Simple Linear Regression (Chapter 1 & 2)

Dr. Yen-Yi Ho

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

When to Use What Statistics

Statistical	Independent Variables		Dependent Variables		Control	
Analyses	# of IVs	Data Type	# of DVs	Type of Data	Variables	
Chi square	1	categorical	1	categorical	0	
t-Test	1	dichotomous	1	continuous	0	
ANOVA	1 +	categorical	1	continuous	0	
ANCOVA	1 +	categorical	1	continuous	1+	
MANOVA	1 +	categorical	2 +	continuous	0	
MANCOVA	1 +	categorical	2 +	continuous	1+	
Correlation	1	dichotomous or continuous	1	continuous	0	
Multiple regression	2+	dichotomous or continuous	1	continuous	0	
Path analysis	2 +	continuous	1+	continuous	0	
Logistic Regression	1+	categorical or continuous	1	dichotomous	0	

DV: dependent variable, response variable, outcome, phenotype (Y) IV: independent variable, predictor variable, covariate (X) Does the difference in gene expression exist between patients with/without a mutation?

When to Use What Statistics

Statistical	Independent Variables		Dependent Variables		Control	
Analyses	# of IVs	Data Type	# of DVs	Type of Data	Variables	
Chi square	1	categorical	1	categorical	0	
t-Test	1	dichotomous	1	continuous	0	
ANOVA	1 +	categorical	1	continuous	0	
ANCOVA	1 +	categorical	tegorical 1 continuou		1+	
MANOVA	1 +	categorical	2 + continuous		0	
MANCOVA	1 +	categorical	2 +	continuous	1+	
Correlation	1	dichotomous or continuous	1	continuous	0	
Multiple regression	2 +	dichotomous or continuous	1 continuous		0	
Path analysis	2 +	continuous	1 + continuous		0	
Logistic Regression	1+	categorical or continuous	1	dichotomous	0	

DV: dependent variable, response variable, outcome, phenotype (Y) IV: independent variable, predictor variable, covariate (X) Does the difference in gene expression exist between patients with/without a mutation? Determine the association between disease status (Yes, No) and

genotype (AA, Aa, aa).

When to Use What Statistics

Statistical	Independent Variables		Dependent Variables		Control	
Analyses	# of IVs	of Data Type		Type of Data	Variables	
Chi square	1	categorical	1	categorical	0	
t-Test	1	dichotomous	1	continuous	0	
ANOVA	1 +	categorical	1	continuous	0	
ANCOVA	1 +	categorical	1	continuous	1+	
MANOVA	1 +	categorical 2 +		continuous	0	
MANCOVA	1 +	categorical	2 +	continuous	1+	
Correlation	1	dichotomous or continuous	1	continuous	0	
Multiple regression	2 +	dichotomous or continuous	hotomous or continuous 1 co		0	
Path analysis	2 +	continuous	1+	continuous	0	
Logistic Regression	1+	categorical or continuous	1	dichotomous	0	

DV: dependent variable, response variable, outcome, phenotype (Y) IV: independent variable, predictor variable, covariate (X) Does the difference in gene expression exist between patients with/without a mutation?

Determine the association between disease status (Yes, No) and genotype (AA, Aa, aa).

Predict daughter's height from father's height.

- Toluca makes replacement parts for refrigerators.
- We consider one particular part, manufactured in varying lot sizes.
- It takes time to set up production regardless of lot size; this time plus machining & assembly makes up work hours.
- We want to relate work hours to lot size.
- n = 25 pairs (X_i, Y_i) were obtained.

Roughly linear trend, no obvious outliers.

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i the value of the response variable in the i^{th} trial
- β_0 , β_1 are parameters
- X_i is known; it is the value of the predictor variable in the *i*th trial
- ϵ_i is a random error term with $E(\epsilon_i) = 0$ and finite variance $\sigma^2(\epsilon_i) = \sigma^2$
- *i* = 1, 2, ...*n*
- $\hat{Y} = E(Y_i) = \beta_0 + \beta_1 X_i$

Least Square Linear Regression

Seek to minimize

$$Q = \sum_{i=1}^{n} [Y_i - (\beta_0 + \beta_1 X_i)]^2$$

Minimize by maximizing -Q.

$$\frac{dQ}{d\beta_0} = 0$$
$$\frac{dQ}{d\beta_1} = 0$$

The result of this maximization step are called the normal equations.

$$\sum Y_i = nb_0 + b_1 \sum X_i$$

$$\sum X_i Y_i = b_0 \sum X_i + b_1 \sum X_i^2$$

The solution to the normal equations:

$$b_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

Toluca

The fitted model is

$$\widehat{\text{hours}} = 62.37 + 3.570 \times \text{lot size.}$$

- A lot size of X = 65 takes $\hat{Y} = 62.37 + 3.570 \times 65 = 294$ hours to finish, on average.
- For each unit increase in lot size, the mean time to finish increases by 3.57 hours.
- Increasing the lot size by 10 parts increases the time by 35.7 hours, about a week.
- $b_0 = 62.37$ is only interpretable for lots of size zero. What does that mean here? (We don't observe any data with lot size =0)

Alternative Model: Centering

• $b_0^* = b_0 + b_1 \overline{X} = \overline{Y}$.

• β_0^* is the mean outcome when X = 70 (reference group).

• Interpretation for β_1 has not changed.

R Code

```
>fit1<-lm(dat[,2] ~ dat[,1])
>summary(fit1)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.366
                        26.177 2.382 0.0259 *
dat[, 1]
        3.570 0.347 10.290 4.45e-10 ***
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 48.82 on 23 degrees of freedom
Multiple R-squared: 0.8215, Adjusted R-squared: 0.8138
F-statistic: 105.9 on 1 and 23 DF, p-value: 4.449e-10
>xstar<-dat[,1]-mean(dat[,1])</pre>
>fit2<-lm(dat[.2] ~ xstar)</pre>
>summary(fit2)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 312.280 9.765 31.98 < 2e-16 ***
              3.570 0.347 10.29 4.45e-10 ***
xstar
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 48.82 on 23 degrees of freedom
Multiple R-squared: 0.8215, Adjusted R-squared: 0.8138
F-statistic: 105.9 on 1 and 23 DF, p-value: 4.449e-10
```

Residuals & fitted values, Section 1.6

- The *i*th **fitted value** is $\hat{Y}_i = b_0 + b_1 X_i$.
- The points $(X_1, \hat{Y}_1), \ldots, (X_n, \hat{Y}_n)$ fall on the line $y = b_0 + b_1 x$, the points $(X_1, Y_1), \ldots, (X_n, Y_n)$ do not.
- The *i*th **residual** is

$$e_i = Y_i - \hat{Y}_i = Y_i - (b_0 + b_1 X_i), \quad i = 1, \dots, n,$$

the difference between observed and fitted values.

• e_i "estimates" ϵ_i .

Properties of the residuals (pp. 23–24)

•
$$\sum_{i=1}^{n} e_i = 0$$
 (from normal equations)

$$\sum_{i=1}^{n} X_i e_i = 0$$
 (from normal equations)

3)
$$\sum_{i=1}^{n} \hat{Y}_{i} e_{i} = 0$$
 (1 and 2)

• Least squares line always goes through (\bar{X}, \bar{Y}) .

Plug in \overline{X} in the model

$$\begin{array}{rcl} \hat{Y}_i &=& b_0 + b_1 X_i \\ \hat{Y}_i &=& \overline{Y} - b_1 \overline{X} + b_1 \overline{X} \end{array}$$

Orthogonal projection of Y

 σ^2 is the error variance. A natural starting point for an estimator of σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$. However,

$$E(\hat{\sigma}^2) = \frac{1}{n} \sum_{i=1}^n E(Y_i - b_0 - b_1 X_i)^2$$

= ...a lot of hideous algebra later...
= $\frac{n-2}{n} \sigma^2$.

So in the end we use the unbiased *mean squared error*

$$MSE = \frac{1}{n-2}\sum_{i=1}^{n} e_i^2 = \frac{1}{n-2}\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2.$$

MSE and SSE

So an estimate of $var(Y_i) = \sigma^2$ is

$$s^{2} = MSE = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{n-2} \left(= \frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2} \right)$$

Then $E(MSE) = \sigma^2$. MSE is automatically given in SAS and R.

 $s = \sqrt{MSE}$ is an estimator of σ , the standard deviation of Y_i .

Example: Toluca data. $MSE = 2383.72 \text{ hours}^2$ and $\sqrt{MSE} = 48.82$ hours from the R output. For a lot size of X = 65 units, the mean work hour (\hat{Y}) is 294.4 hours. The variation in work hours from lot to lot for lots of 65 units is quite substantial since the prediction would still be off by $\frac{48.82}{204.4} \approx 16.6\%$.

- So far we have only assumed $E(\epsilon_i) = 0$ and $var(\epsilon_i) = \sigma^2$.
- We can additionally assume

$$\epsilon_1,\ldots,\epsilon_n \stackrel{iid}{\sim} N(0,\sigma^2).$$

- This allows us to make *inference* about β₀, β₁, and obtain prediction intervals for a new Y_h with covariate X_h.
- The model is, succinctly,

$$Y_i \stackrel{\textit{ind.}}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2), \quad i = 1, \ldots, n.$$

b_0 and b_1 are MLEs

Fact: Under the assumption of normality, the least squares estimators (b_0, b_1) are also maximum likelihood estimators (pp. 27–30) for (β_0, β_1) .

The *likelihood* of $(\beta_0, \beta_1, \sigma^2)$ is the density of the data given these parameters (p. 31):

$$\begin{aligned} \mathcal{L}(\beta_0, \beta_1, \sigma^2) &= f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2) \\ \stackrel{ind.}{=} & \prod_{i=1}^n f(y_i | \beta_0, \beta_1, \sigma^2) \\ &= & \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-0.5 \frac{(y_i - \beta_0 - \beta_1 x_i)^2}{\sigma^2}\right) \\ &= & (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2\right). \end{aligned}$$

 $\mathcal{L}(\beta_0, \beta_1, \sigma^2)$ is maximized when $\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$ is as small as possible.

 \Rightarrow Least-squares estimators are MLEs too!

The MLE of σ^2 is, instead, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} e_i^2$; the denominator changes.

The least squares estimator for the slope is b_1 is

$$b_1 = rac{\sum (X_i - \bar{X}) Y_i}{\sum (X_i - \bar{X})^2} = \sum_{i=1}^n \left[rac{(X_i - \bar{X})}{\sum_{j=1}^n (X_j - \bar{X})^2}
ight] Y_i.$$

Thus, b_1 is a linear combination *n* independent normal random variables Y_1, \ldots, Y_n . Therefore

$$b_1 \sim N\left(eta_1, rac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}
ight).$$

(proof in pp. 43)

$se(b_1)$ estimates $sd(b_1)$

So,

$$\sigma\{b_1\} = \sqrt{\frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}.$$

Take b_1 , subtract off its mean, and divide by its standard deviation and you've got...

$$\frac{b_1-\beta_1}{\sigma\{b_1\}}\sim N(0,1).$$

We will never know $\sigma\{b_1\}$; we estimate it by

$$se(b_1) = \sqrt{rac{MSE}{\sum_{i=1}^n (x_i - \bar{x})^2}}.$$

Confidence interval for β_1 and testing H_0 : $\beta_1 = \beta_{10}$

Fact:

$$\frac{b_1-\beta_1}{se(b_1)}\sim t_{n-2}.$$

A $(1-\alpha)100\%$ CI for β_1 has endpoints

$$b_1 \pm t_{n-2}(1 - \alpha/2)se(b_1).$$

Under H_0 : $\beta_1 = \beta_{10}$,

$$t^* = rac{b_1 - eta_{10}}{se(b_1)} \sim t_{n-2}.$$

P-values are computed as usual.

Note: Of particular interest is H_0 : $\beta_1 = 0$, that $E(Y_i) = \beta_0$ and does not depend on X_i . That is, " H_0 : X_i is useless in predicting Y_i ."

Regression output typically produces a table like:

Parameter	Estimate	Standard error	t*	p-value
Intercept β_0	b_0	$se(b_0)$	$t_0^* = rac{b_0}{se(b_0)}$	$P(T > t_0^*)$
Slope β_1	b_1	$se(b_1)$	$t_1^* = rac{b_1}{se(b_1)}$	$P(T > t_1^*)$

where $T \sim t_{n-p}$ and p is the number of parameters used to estimate the mean, here p = 2: β_0 and β_1 . Later p will be the number of predictors in the model plus one.

The two p-values in the table test H_0 : $\beta_0 = 0$ and H_0 : $\beta_1 = 0$ respectively. The test for zero intercept is usually not of interest.

			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	62.36586	26.17743	2.38	0.0259
size	Lot Size (parts/lot)	1	3.57020	0.34697	10.29	<.0001

We reject H_0 : $\beta_1 = 0$ at any reasonable significance level (P < 0.0001). There is a significant linear association between lot size and hours worked.

Note $se(b_1) = 0.347$, $t_1^* = \frac{3.57}{0.347} = 10.3$, and $P(|t_{23}| > 10.3) < 0.0001$.

The intercept usually is not very interesting, but just in case...

Write b_0 as a linear combination of Y_1, \ldots, Y_n as we did with the slope:

$$b_0 = ar{Y} - b_1 ar{X} = \sum_{i=1}^n \left[rac{1}{n} - rac{ar{X}(X_i - ar{X})}{\sum_{j=1}^n (X_j - ar{X})^2}
ight] Y_i.$$

After some slogging, this leads to

$$b_0 \sim N\left(\beta_0, \sigma^2\left[\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right]\right)$$

Distribution of $\frac{b_0 - \beta_0}{se(b_0)}$

Define
$$se(b_0) = \sqrt{MSE\left[\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2}\right]}$$
 and you're in business:
$$\frac{b_0 - \beta_0}{se(b_0)} \sim t_{n-2}.$$

Obtain CIs and tests about β_0 as usual...

2.4 Estimating $E(Y_h)$

Estimating $E(Y_h) = \beta_0 + \beta_1 X_h$

(e.g. inference about the regression line)

Let X_h be any predictor, say we want to estimate the mean of all outcomes in the *population* that have covariate X_h . This is given by

$$\mathsf{E}(Y_h) = \beta_0 + \beta_1 X_h.$$

Our estimator of this is

$$\begin{aligned} \hat{Y}_{h} &= b_{0} + b_{1}X_{h} \\ &= \sum_{i=1}^{n} \left[\frac{1}{n} - \frac{\bar{X}(X_{i} - \bar{X})}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} + \frac{(X_{i} - \bar{X})X_{h}}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} \right] Y_{i} \\ &= \sum_{i=1}^{n} \left[\frac{1}{n} + \frac{(X_{h} - \bar{X})(X_{i} - \bar{X})}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} \right] Y_{i} \end{aligned}$$

Distribution of \hat{Y}_h

Again we have a linear combination of independent normals as our estimator. This leads, after slogging through some math (pp. 53–54), to

$$b_0+b_1X_h\sim N\left(eta_0+eta_1X_h,\sigma^2\left[rac{1}{n}+rac{(X_h-ar{X})^2}{\sum_{i=1}^n(X_i-ar{X})^2}
ight]
ight).$$

As before, this leads to a (1 $-\alpha)100\%$ Cl for $\beta_0+\beta_1 X_h$

$$b_0 + b_1 X_h \pm t_{n-2} (1 - \alpha/2) se(b_0 + b_1 X_h),$$

where $\operatorname{se}(b_0 + b_1 X_h) = \sqrt{MSE\left[\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right]}$. **Question**: For what value of x_h is the CI narrowist? What happens when X_h moves away from \bar{X} ?

- We discussed constructing a CI for the unknown mean at X_h , $\beta_0 + \beta_1 X_h$.
- What if we want to find an interval that contains a single Y_h with fixed probability?
- If we knew β_0 , β_1 , and σ^2 this is easy:

$$Y_h = \beta_0 + \beta_1 X_h + \epsilon_h,$$

and so, for example,

 $P(\beta_0 + \beta_1 X_h - 1.96\sigma \le Y_h \le \beta_0 + \beta_1 X_h + 1.96\sigma) = 0.95.$

Unfortunately, we don't know β₀ and β₁. We don't even know σ, but we can construct a random variable with a t distribution to develop an appropriate *prediction interval*.

Variability of $Y_h - \hat{Y}_h$

An interval that contains Y_h (independent of Y_1, \ldots, Y_n) with $(1 - \alpha)$ probability needs to account for

- The variability of the least squares line $b_0 + b_1 X_h$, and
- The natural variability of response Y_h built into the model; $\epsilon_h \sim N(0, \sigma^2)$.

We have

$$\sigma^{2} \left\{ Y_{h} - \hat{Y}_{h} \right\} \stackrel{ind}{=} \sigma^{2} \left\{ Y_{h} \right\} + \sigma^{2} \left\{ \hat{Y}_{h} \right\}$$
$$= \sigma^{2} + \sigma^{2} \left[\frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \right]$$
$$= \sigma^{2} \left[1 + \frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \right]$$

This is different from the CI for \hat{Y}_h (mean). The prediction interval of next data point (Y_h , not the mean) includes the uncertainty in the population mean, plus data scatter. So a prediction interval is always wider than a confidence interval.

Prediction interval

Since
$$Y_h - \hat{Y}_h \sim N\left(0, \sigma^2 \left\{Y_h - \hat{Y}_h\right\}\right)$$
,
 $\frac{Y_h - \hat{Y}_h}{\hat{\sigma}\left\{Y_h - \hat{Y}_h\right\}} \sim t_{n-2}$

We thus obtain a $(1 - \alpha/2)100\%$ prediction interval (PI) for Y_h:

$$b_0 + b_1 X_h \pm t_{n-2} (1 - \alpha/2) \sqrt{MSE\left[1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}
ight]}.$$

Note: As $n \to \infty$, $b_0 \xrightarrow{P} \beta_0$, $b_1 \xrightarrow{P} \beta_1$, $t_{n-2}(1 - \alpha/2) \to \Phi^{-1}(1 - \alpha/2)$, and $MSE \xrightarrow{P} \sigma^2$. That is, as the sample size grows, the prediction interval converges to

$$\beta_0 + \beta_1 x_h \pm \Phi^{-1}(1-\alpha/2)\sigma.$$

- Find a 95% CI for the mean number of work hours for lots of size X_h = 65 units.
- Find a 95% PI for the number of work hours for a lot of size $X_h = 65$ units.
- Repeat both for $X_h = 100$ units.
- R Code in Lab6.R

Plot of 95% CI for mean & prediction intervals

Toluca Data

Lot Size

Obtaining confidence intervals for β_0 and β_1

R code:

- Gives *region that entire regression line lies in* with certain probability/confidence.
- Given by

$$\hat{Y}_h \pm W \; se\{\hat{Y}_h\} = b_0 + b_1 X_h \pm W \; se\{b_0 + b_1 X_h\}$$

where $W^2 = 2F(1 - \alpha; 2, n - 2)$

- Defined for $X_h \in \mathbb{R}$. Ignore for nonsense values of X_h .
- R code in Lab6.R

Confidence band for regression function

Toluca Data

Lot Size