1])
>fit2<-lm(dat[,2] ~ xstar)
>summary(fit2)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrr} 
(Intercept) & 312.280 & 9.765 & 31.98 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
xstar & 3.570 & 0.347 & 10.29 & \(4.45 \mathrm{e}-10\) & \(* * *\)
\end{tabular}
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 48.82 on 23 degrees of freedom
Multiple R-squared: 0.8215,Adjusted R-squared: 0.8138
F-statistic: 105.9 on 1 and 23 DF, p-value: 4.449e-10
```


Residuals \& fitted values, Section 1.6

- The i th fitted value is $\hat{Y}_{i}=b_{0}+b_{1} X_{i}$.
- The points $\left(X_{1}, \hat{Y}_{1}\right), \ldots,\left(X_{n}, \hat{Y}_{n}\right)$ fall on the line $y=b_{0}+b_{1} x$, the points $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ do not.
- The i th residual is

$$
e_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-\left(b_{0}+b_{1} X_{i}\right), \quad i=1, \ldots, n
$$

the difference between observed and fitted values.

- e_{i} "estimates" ϵ_{i}.
(1) $\sum_{i=1}^{n} e_{i}=0$ (from normal equations)
(2) $\sum_{i=1}^{n} X_{i} e_{i}=0$ (from normal equations)
(3) $\sum_{i=1}^{n} \hat{Y}_{i} e_{i}=0$ (1 and 2)
(1) Least squares line always goes through (\bar{X}, \bar{Y}).

Plug in \bar{X} in the model

$$
\begin{aligned}
& \hat{Y}_{i}=b_{0}+b_{1} X i \\
& \hat{Y}_{i}=\bar{Y}-b_{1} \bar{X}+b_{1} \bar{X}
\end{aligned}
$$

Orthogonal projection of Y

Estimating σ^{2}, Section 1.7

σ^{2} is the error variance. A natural starting point for an estimator of σ^{2} is $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} e_{i}^{2}$. However,

$$
\begin{aligned}
E\left(\hat{\sigma}^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2} \\
& =\ldots \text { lot of hideous algebra later... } \\
& =\frac{n-2}{n} \sigma^{2}
\end{aligned}
$$

So in the end we use the unbiased mean squared error

$$
M S E=\frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

MSE and SSE

So an estimate of $\operatorname{var}\left(Y_{i}\right)=\sigma^{2}$ is

$$
s^{2}=M S E=\frac{S S E}{n-2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}\left(=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}\right)
$$

Then $E(M S E)=\sigma^{2}$. MSE is automatically given in SAS and R .
$s=\sqrt{M S E}$ is an estimator of σ, the standard deviation of Y_{i}.
Example: Toluca data. $M S E=2383.72$ hours 2 and
$\sqrt{M S E}=48.82$ hours from the R output. For a lot size of $X=65$ units, the mean work hour (\hat{Y}) is 294.4 hours. The variation in work hours from lot to lot for lots of 65 units is quite substantial since the prediction would still be off by $\frac{48.82}{294.4} \approx 16.6 \%$.

Chapter 2: Normal errors regression

- So far we have only assumed $E\left(\epsilon_{i}\right)=0$ and $\operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2}$.
- We can additionally assume

$$
\epsilon_{1}, \ldots, \epsilon_{n} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

- This allows us to make inference about β_{0}, β_{1}, and obtain prediction intervals for a new Y_{h} with covariate X_{h}.
- The model is, succinctly,

$$
Y_{i} \stackrel{\text { ind. }}{\sim} N\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right), \quad i=1, \ldots, n .
$$

b_{0} and b_{1} are MLEs

Fact: Under the assumption of normality, the least squares estimators (b_{0}, b_{1}) are also maximum likelihood estimators (pp. $27-30)$ for $\left(\beta_{0}, \beta_{1}\right)$.

The likelihood of $\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$ is the density of the data given these parameters (p. 31):

$$
\begin{aligned}
\mathcal{L}\left(\beta_{0}, \beta_{1}, \sigma^{2}\right) & =f\left(y_{1}, \ldots, y_{n} \mid \beta_{0}, \beta_{1}, \sigma^{2}\right) \\
& \stackrel{\text { ind. }}{=} \prod_{i=1}^{n} f\left(y_{i} \mid \beta_{0}, \beta_{1}, \sigma^{2}\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-0.5 \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}\right) .
\end{aligned}
$$

LS = MLE under normality

$\mathcal{L}\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$ is maximized when $\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}$ is as small as possible.
\Rightarrow Least-squares estimators are MLEs too!
The MLE of σ^{2} is, instead, $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} e_{i}^{2}$; the denominator changes.

Section 2.1: Inferences on β_{1}

The least squares estimator for the slope is b_{1} is

$$
b_{1}=\frac{\sum\left(X_{i}-\bar{X}\right) Y_{i}}{\sum\left(X_{i}-\bar{X}\right)^{2}}=\sum_{i=1}^{n}\left[\frac{\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}\right] Y_{i}
$$

Thus, b_{1} is a linear combination n independent normal random variables Y_{1}, \ldots, Y_{n}. Therefore

$$
b_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

(proof in pp. 43)

So,

$$
\sigma\left\{b_{1}\right\}=\sqrt{\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

Take b_{1}, subtract off its mean, and divide by its standard deviation and you've got...

$$
\frac{b_{1}-\beta_{1}}{\sigma\left\{b_{1}\right\}} \sim N(0,1)
$$

We will never know $\sigma\left\{b_{1}\right\}$; we estimate it by

$$
\operatorname{se}\left(b_{1}\right)=\sqrt{\frac{M S E}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

Confidence interval for β_{1} and testing $H_{0}: \beta_{1}=\beta_{10}$

Fact:

$$
\frac{b_{1}-\beta_{1}}{\operatorname{se}\left(b_{1}\right)} \sim t_{n-2} .
$$

$\mathrm{A}(1-\alpha) 100 \% \mathrm{Cl}$ for β_{1} has endpoints

$$
b_{1} \pm t_{n-2}(1-\alpha / 2) \operatorname{se}\left(b_{1}\right)
$$

Under $H_{0}: \beta_{1}=\beta_{10}$,

$$
t^{*}=\frac{b_{1}-\beta_{10}}{\operatorname{se}\left(b_{1}\right)} \sim t_{n-2}
$$

P -values are computed as usual.
Note: Of particular interest is $H_{0}: \beta_{1}=0$, that $E\left(Y_{i}\right)=\beta_{0}$ and does not depend on X_{i}. That is, " $H_{0}: X_{i}$ is useless in predicting Y_{i}."

Regression output typically produces a table like:

Parameter	Estimate	Standard error	t^{*}	p -value
Intercept β_{0}	b_{0}	$\operatorname{se}\left(b_{0}\right)$	$t_{0}^{*}=\frac{b_{0}}{\operatorname{se}\left(b_{0}\right)}$	$P\left(\|T\|>\left\|t_{0}^{*}\right\|\right)$
Slope β_{1}	b_{1}	$\operatorname{se}\left(b_{1}\right)$	$t_{1}^{*}=\frac{b_{1}}{\sec \left(b_{1}\right)}$	$P\left(\|T\|>\left\|t_{1}^{*}\right\|\right)$

where $T \sim t_{n-p}$ and p is the number of parameters used to estimate the mean, here $p=2: \beta_{0}$ and β_{1}. Later p will be the number of predictors in the model plus one.

The two p -values in the table test $H_{0}: \beta_{0}=0$ and $H_{0}: \beta_{1}=0$ respectively. The test for zero intercept is usually not of interest.

		Parameter	Standard			
Variable	Label	DF	Estimate	Error	t Value	Pr $>\|t\|$
Intercept	Intercept	1	62.36586	26.17743	2.38	0.0259
size	Lot Size (parts/lot)	1	3.57020	0.34697	10.29	$<.0001$

We reject $H_{0}: \beta_{1}=0$ at any reasonable significance level ($P<0.0001$). There is a significant linear association between lot size and hours worked.

Note se $\left(b_{1}\right)=0.347, t_{1}^{*}=\frac{3.57}{0.347}=10.3$, and $P\left(\left|t_{23}\right|>10.3\right)<0.0001$.

2.2 Inference about the intercept β_{0}

The intercept usually is not very interesting, but just in case...
Write b_{0} as a linear combination of Y_{1}, \ldots, Y_{n} as we did with the slope:

$$
b_{0}=\bar{Y}-b_{1} \bar{X}=\sum_{i=1}^{n}\left[\frac{1}{n}-\frac{\bar{X}\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}\right] Y_{i}
$$

After some slogging, this leads to

$$
b_{0} \sim N\left(\beta_{0}, \sigma^{2}\left[\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]\right)
$$

Distribution of $\frac{b_{0}-B_{0}}{s e\left(b_{0}\right)}$

Define se $\left(b_{0}\right)=\sqrt{\operatorname{MSE}\left[\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]}$ and you're in business:

$$
\frac{b_{0}-\beta_{0}}{\operatorname{se}\left(b_{0}\right)} \sim t_{n-2} .
$$

Obtain Cl s and tests about β_{0} as usual...

2.4 Estimating $E\left(Y_{h}\right)$

Estimating $E\left(Y_{h}\right)=\beta_{0}+\beta_{1} X_{h}$
(e.g. inference about the regression line)

Let X_{h} be any predictor, say we want to estimate the mean of all outcomes in the population that have covariate X_{h}. This is given by

$$
E\left(Y_{h}\right)=\beta_{0}+\beta_{1} X_{h} .
$$

Our estimator of this is

$$
\begin{aligned}
\hat{Y}_{h} & =b_{0}+b_{1} X_{h} \\
& =\sum_{i=1}^{n}\left[\frac{1}{n}-\frac{\bar{X}\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}+\frac{\left(X_{i}-\bar{X}\right) X_{h}}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}\right] Y_{i} \\
& =\sum_{i=1}^{n}\left[\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}\right] Y_{i}
\end{aligned}
$$

Distribution of \hat{Y}_{h}

Again we have a linear combination of independent normals as our estimator. This leads, after slogging through some math (pp. 53-54), to

$$
b_{0}+b_{1} X_{h} \sim N\left(\beta_{0}+\beta_{1} X_{h}, \sigma^{2}\left[\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]\right) .
$$

As before, this leads to a $(1-\alpha) 100 \% \mathrm{Cl}$ for $\beta_{0}+\beta_{1} X_{h}$

$$
b_{0}+b_{1} X_{h} \pm t_{n-2}(1-\alpha / 2) \operatorname{se}\left(b_{0}+b_{1} X_{h}\right)
$$

where se $\left(b_{0}+b_{1} X_{h}\right)=\sqrt{\operatorname{MSE}\left[\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]}$.
Question: For what value of x_{h} is the Cl narrowist? What happens when X_{h} moves away from \bar{X} ?

2.5 Prediction intervals

- We discussed constructing a Cl for the unknown mean at X_{h}, $\beta_{0}+\beta_{1} X_{h}$.
- What if we want to find an interval that contains a single Y_{h} with fixed probability?
- If we knew β_{0}, β_{1}, and σ^{2} this is easy:

$$
Y_{h}=\beta_{0}+\beta_{1} X_{h}+\epsilon_{h}
$$

and so, for example,

$$
P\left(\beta_{0}+\beta_{1} X_{h}-1.96 \sigma \leq Y_{h} \leq \beta_{0}+\beta_{1} X_{h}+1.96 \sigma\right)=0.95
$$

- Unfortunately, we don't know β_{0} and β_{1}. We don't even know σ, but we can construct a random variable with a t distribution to develop an appropriate prediction interval.

Variability of $Y_{h}-\hat{Y}_{h}$

An interval that contains Y_{h} (independent of Y_{1}, \ldots, Y_{n}) with $(1-\alpha)$ probability needs to account for
(1) The variability of the least squares line $b_{0}+b_{1} X_{h}$, and
(2) The natural variability of response Y_{h} built into the model;

$$
\epsilon_{h} \sim N\left(0, \sigma^{2}\right)
$$

We have

$$
\begin{aligned}
\sigma^{2}\left\{Y_{h}-\hat{Y}_{h}\right\} & \stackrel{\text { ind }}{=} \sigma^{2}\left\{Y_{h}\right\}+\sigma^{2}\left\{\hat{Y}_{h}\right\} \\
& =\sigma^{2}+\sigma^{2}\left[\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right] \\
& =\sigma^{2}\left[1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]
\end{aligned}
$$

This is different from the Cl for \hat{Y}_{h} (mean). The prediction interval of next data point (Y_{h}, not the mean) includes the uncertainty in the population mean, plus data scatter. So a prediction interval is always wider than a confidence interval.

Since $Y_{h}-\hat{Y}_{h} \sim N\left(0, \sigma^{2}\left\{Y_{h}-\hat{Y}_{h}\right\}\right)$,

$$
\frac{Y_{h}-\hat{Y}_{h}}{\hat{\sigma}\left\{Y_{h}-\hat{Y}_{h}\right\}} \sim t_{n-2}
$$

We thus obtain a $(1-\alpha / 2) 100 \%$ prediction interval (PI) for Y_{h} :

$$
b_{0}+b_{1} X_{h} \pm t_{n-2}(1-\alpha / 2) \sqrt{M S E\left[1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right]} .
$$

Note: As $n \rightarrow \infty, b_{0} \xrightarrow{P} \beta_{0}, b_{1} \xrightarrow{P} \beta_{1}$,
$t_{n-2}(1-\alpha / 2) \rightarrow \Phi^{-1}(1-\alpha / 2)$, and MSE $\xrightarrow{P} \sigma^{2}$. That is, as the sample size grows, the prediction interval converges to

$$
\beta_{0}+\beta_{1} x_{h} \pm \Phi^{-1}(1-\alpha / 2) \sigma
$$

Example: Toluca data

- Find a $95 \% \mathrm{Cl}$ for the mean number of work hours for lots of size $X_{h}=65$ units.
- Find a 95% PI for the number of work hours for a lot of size $X_{h}=65$ units.
- Repeat both for $X_{h}=100$ units.
- R Code in Lab6.R

Plot of 95% Cl for mean \& prediction intervals

Toluca Data

Obtaining confidence intervals for β_{0} and β_{1}

R code:

```
> confint(fit1)
    2.5% 97.5 %
(Intercept) 8.213711 116.518006
LotSize 2.852435 4.287969
```


2.6 Confidence band for regression function

- Gives region that entire regression line lies in with certain probability/confidence.
- Given by

$$
\hat{Y}_{h} \pm W \operatorname{se}\left\{\hat{Y}_{h}\right\}=b_{0}+b_{1} X_{h} \pm W \text { se }\left\{b_{0}+b_{1} X_{h}\right\}
$$

where $W^{2}=2 F(1-\alpha ; 2, n-2)$

- Defined for $X_{h} \in \mathbb{R}$. Ignore for nonsense values of X_{h}.
- R code in Lab6.R

Confidence band for regression function

Toluca Data

