Multivariate Normal Distribution (Sections 2.11 and 5.8) Department of Statistics, University of South Carolina Stat 704: Data Analysis I #### Gesell data Let X be the age in in months a child speaks his/her first word and let Y be the Gesell adaptive score, a measure of a child's aptitude (observed later on). Are X and Y related? How does the child's aptitude *change* with how long it takes them to speak? Here's the Gesell score y_i and age at first word in months x_i data, i = 1, ..., 21. | Xi | Уi | Χį | Уi | Xi | Уi | Χį | Уi | Χį | Уi | |----|-----|----|-----|----|-----|----|-----|----|-----| | 15 | 95 | 26 | 71 | 10 | 83 | 9 | 91 | 15 | 102 | | 20 | 87 | 18 | 93 | 11 | 100 | 8 | 104 | 20 | 94 | | 7 | 113 | 9 | 96 | 10 | 83 | 11 | 84 | 11 | 102 | | 10 | 100 | 12 | 105 | 42 | 57 | 17 | 121 | 11 | 86 | | 10 | 100 | | | | | | | | | In R, we compute r = -0.640, a moderately strong negative relationship between age at first word spoken and Gesell score. > age=c(15,26,10,9,15,20,18,11,8,20,7,9,10,11,11,10,12,42,17,11,10) > Gesell=c(95,71,83,91,102,87,93,100,104,94,113,96,83,84,102,100,105,57,121,86,100) > plot(age,Gesell) > cor(age,Gesell) ^{[1] -0.64029} # Scatterplot of $(x_1, y_1), \dots, (x_{21}, y_{21})$ ### Random vectors A random vector $$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix}$$ is made up of, say, k random variables. A random vector has a joint distribution, e.g. a density $f(\mathbf{x})$, that gives probabilities $$P(\mathbf{X} \in A) = \int_A f(\mathbf{x}) d\mathbf{x}.$$ Just as a random variable X has a mean E(X) and variance var(X), a random vector also has a mean vector $E(\mathbf{X})$ and a covariance matrix $cov(\mathbf{X})$. ### Mean vector & covariance matrix Let $\mathbf{X} = (X_1, \dots, X_k)$ be a random vector with density $f(x_1, \dots, x_k)$. The mean of \mathbf{X} is the vector of marginal means $$E(\mathbf{X}) = E\left(\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix}\right) = \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_k) \end{bmatrix}. \tag{5.38}$$ The covariance matrix of \mathbf{X} is given by $$cov(\mathbf{X}) = \begin{bmatrix} cov(X_1, X_1) & cov(X_1, X_2) & \cdots & cov(X_1, X_k) \\ cov(X_2, X_1) & cov(X_2, X_2) & \cdots & cov(X_2, X_k) \\ \vdots & \vdots & \ddots & \vdots \\ cov(X_k, X_1) & cov(X_k, X_2) & \cdots & cov(X_k, X_k) \end{bmatrix}.$$ (5.42) ### Multivariate normal distribution The normal distribution generalizes to multiple dimensions. We'll first look at two jointly distributed normal random variables, then discuss three or more. The bivariate normal density for (X_1, X_2) is given by $f(x_1, x_2) =$ $$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{\mathit{x}_1-\mu_1}{\sigma_1}\right)^2-2\rho\left(\frac{\mathit{x}_1-\mu_1}{\sigma_1}\right)\left(\frac{\mathit{x}_2-\mu_2}{\sigma_2}\right)+\left(\frac{\mathit{x}_2-\mu_2}{\sigma_2}\right)^2\right]\right\}.$$ There are 5 parameters: $(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$. Besides 5.8, also see 2.11 pp.78-83. ### Bivariate normal distribution - This density jointly defines X_1 and X_2 , which live in $\mathbb{R}^2 = (-\infty, \infty) \times (-\infty, \infty)$. - Marginally, $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ (p. 79). - The correlation between X_1 and X_2 is given by $corr(X_1, X_2) = \rho$ (p. 80). - For jointly normal random variables, if the correlation is zero then they are independent. This is not true in general for jointly defined random variables. • $$E(\mathbf{X}) = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$, $cov(\mathbf{X}) = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{bmatrix}$. ## Bivariate normal PDF level curves **Figure 2.15** A bivariate normal distribution with parameters $\theta_X=1$, $\theta_Y=2$, $\sigma_X=3$, $\sigma_Y=2$, $\rho=0.5$, with expanding ellipses enclosing 5%, 25%, 50%, 75% and 95% of the probability distribution. # Proof that X_1 indeendent X_2 when $\rho = 0$ When $\rho = 0$ the joint density for (X_1, X_2) simplifies to $$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{1}{2} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$ $$= \left[\frac{1}{\sqrt{2\pi}\sigma_1} e^{-0.5\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2} \right] \left[\frac{1}{\sqrt{2\pi}\sigma_2} e^{-0.5\left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2} \right].$$ Since these are each respectively functions of x_1 and x_2 only, and the range of (X_1, X_2) factors into the produce of two sets, X_1 and X_2 are independent and in fact $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$. Conditional distributions $[X_1|X_2=x_2]$ and $[X_2|X_1=x_1]$ (pp. 80–81) The conditional distribution of X_1 given $X_2 = x_2$ is $$[X_1|X_2=x_2] \sim N\left(\mu_1 + rac{\sigma_1}{\sigma_2} ho(x_2-\mu_2), \sigma_1^2(1- ho^2) ight).$$ Similarly, $$[X_2|X_1=x_1] \sim N\left(\mu_2 + rac{\sigma_2}{\sigma_1} ho(x_1-\mu_1), \sigma_2^2(1- ho^2) ight).$$ This ties directly to linear regression: To predict $X_2|X_1=x_1$, we have $$E(X_2|X_1=x_1)=\left[\mu_2-\frac{\sigma_2}{\sigma_1}\rho\mu_1\right]+\left[\frac{\sigma_2}{\sigma_1}\rho\right]x_1=\beta_0+\beta_1x_1.$$ ### Bivariate normal distribution as data model Here we assume $$\left[\begin{array}{c} \mathbf{X}_{i1} \\ \mathbf{X}_{i2} \end{array}\right] \stackrel{\mathit{iid}}{\sim} \mathbf{N}_2 \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \ \left[\begin{array}{cc} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{array}\right]\right),$$ or succinctly, $$\mathbf{X}_i \stackrel{iid}{\sim} N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ If the bivariate normal model is appropriate for paired outcomes, it provides a convenient probability model with some nice properties. Say n outcome pairs are to be recorded: $$\{(X_{11},X_{12}),(X_{21},X_{22}),\ldots,(X_{n1},X_{n2})\}$$. The i^{th} pair is (X_{i1},X_{i2}) . # Sample mean vector & covariance matrix The sample mean vector is given elementwise by $$\bar{\mathbf{X}} = \left[\begin{array}{c} \bar{X}_1 \\ \bar{X}_2 \end{array} \right] = \left[\begin{array}{c} \frac{1}{n} \sum_{i=1}^n X_{i1} \\ \frac{1}{n} \sum_{i=1}^n X_{i2} \end{array} \right],$$ and the sample covariance matrix is given elementwise by $$\mathbf{S} = \begin{bmatrix} \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)^2 & \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2) \\ \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2) & \frac{1}{n-1} \sum_{i=1}^{n} (X_{i2} - \bar{X}_2)^2 \end{bmatrix}.$$ # Sample mean vector & covariance matrix The sample mean $\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ is the MLE of $\boldsymbol{\mu}$ and the sample covariance matrix $\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}}) (\mathbf{X}_{i} - \bar{\mathbf{X}})'$ is unbiased for $\boldsymbol{\Sigma}$. It can be shown that $$ar{\mathbf{X}} \sim N_2\left(oldsymbol{\mu}, rac{1}{n}oldsymbol{\Sigma} ight).$$ The matrix (n-1)**S** has a "Wishart" distribution (generalizes χ^2). ### **Estimation** The sample mean vector $\bar{\mathbf{X}}$ estimates $\boldsymbol{\mu} = \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right]$ and the sample covariance matrix \mathbf{S} estimates $$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}.$$ We will place hats on parameter estimators based on the data. So $$\hat{\mu}_1 = \bar{X}_1, \ \hat{\mu}_2 = \bar{X}_2, \ \hat{\sigma}_1^2 = s_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2,$$ $$\hat{\sigma}_2^2 = s_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{i2} - \bar{X}_2)^2.$$ Also, $$\widehat{cov}(X_1, X_2) = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i1} - \bar{X})(X_{i2} - \bar{X}_2).$$ ### Correlation coefficient r So a natural estimate of ρ is then $$\hat{\rho} = \frac{\widehat{cov}(X_1, X_2)}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)(X_{i2} - \bar{X}_2)}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_{i1} - \bar{X}_1)^2}}.$$ This is in fact the MLE estimate based on the bivariate normal model. It is also a "plug-in" estimator based on the method-of-moments as well as the now-familiar Pearson correlation coefficient. ### Gesell data Recall: X is age in months a child speaks his/her first word and let Y is Gesell adaptive score, a measure of a child's aptitude. *Question*: how does the child's aptitude *change* with how long it takes them to speak? Here, n = 21. In R we find $$\bar{\mathbf{X}}=\left[\begin{array}{cc}14.38\\93.67\end{array}\right]$$. Also, $\mathbf{S}=\left[\begin{array}{cc}60.14&-67.78\\-67.78&186.32\end{array}\right]$. Assuming a bivariate model, we plug in the estimates and obtain the estimated PDF for (X, Y): $$f(x,y) = \exp(-60.22 + 1.3006x - 0.0134x^2 + 0.9520y - 0.0098xy - 0.0043y^2).$$ We can further find from $Y \stackrel{\bullet}{\sim} N(93.67, 186.32)$, $$f_Y(y) = \exp(-3.557 - 0.00256(y - 93.67)^2).$$ # 3D plot of f(x,y) for (X,Y) estimated from data # Density estimate with actual data ### Gesell conditional distribution Solid is $f_Y(y)$; left dashed is $f_{Y|X}(y|25)$ the right dashed is $f_{Y|X}(y|10)$. As the age in months of first words X=x increases, the distribution of Gesell Adaptive Scores Y decreases. ### Multivariate normal distribution In general, a *k*-variate normal is defined through the mean and covariance matrix: $$\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix} \sim N_k \begin{pmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix}, \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix} \end{pmatrix}.$$ Succinctly, $$X \sim N_k(\mu, \Sigma)$$. Recall that if $Z \sim N(0,1)$, then $X = \mu + \sigma Z \sim N(\mu,\sigma^2)$. The definition of the multivariate normal distribution just extends this idea. # Multivariate normal made from independent normals Instead of one standard normal, we have a list of k independent standard normals $\mathbf{Z} = (Z_1, \dots, Z_k)$, and consider the same sort of transformation in the multivariate case using matrices and vectors. Let $Z_1, \ldots, Z_k \stackrel{iid}{\sim} N(0,1)$. The joint pdf of (Z_1, \ldots, Z_k) is given by $$f(z_1,\ldots,z_k) = \prod_{i=1}^k \exp(-0.5z_i^2)/\sqrt{2\pi}.$$ Let $$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix},$$ where Σ is symmetric (i.e. $\Sigma' = \Sigma$, which implies $\sigma_{ij} = \sigma_{ji}$ for all $1 \le i, j \le k$). ## Multivariate normal made from independent normals Let $\mathbf{\Sigma}^{1/2}$ be any matrix such that $\mathbf{\Sigma}^{1/2}\mathbf{\Sigma}^{1/2}=\mathbf{\Sigma}$. Then $\mathbf{X}=\boldsymbol{\mu}+\mathbf{\Sigma}^{1/2}\mathbf{Z}$ is said to have a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\mathbf{\Sigma}$, written $$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ Written in terms of matrices $$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_k \end{bmatrix} + \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_{kk} \end{bmatrix}^{1/2} \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_k \end{bmatrix}.$$ ### Joint PDF Using some math, it can be shown that the pdf of the new vector $\mathbf{X} = (X_1, \dots, X_k)$ is given by $$f(x_1,...,x_k|\mu,\Sigma) = |2\pi\Sigma|^{-1/2} \exp\{-0.5(x-\mu)'\Sigma^{-1}(x-\mu)\}.$$ In the one-dimensional case, this simplifies to our old friend $$f(x_1|\mu,\sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\{-0.5(x-\mu)(\sigma^2)^{-1}(x-\mu)\},$$ the pdf of a $N(\mu, \sigma^2)$ random variable X. $|\mathbf{A}|$ is the determinant of the matrix \mathbf{A} , and is a function of the elements of \mathbf{A} , but beyond this course. ## Properties of multivariate normal vectors Let $$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ Then - For each X_i in $\mathbf{X} = (X_1, \dots, X_k)$, $E(X_i) = \mu_i$ and $var(X_i) = \sigma_{ii}$. That is, marginally, $X_i \sim N(\mu_i, \sigma_{ii})$. - ② For any two (X_i, X_j) where $1 \le i < j \le k$, $cov(X_i, X_j) = \sigma_{ij}$. The off-diagonal elements of Σ give the covariance between two elements of (X_1, \ldots, X_k) . Note then $\rho(X_i, X_j) = \sigma_{ij} / \sqrt{\sigma_{ii}\sigma_{jj}}$. # Properties of multivariate normal vectors Let $$\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$ Then • For any $r \times k$ matrix \mathbf{M} , $$MX \sim N_r(M\mu, M\Sigma M')$$. - ② For any $k \times 1$ vector $\mathbf{m} = (m_1, \dots, m_k)$, $\mathbf{m} + \mathbf{X} \sim N_k(\mathbf{m} + \boldsymbol{\mu}, \boldsymbol{\Sigma})$. - **3** For $r_1 \times k$ matrix $\mathbf{M_1}$ and $r_2 \times k$ matrix $\mathbf{M_2}$, the joint distribution of $\mathbf{M_1Y}$ and $\mathbf{M_2Y}$ can be found as $$\left(\begin{array}{c} \mathbf{M_1} \\ \mathbf{M_2} \end{array}\right) \mathbf{Y} \sim \textit{N}_{\textit{r}_1 + \textit{r}_2} \left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{c} \mathbf{M_1} \boldsymbol{\Sigma} \mathbf{M_1'} & \mathbf{M_1} \boldsymbol{\Sigma} \mathbf{M_2'} \\ \mathbf{M_2} \boldsymbol{\Sigma} \mathbf{M_1'} & \mathbf{M_2} \boldsymbol{\Sigma} \mathbf{M_2'} \end{array}\right) \right)$$ # Example Let $$\left[\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array}\right] \sim N_3 \left(\left[\begin{array}{ccc} -2 \\ 5 \\ 0 \end{array}\right], \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 4 \end{array}\right]\right).$$ E.g., $X_2 \sim N(5,3)$ and $cov(X_2, X_3) = -1$. #### Define $$\mathbf{M} = \left[\begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right] \text{ and } \mathbf{Y} = \left[\begin{array}{c} Y_1 \\ Y_2 \end{array} \right] = \mathbf{M} \mathbf{X} = \left[\begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right] \left[\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array} \right].$$ # Example Then $$\begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \sim$$ $$N_2 \left(\begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} -2 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & \frac{1}{3} \\ -1 & \frac{1}{3} \end{bmatrix} \right),$$ or simplifying, $$\left[\begin{array}{c} Y_1 \\ Y_2 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & -1 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array}\right] \left[\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array}\right] \sim N_2 \left(\left[\begin{array}{ccc} -2 \\ 1 \end{array}\right], \left[\begin{array}{ccc} 4 & 0 \\ 0 & \frac{11}{9} \end{array}\right]\right).$$ Note that for the transformed vector $\mathbf{Y} = (Y_1, Y_2)$, $cov(Y_1, Y_2) = 0$ and therefore Y_1 and Y_2 are uncorrelated, i.e. $\rho(Y_1, Y_2) = 0$. # Simple linear regression For the linear model (e.g. simple linear regression or the two-sample model) $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, the error vector is assumed (pp. 222–223) $$\epsilon \sim N_n(\mathbf{0}, \mathbf{I}_{n \times n} \sigma^2).$$ Then the least squares estimators have a multivariate normal distribution $$\widehat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, (\mathbf{X}'\mathbf{X})^{-1}\sigma^2).$$ p=2 is the number of mean parameters. (The MSE has a gamma distribution).