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When to Use What Statistics

DV: dependent variable, response variable, outcome, phenotype (Y)
IV: independent variable, predictor variable, covariate (X)
Does the difference in gene expression exist between patients
with/without a mutation?

Determine the association between disease status (Yes, No) and
genotype (AA, Aa, aa).
Predict daughter’s height from father’s height.
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Toluca data (p. 19)

Toluca makes replacement parts for refrigerators.

We consider one particular part, manufactured in varying lot
sizes.

It takes time to set up production regardless of lot size; this
time plus machining & assembly makes up work hours.

We want to relate work hours to lot size.

n = 25 pairs (Xi ,Yi ) were obtained.
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Toluca data

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80 100 120

10
0

20
0

30
0

40
0

50
0

Toluca Data

Lot Size

W
or

k 
H

ou
rs

312.28

70

Roughly linear trend, no obvious outliers.
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The Model

Yi = β0 + β1Xi + εi

Yi the value of the response variable in the i th trial

β0, β1 are parameters

Xi is known; it is the value of the predictor variable in the i th

trial

εi is a random error term with E (εi ) = 0 and finite variance
σ2(εi ) = σ2

i = 1, 2, ...n

Ŷ = E (Yi ) = β0 + β1Xi
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Least Square Linear Regression
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Least Squares Estimation

Seek to minimize

Q =
n∑

i=1

[Yi − (β0 + β1Xi )]2

Minimize by maximizing -Q.

dQ

dβ0
= 0

dQ

dβ1
= 0
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Normal Equations

The result of this maximization step are called the normal
equations. ∑

Yi = nb0 + b1

∑
Xi∑

XiYi = b0

∑
Xi + b1

∑
X 2
i

The solution to the normal equations:

b1 =

∑
(Xi − X )(Yi − Y )∑

(Xi − X )2

b0 = Y − b1X
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Toluca

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80 100 120

10
0

20
0

30
0

40
0

50
0

Toluca Data

Lot Size

W
or

k 
H

ou
rs

The fitted model is
ĥours = 62.37 + 3.570× lot size.

A lot size of X = 65 takes Ŷ = 62.37 + 3.570× 65 = 294 hours to finish, on
average.

For each unit increase in lot size, the mean time to finish increases by 3.57
hours.

Increasing the lot size by 10 parts increases the time by 35.7 hours, about a
week.

b0 = 62.37 is only interpretable for lots of size zero. What does that mean
here? (We don’t observe any data with lot size =0)
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Alternative Model: Centering
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Yi = β0 + β1Xi + εi

Yi = β∗0 + β1(Xi − X ) + εi

Ŷ = 62.37 + 3.570X

Ŷ = 312.28 + 3.570(X − 70)

b∗0 = b0 + b1X = Y .

β∗0 is the mean outcome when X = 70 (reference group).

Interpretation for β1 has not changed.
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R Code

>fit1<-lm(dat[,2] ~ dat[,1])

>summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.366 26.177 2.382 0.0259 *

dat[, 1] 3.570 0.347 10.290 4.45e-10 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 48.82 on 23 degrees of freedom

Multiple R-squared: 0.8215,Adjusted R-squared: 0.8138

F-statistic: 105.9 on 1 and 23 DF, p-value: 4.449e-10

>xstar<-dat[,1]-mean(dat[,1])

>fit2<-lm(dat[,2] ~ xstar)

>summary(fit2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 312.280 9.765 31.98 < 2e-16 ***

xstar 3.570 0.347 10.29 4.45e-10 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 48.82 on 23 degrees of freedom

Multiple R-squared: 0.8215,Adjusted R-squared: 0.8138

F-statistic: 105.9 on 1 and 23 DF, p-value: 4.449e-10
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Residuals & fitted values, Section 1.6

The ith fitted value is Ŷi = b0 + b1Xi .

The points (X1, Ŷ1), . . . , (Xn, Ŷn) fall on the line
y = b0 + b1x , the points (X1,Y1), . . . , (Xn,Yn) do not.

The ith residual is

ei = Yi − Ŷi = Yi − (b0 + b1Xi ), i = 1, . . . , n,

the difference between observed and fitted values.

ei “estimates” εi .
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Properties of the residuals (pp. 23–24)

1
∑n

i=1 ei = 0 (from normal equations)

2
∑n

i=1 Xiei = 0 (from normal equations)

3
∑n

i=1 Ŷiei = 0 (1 and 2)

4 Least squares line always goes through (X̄ , Ȳ ).

Plug in X in the model

Ŷi = b0 + b1Xi

Ŷi = Y − b1X + b1X
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Orthogonal projection of Y
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Estimating σ2, Section 1.7

σ2 is the error variance. A natural starting point for an estimator
of σ2 is σ̂2 = 1

n

∑n
i=1 e

2
i . However,

E (σ̂2) =
1

n

n∑
i=1

E (Yi − b0 − b1Xi )
2

= ...a lot of hideous algebra later...

=
n − 2

n
σ2.

So in the end we use the unbiased mean squared error

MSE =
1

n − 2

n∑
i=1

e2
i =

1

n − 2

n∑
i=1

(Yi − b0 − b1Xi )
2.
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MSE and SSE

So an estimate of var(Yi ) = σ2 is

s2 = MSE =
SSE

n − 2
=

∑n
i=1(Yi − Ŷi )

2

n − 2

(
=

∑n
i=1 e

2
i

n − 2

)
.

Then E (MSE ) = σ2. MSE is automatically given in SAS and R.

s =
√
MSE is an estimator of σ, the standard deviation of Yi .

Example: Toluca data. MSE = 2383.72 hours2 and√
MSE = 48.82 hours from the R output. For a lot size of X = 65

units, the mean work hour (Ŷ ) is 294.4 hours. The variation in
work hours from lot to lot for lots of 65 units is quite substantial
since the prediction would still be off by 48.82

294.4 ≈ 16.6%.
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Chapter 2: Normal errors regression

So far we have only assumed E (εi ) = 0 and var(εi ) = σ2.

We can additionally assume

ε1, . . . , εn
iid∼ N(0, σ2).

This allows us to make inference about β0, β1, and obtain
prediction intervals for a new Yh with covariate Xh.

The model is, succinctly,

Yi
ind .∼ N(β0 + β1Xi , σ

2), i = 1, . . . , n.
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b0 and b1 are MLEs

Fact: Under the assumption of normality, the least squares
estimators (b0, b1) are also maximum likelihood estimators (pp.
27–30) for (β0, β1).

The likelihood of (β0, β1, σ
2) is the density of the data given these

parameters (p. 31):

L(β0, β1, σ
2) = f (y1, . . . , yn|β0, β1, σ

2)

ind .
=

n∏
i=1

f (yi |β0, β1, σ
2)

=
n∏

i=1

1√
2πσ2

exp

(
−0.5

(yi − β0 − β1xi )
2

σ2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi )
2

)
.
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LS = MLE under normality

L(β0, β1, σ
2) is maximized when

∑n
i=1(yi − β0 − β1xi )

2 is as small
as possible.

⇒ Least-squares estimators are MLEs too!

The MLE of σ2 is, instead, σ̂2 = 1
n

∑n
i=1 e

2
i ; the denominator

changes.
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Section 2.1: Inferences on β1

The least squares estimator for the slope is b1 is

b1 =

∑
(Xi − X̄ )Yi∑
(Xi − X̄ )2

=
n∑

i=1

[
(Xi − X̄ )∑n
j=1(Xj − X̄ )2

]
Yi .

Thus, b1 is a linear combination n independent normal random
variables Y1, . . . ,Yn. Therefore

b1 ∼ N

(
β1,

σ2∑n
i=1(Xi − X̄ )2

)
.

(proof in pp. 43)
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se(b1) estimates sd(b1)

So,

σ{b1} =

√
σ2∑n

i=1(xi − x̄)2
.

Take b1, subtract off its mean, and divide by its standard deviation
and you’ve got...

b1 − β1

σ{b1}
∼ N(0, 1).

We will never know σ{b1}; we estimate it by

se(b1) =

√
MSE∑n

i=1(xi − x̄)2
.
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Confidence interval for β1 and testing H0 : β1 = β10

Fact:
b1 − β1

se(b1)
∼ tn−2.

A (1− α)100% CI for β1 has endpoints

b1 ± tn−2(1− α/2)se(b1).

Under H0 : β1 = β10,

t∗ =
b1 − β10

se(b1)
∼ tn−2.

P-values are computed as usual.
Note: Of particular interest is H0 : β1 = 0, that E (Yi ) = β0 and
does not depend on Xi . That is, “H0: Xi is useless in predicting
Yi .”

22 / 36



Table of regression coefficients

Regression output typically produces a table like:

Parameter Estimate Standard error t∗ p-value

Intercept β0 b0 se(b0) t∗0 = b0
se(b0)

P(|T | > |t∗0 |)
Slope β1 b1 se(b1) t∗1 = b1

se(b1)
P(|T | > |t∗1 |)

where T ∼ tn−p and p is the number of parameters used to
estimate the mean, here p = 2: β0 and β1. Later p will be the
number of predictors in the model plus one.

The two p-values in the table test H0 : β0 = 0 and H0 : β1 = 0
respectively. The test for zero intercept is usually not of interest.
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Toluca data

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 62.36586 26.17743 2.38 0.0259

size Lot Size (parts/lot) 1 3.57020 0.34697 10.29 <.0001

We reject H0 : β1 = 0 at any reasonable significance level
(P < 0.0001). There is a significant linear association between lot
size and hours worked.

Note se(b1) = 0.347, t∗1 = 3.57
0.347 = 10.3, and

P(|t23| > 10.3) < 0.0001.
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2.2 Inference about the intercept β0

The intercept usually is not very interesting, but just in case...

Write b0 as a linear combination of Y1, . . . ,Yn as we did with the
slope:

b0 = Ȳ − b1X̄ =
n∑

i=1

[
1

n
− X̄ (Xi − X̄ )∑n

j=1(Xj − X̄ )2

]
Yi .

After some slogging, this leads to

b0 ∼ N

(
β0, σ

2

[
1

n
+

X̄ 2∑n
i=1(Xi − X̄ )2

])
.
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Distribution of b0−β0

se(b0)

Define se(b0) =

√
MSE

[
1
n + X̄ 2∑n

i=1(Xi−X̄ )2

]
and you’re in business:

b0 − β0

se(b0)
∼ tn−2.

Obtain CIs and tests about β0 as usual...
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2.4 Estimating E (Yh)

Estimating E (Yh) = β0 + β1Xh

(e.g. inference about the regression line)
Let Xh be any predictor; say we want to estimate the mean of all
outcomes in the population that have covariate Xh. This is given
by

E (Yh) = β0 + β1Xh.

Our estimator of this is

Ŷh = b0 + b1Xh

=
n∑

i=1

[
1

n
− X̄ (Xi − X̄ )∑n

j=1(Xj − X̄ )2
+

(Xi − X̄ )Xh∑n
j=1(Xj − X̄ )2

]
Yi

=
n∑

i=1

[
1

n
+

(Xh − X̄ )(Xi − X̄ )∑n
j=1(Xj − X̄ )2

]
Yi
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Distribution of Ŷh

Again we have a linear combination of independent normals as our
estimator. This leads, after slogging through some math (pp.
53–54), to

b0 + b1Xh ∼ N

(
β0 + β1Xh, σ

2

[
1

n
+

(Xh − X̄ )2∑n
i=1(Xi − X̄ )2

])
.

As before, this leads to a (1− α)100% CI for β0 + β1Xh

b0 + b1Xh ± tn−2(1− α/2)se(b0 + b1Xh),

where se(b0 + b1Xh) =

√
MSE

[
1
n + (Xh−X̄ )2∑n

i=1(Xi−X̄ )2

]
.

Question: For what value of xh is the CI narrowist? What
happens when Xh moves away from X̄?
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2.5 Prediction intervals

We discussed constructing a CI for the unknown mean at Xh,
β0 + β1Xh.

What if we want to find an interval that contains a single Yh

with fixed probability?

If we knew β0, β1, and σ2 this is easy:

Yh = β0 + β1Xh + εh,

and so, for example,

P(β0 + β1Xh − 1.96σ ≤ Yh ≤ β0 + β1Xh + 1.96σ) = 0.95.

Unfortunately, we don’t know β0 and β1. We don’t even know
σ, but we can construct a random variable with a t
distribution to develop an appropriate prediction interval.
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Variability of Yh − Ŷh

An interval that contains Yh (independent of Y1, . . . ,Yn) with
(1− α) probability needs to account for

1 The variability of the least squares line b0 + b1Xh, and
2 The natural variability of response Yh built into the model;
εh ∼ N(0, σ2).

We have

σ2
{
Yh − Ŷh

}
ind
= σ2 {Yh}+ σ2

{
Ŷh

}
= σ2 + σ2

[
1

n
+

(Xh − X̄ )2∑n
i=1(Xi − X̄ )2

]
= σ2

[
1 +

1

n
+

(Xh − X̄ )2∑n
i=1(Xi − X̄ )2

]
This is different from the CI for Ŷh (mean). The prediction interval
of next data point (Yh, not the mean) includes the uncertainty in
the population mean, plus data scatter. So a prediction interval is
always wider than a confidence interval.
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Prediction interval

Since Yh − Ŷh ∼ N
(

0, σ2
{
Yh − Ŷh

})
,

Yh − Ŷh

σ̂
{
Yh − Ŷh

} ∼ tn−2

We thus obtain a (1− α/2)100% prediction interval (PI) for Yh:

b0 + b1Xh ± tn−2(1− α/2)

√
MSE

[
1 +

1

n
+

(Xh − X̄ )2∑n
i=1(Xi − X̄ )2

]
.

Note: As n→∞, b0
P→ β0, b1

P→ β1,

tn−2(1− α/2)→ Φ−1(1− α/2), and MSE
P→ σ2. That is, as the

sample size grows, the prediction interval converges to

β0 + β1xh ± Φ−1(1− α/2)σ.
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Example: Toluca data

Find a 95% CI for the mean number of work hours for lots of
size Xh = 65 units.

Find a 95% PI for the number of work hours for a lot of size
Xh = 65 units.

Repeat both for Xh = 100 units.

R Code in Lab6.R
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Plot of 95% CI for mean & prediction intervals
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Obtaining confidence intervals for β0 and β1

R code:

> confint(fit1)

2.5 % 97.5 %

(Intercept) 8.213711 116.518006

LotSize 2.852435 4.287969
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2.6 Confidence band for regression function

Gives region that entire regression line lies in with certain
probability/confidence.

Given by

Ŷh ±W se{Ŷh} = b0 + b1Xh ±W se{b0 + b1Xh}

where W 2 = 2F (1− α; 2, n − 2)

Defined for Xh ∈ R. Ignore for nonsense values of Xh.

R code in Lab6.R
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Confidence band for regression function
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