# Multivariate Normal Distribution (Sections 2.11 and 5.8)

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

#### Gesell data

Let X be the age in in months a child speaks his/her first word and let Y be the Gesell adaptive score, a measure of a child's aptitude (observed later on). Are X and Y related? How does the child's aptitude *change* with how long it takes them to speak?

Here's the Gesell score  $y_i$  and age at first word in months  $x_i$  data, i = 1, ..., 21.

| Xi | Уi  | Χį | Уi  | Xi | Уi  | Χį | Уi  | Χį | Уi  |
|----|-----|----|-----|----|-----|----|-----|----|-----|
| 15 | 95  | 26 | 71  | 10 | 83  | 9  | 91  | 15 | 102 |
| 20 | 87  | 18 | 93  | 11 | 100 | 8  | 104 | 20 | 94  |
| 7  | 113 | 9  | 96  | 10 | 83  | 11 | 84  | 11 | 102 |
| 10 | 100 | 12 | 105 | 42 | 57  | 17 | 121 | 11 | 86  |
| 10 | 100 |    |     |    |     |    |     |    |     |

In R, we compute r = -0.640, a moderately strong negative relationship between age at first word spoken and Gesell score.

<sup>&</sup>gt; age=c(15,26,10,9,15,20,18,11,8,20,7,9,10,11,11,10,12,42,17,11,10)

<sup>&</sup>gt; Gesell=c(95,71,83,91,102,87,93,100,104,94,113,96,83,84,102,100,105,57,121,86,100)

<sup>&</sup>gt; plot(age,Gesell)

<sup>&</sup>gt; cor(age,Gesell)

<sup>[1] -0.64029</sup> 

# Scatterplot of $(x_1, y_1), \dots, (x_{21}, y_{21})$



### Random vectors

A random vector 
$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix}$$
 is made up of, say,  $k$  random

variables.

A random vector has a joint distribution, e.g. a density  $f(\mathbf{x})$ , that gives probabilities

$$P(\mathbf{X} \in A) = \int_A f(\mathbf{x}) d\mathbf{x}.$$

Just as a random variable X has a mean E(X) and variance var(X), a random vector also has a mean vector  $E(\mathbf{X})$  and a covariance matrix  $cov(\mathbf{X})$ .

### Mean vector & covariance matrix

Let  $\mathbf{X} = (X_1, \dots, X_k)$  be a random vector with density  $f(x_1, \dots, x_k)$ . The mean of  $\mathbf{X}$  is the vector of marginal means

$$E(\mathbf{X}) = E\left(\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix}\right) = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_k) \end{bmatrix}. \tag{5.38}$$

The covariance matrix of  $\mathbf{X}$  is given by

$$cov(\mathbf{X}) = \begin{bmatrix} cov(X_1, X_1) & cov(X_1, X_2) & \cdots & cov(X_1, X_k) \\ cov(X_2, X_1) & cov(X_2, X_2) & \cdots & cov(X_2, X_k) \\ \vdots & \vdots & \ddots & \vdots \\ cov(X_k, X_1) & cov(X_k, X_2) & \cdots & cov(X_k, X_k) \end{bmatrix}.$$
(5.42)

### Multivariate normal distribution

The normal distribution generalizes to multiple dimensions. We'll first look at two jointly distributed normal random variables, then discuss three or more.

The bivariate normal density for  $(X_1, X_2)$  is given by  $f(x_1, x_2) =$ 

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{\mathit{x}_1-\mu_1}{\sigma_1}\right)^2-2\rho\left(\frac{\mathit{x}_1-\mu_1}{\sigma_1}\right)\left(\frac{\mathit{x}_2-\mu_2}{\sigma_2}\right)+\left(\frac{\mathit{x}_2-\mu_2}{\sigma_2}\right)^2\right]\right\}.$$

There are 5 parameters:  $(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$ .

Besides 5.8, also see 2.11 pp.78-83.

### Bivariate normal distribution

- This density jointly defines  $X_1$  and  $X_2$ , which live in  $\mathbb{R}^2 = (-\infty, \infty) \times (-\infty, \infty)$ .
- Marginally,  $X_1 \sim N(\mu_1, \sigma_1^2)$  and  $X_2 \sim N(\mu_2, \sigma_2^2)$  (p. 79).
- The correlation between  $X_1$  and  $X_2$  is given by  $corr(X_1, X_2) = \rho$  (p. 80).
- For jointly normal random variables, if the correlation is zero then they are independent. This is not true in general for jointly defined random variables.

• 
$$E(\mathbf{X}) = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
,  $cov(\mathbf{X}) = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{bmatrix}$ .

## Bivariate normal PDF level curves



**Figure 2.15** A bivariate normal distribution with parameters  $\theta_X=1$ ,  $\theta_Y=2$ ,  $\sigma_X=3$ ,  $\sigma_Y=2$ ,  $\rho=0.5$ , with expanding ellipses enclosing 5%, 25%, 50%, 75% and 95% of the probability distribution.

# Proof that $X_1$ indeendent $X_2$ when $\rho = 0$

When  $\rho = 0$  the joint density for  $(X_1, X_2)$  simplifies to

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{1}{2} \left[ \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$
$$= \left[ \frac{1}{\sqrt{2\pi}\sigma_1} e^{-0.5\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2} \right] \left[ \frac{1}{\sqrt{2\pi}\sigma_2} e^{-0.5\left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2} \right].$$

Since these are each respectively functions of  $x_1$  and  $x_2$  only, and the range of  $(X_1, X_2)$  factors into the produce of two sets,  $X_1$  and  $X_2$  are independent and in fact  $X_1 \sim N(\mu_1, \sigma_1^2)$  and  $X_2 \sim N(\mu_2, \sigma_2^2)$ .

Conditional distributions  $[X_1|X_2=x_2]$  and  $[X_2|X_1=x_1]$  (pp. 80–81)

The conditional distribution of  $X_1$  given  $X_2 = x_2$  is

$$[X_1|X_2=x_2] \sim N\left(\mu_1 + rac{\sigma_1}{\sigma_2}
ho(x_2-\mu_2), \sigma_1^2(1-
ho^2)
ight).$$

Similarly,

$$[X_2|X_1=x_1] \sim N\left(\mu_2 + rac{\sigma_2}{\sigma_1} 
ho(x_1-\mu_1), \sigma_2^2(1-
ho^2)
ight).$$

This ties directly to linear regression:

To predict  $X_2|X_1=x_1$ , we have

$$E(X_2|X_1=x_1)=\left[\mu_2-\frac{\sigma_2}{\sigma_1}\rho\mu_1\right]+\left[\frac{\sigma_2}{\sigma_1}\rho\right]x_1=\beta_0+\beta_1x_1.$$

### Bivariate normal distribution as data model

Here we assume

$$\left[\begin{array}{c} \mathbf{X}_{i1} \\ \mathbf{X}_{i2} \end{array}\right] \stackrel{\mathit{iid}}{\sim} \mathbf{N}_2 \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \ \left[\begin{array}{cc} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{array}\right]\right),$$

or succinctly,

$$\mathbf{X}_i \stackrel{iid}{\sim} N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

If the bivariate normal model is appropriate for paired outcomes, it provides a convenient probability model with some nice properties.

Say n outcome pairs are to be recorded:

$$\{(X_{11},X_{12}),(X_{21},X_{22}),\ldots,(X_{n1},X_{n2})\}$$
. The  $i^{th}$  pair is  $(X_{i1},X_{i2})$ .

# Sample mean vector & covariance matrix

The sample mean vector is given elementwise by

$$\bar{\mathbf{X}} = \left[ \begin{array}{c} \bar{X}_1 \\ \bar{X}_2 \end{array} \right] = \left[ \begin{array}{c} \frac{1}{n} \sum_{i=1}^n X_{i1} \\ \frac{1}{n} \sum_{i=1}^n X_{i2} \end{array} \right],$$

and the sample covariance matrix is given elementwise by

$$\mathbf{S} = \begin{bmatrix} \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)^2 & \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2) \\ \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2) & \frac{1}{n-1} \sum_{i=1}^{n} (X_{i2} - \bar{X}_2)^2 \end{bmatrix}.$$

# Sample mean vector & covariance matrix

The sample mean  $\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$  is the MLE of  $\boldsymbol{\mu}$  and the sample covariance matrix  $\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}}) (\mathbf{X}_{i} - \bar{\mathbf{X}})'$  is unbiased for  $\boldsymbol{\Sigma}$ .

It can be shown that

$$ar{\mathbf{X}} \sim N_2\left(oldsymbol{\mu}, rac{1}{n}oldsymbol{\Sigma}
ight).$$

The matrix (n-1)**S** has a "Wishart" distribution (generalizes  $\chi^2$ ).

### **Estimation**

The sample mean vector  $\bar{\mathbf{X}}$  estimates  $\boldsymbol{\mu} = \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right]$  and the sample covariance matrix  $\mathbf{S}$  estimates

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}.$$

We will place hats on parameter estimators based on the data. So

$$\hat{\mu}_1 = \bar{X}_1, \ \hat{\mu}_2 = \bar{X}_2, \ \hat{\sigma}_1^2 = s_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2,$$

$$\hat{\sigma}_2^2 = s_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{i2} - \bar{X}_2)^2.$$

Also,

$$\widehat{cov}(X_1, X_2) = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X})(X_{i2} - \bar{X}_2).$$

### Correlation coefficient r

So a natural estimate of  $\rho$  is then

$$\hat{\rho} = \frac{\widehat{cov}(X_1, X_2)}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2)}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2}}.$$

This is in fact the MLE estimate based on the bivariate normal model. It is also a "plug-in" estimator based on the method-of-moments as well as the now-familiar Pearson correlation coefficient.

### Gesell data

Recall: X is age in months a child speaks his/her first word and let Y is Gesell adaptive score, a measure of a child's aptitude.

*Question*: how does the child's aptitude *change* with how long it takes them to speak? Here, n = 21.

In R we find 
$$\bar{\mathbf{X}}=\left[\begin{array}{cc}14.38\\93.67\end{array}\right]$$
. Also,  $\mathbf{S}=\left[\begin{array}{cc}60.14&-67.78\\-67.78&186.32\end{array}\right]$ .

Assuming a bivariate model, we plug in the estimates and obtain the estimated PDF for (X, Y):

$$f(x,y) = \exp(-60.22 + 1.3006x - 0.0134x^2 + 0.9520y - 0.0098xy - 0.0043y^2).$$

We can further find from  $Y \stackrel{\bullet}{\sim} N(93.67, 186.32)$ ,

$$f_Y(y) = \exp(-3.557 - 0.00256(y - 93.67)^2).$$

# 3D plot of f(x,y) for (X,Y) estimated from data



# Density estimate with actual data



### Gesell conditional distribution



Solid is  $f_Y(y)$ ; left dashed is  $f_{Y|X}(y|25)$  the right dashed is  $f_{Y|X}(y|10)$ . As the age in months of first words X=x increases, the distribution of Gesell Adaptive Scores Y decreases.

### Multivariate normal distribution

In general, a *k*-variate normal is defined through the mean and covariance matrix:

$$\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix} \sim N_k \begin{pmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix}, \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix} \end{pmatrix}.$$

Succinctly,

$$X \sim N_k(\mu, \Sigma)$$
.

Recall that if  $Z \sim N(0,1)$ , then  $X = \mu + \sigma Z \sim N(\mu,\sigma^2)$ . The definition of the multivariate normal distribution just extends this idea.

# Multivariate normal made from independent normals

Instead of one standard normal, we have a list of k independent standard normals  $\mathbf{Z} = (Z_1, \dots, Z_k)$ , and consider the same sort of transformation in the multivariate case using matrices and vectors.

Let  $Z_1, \ldots, Z_k \stackrel{iid}{\sim} N(0,1)$ . The joint pdf of  $(Z_1, \ldots, Z_k)$  is given by

$$f(z_1,\ldots,z_k) = \prod_{i=1}^k \exp(-0.5z_i^2)/\sqrt{2\pi}.$$

Let

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix},$$

where  $\Sigma$  is symmetric (i.e.  $\Sigma' = \Sigma$ , which implies  $\sigma_{ij} = \sigma_{ji}$  for all  $1 \le i, j \le k$ ).

## Multivariate normal made from independent normals

Let  $\mathbf{\Sigma}^{1/2}$  be any matrix such that  $\mathbf{\Sigma}^{1/2}\mathbf{\Sigma}^{1/2}=\mathbf{\Sigma}$ . Then  $\mathbf{X}=\boldsymbol{\mu}+\mathbf{\Sigma}^{1/2}\mathbf{Z}$  is said to have a multivariate normal distribution with mean vector  $\boldsymbol{\mu}$  and covariance matrix  $\mathbf{\Sigma}$ , written

$$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Written in terms of matrices

$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix} + \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix}^{1/2} \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_k \end{bmatrix}.$$

### Joint PDF

Using some math, it can be shown that the pdf of the new vector  $\mathbf{X} = (X_1, \dots, X_k)$  is given by

$$f(x_1,...,x_k|\mu,\Sigma) = |2\pi\Sigma|^{-1/2} \exp\{-0.5(x-\mu)'\Sigma^{-1}(x-\mu)\}.$$

In the one-dimensional case, this simplifies to our old friend

$$f(x_1|\mu,\sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\{-0.5(x-\mu)(\sigma^2)^{-1}(x-\mu)\},$$

the pdf of a  $N(\mu, \sigma^2)$  random variable X.

 $|\mathbf{A}|$  is the determinant of the matrix  $\mathbf{A}$ , and is a function of the elements of  $\mathbf{A}$ , but beyond this course.

## Properties of multivariate normal vectors

Let

$$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Then

- For each  $X_i$  in  $\mathbf{X} = (X_1, \dots, X_k)$ ,  $E(X_i) = \mu_i$  and  $var(X_i) = \sigma_{ii}$ . That is, marginally,  $X_i \sim N(\mu_i, \sigma_{ii})$ .
- ② For any two  $(X_i, X_j)$  where  $1 \le i < j \le k$ ,  $cov(X_i, X_j) = \sigma_{ij}$ . The off-diagonal elements of  $\Sigma$  give the covariance between two elements of  $(X_1, \ldots, X_k)$ . Note then  $\rho(X_i, X_j) = \sigma_{ij} / \sqrt{\sigma_{ii}\sigma_{jj}}$ .

# Properties of multivariate normal vectors

Let

$$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Then

• For any  $r \times k$  matrix  $\mathbf{M}$ ,

$$MX \sim N_r(M\mu, M\Sigma M')$$
.

- ② For any  $k \times 1$  vector  $\mathbf{m} = (m_1, \dots, m_k)$ ,  $\mathbf{m} + \mathbf{X} \sim N_k(\mathbf{m} + \boldsymbol{\mu}, \boldsymbol{\Sigma})$ .
- **3** For  $r_1 \times k$  matrix  $\mathbf{M_1}$  and  $r_2 \times k$  matrix  $\mathbf{M_2}$ , the joint distribution of  $\mathbf{M_1Y}$  and  $\mathbf{M_2Y}$  can be found as

$$\left(\begin{array}{c} \mathbf{M_1} \\ \mathbf{M_2} \end{array}\right) \mathbf{Y} \sim \textit{N}_{\textit{r}_1 + \textit{r}_2} \left( \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{c} \mathbf{M_1} \boldsymbol{\Sigma} \mathbf{M_1'} & \mathbf{M_1} \boldsymbol{\Sigma} \mathbf{M_2'} \\ \mathbf{M_2} \boldsymbol{\Sigma} \mathbf{M_1'} & \mathbf{M_2} \boldsymbol{\Sigma} \mathbf{M_2'} \end{array}\right) \right)$$

# Example

Let

$$\left[\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array}\right] \sim N_3 \left(\left[\begin{array}{ccc} -2 \\ 5 \\ 0 \end{array}\right], \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 4 \end{array}\right]\right).$$

E.g.,  $X_2 \sim N(5,3)$  and  $cov(X_2, X_3) = -1$ .

#### Define

$$\mathbf{M} = \left[ \begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right] \text{ and } \mathbf{Y} = \left[ \begin{array}{c} Y_1 \\ Y_2 \end{array} \right] = \mathbf{M} \mathbf{X} = \left[ \begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right] \left[ \begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array} \right].$$

# Example

Then

$$\begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \sim$$

$$N_2 \left( \begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} -2 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{bmatrix} \right),$$

or simplifying,

$$\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array}\right] \left[\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array}\right] \sim N_2 \left(\left[\begin{array}{ccc} -2 \\ 1 \end{array}\right], \left[\begin{array}{ccc} 4 & 0 \\ 0 & \frac{11}{9} \end{array}\right]\right).$$

Note that for the transformed vector  $\mathbf{Y} = (Y_1, Y_2)$ ,  $cov(Y_1, Y_2) = 0$  and therefore  $Y_1$  and  $Y_2$  are uncorrelated, i.e.  $\rho(Y_1, Y_2) = 0$ .

# Simple linear regression

For the linear model (e.g. simple linear regression or the two-sample model)  $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ , the error vector is assumed (pp. 222–223)

$$\epsilon \sim N_n(\mathbf{0}, \mathbf{I}_{n \times n} \sigma^2).$$

Then the least squares estimators have a multivariate normal distribution

$$\widehat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, (\mathbf{X}'\mathbf{X})^{-1}\sigma^2).$$

p=2 is the number of mean parameters. (The MSE has a gamma distribution).