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 Smearing Estimate: A Nonparametric

 Retransformation Method
 NAIHUA DUAN*

 The smearing estimate is proposed as a nonparametric
 estimate of the expected response on the untransformed
 scale after fitting a linear regression model on a trans-
 formed scale. The estimate is consistent under mild reg-
 ularity conditions, and usually attains high efficiency rel-
 ative to parametric estimates. It can be viewed as a low-
 premium insurance policy against departures from par-
 ametric distributional assumptions. A real-world example
 of predicting medical expenditures shows that the smear-
 ing estimate can outperform parametric estimates even
 when the parametric assumption is nearly satisfied.

 KEY WORDS: Retransformation; Transformation; Non-
 parametric; Prediction; Lognormal linear model; Cobb-
 Douglas function.

 1. INTRODUCTION

 A monotonic transformation is often applied to obser-
 vations recorded on an untransformed scale to achieve
 desirable statistical properties such as additivity, hom-
 oscedasticity, and normality. Certain analyses (e.g., fit-
 ting a least squares regression model) are carried out on
 the transformed scale, possibly combined with certain
 inferences such as significance tests on comparisons of
 experimental treatments. However, it is also very often
 desirable to carry out certain procedures, such as pre-
 diction and forecasting, on the untransformed scale. In
 doing so, one will be confronted with the problem of re-
 transformation bias; namely, unbiased and consistent
 quantities on the transformed scale usually do not re-
 transform into unbiased or consistent quantities on the
 untransformed scale.

 In this article, we propose a nonparametric method,
 the smearing estimate, as an estimate of an individual's
 expected response on the untransformed scale. (The ter-
 minology. "smearing" was originally coined by C. Morris
 for the tactic of distributing (smearing) the excess in one
 observation to other observations proportionally when
 adjusting unlogged median estimates to unlogged mean
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 estimates.) The essence of the procedure is to estimate
 the unknown error distribution by the empirical cdf of the
 estimated regression residuals, and then take the desired
 expectation with respect to the estimated error distri-
 bution. In a broader context, the method can be viewed
 as an application of the bootstrap principle (Efron 1979).

 In the next section, we present the retransformation
 problem, and use an example to demonstrate the possible
 bias due to inappropriate use of the normal assumption.
 In the third section, we derive the smearing estimate as
 an estimate of the untransformed scale expectation free
 from distributional assumptions on the error distribution
 F. The consistency property of the smearing estimate is
 established in Section 4. In Section 5, we examine the
 efficiency of the smearing estimate compared with a par-
 ametric estimate when the parametric assumption is sat-
 isfied. In the last section, we discuss an application of
 the smearing estimate to a real-world prediction problem,
 namely, the Rand Health Insurance Study (HIS), for
 which this methodology was derived.

 2. THE RETRANSFORMATION PROBLEM

 We denote the observations on the untransformed scale
 by Yi, i = 1, . . , n, the transformed observations by
 rp, i = 1, . . ., n, which are related by

 i = g(Yi), Yi = h(,qi), h = g 9

 where g and h are assumed to be monotonic and contin-
 uously differentiable. To avoid the trivial cases, we also
 assume g and h to be nonlinear. We refer to g as the
 transformation and to h as the retransformation. We as-
 sume g and h to be known a priori.

 We consider a linear regression model on the trans-
 formed scale:

 ni = Xi3 + Ei,

 Ei- F (iid), E i = 0, var i = 2

 where xi's are given row vectors of explanatory variables,
 i is a column vector of unknown parameters to be esti-
 mated, and i's are the residual errors. Although the error
 distribution F is usually assumed to be normal, we do not
 make this assumption. We show later in this section that
 inappropriate use of the normal assumption can lead to
 inconsistent prediction results.
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 For the assumed model, the minimum variance linear
 unbiased estimate of a is the least squares regression es-
 timate on the transformed scale: a = (X'X)- 'X',q, where
 X = (x1', . . . , xv') is the design matrix, assumed to have

 full rank, and q = (q1, . . . , -q,)' is the transformed data
 vector. Moreover, for an individual with explanatory var-
 iables xo, the prediction xo = xo(X'X)- 'X'-q is the min-
 imum variance linear unbiased estimate of the expecta-
 tion of his response E -qo = xo( on the transformed scale.
 Moreover, the regression coefficients 3, as well as the
 prediction xo 3 for fixed xo, are unbiased and also con-
 sistent if the design matrix is asymptotically nondege-
 nerate.

 In terms of the untransformed scale, it may seem nat-
 ural to retransform the transformed scale prediction
 xo0 by h = g-', and use h(xo() to estimate the expec-
 tation of the individual's response E Yo = E h(,ro) =
 E h(xo( + E) on the untransformed scale. However, the
 prediction h(Xo 3) will be neither unbiased nor consistent
 unless the transformation is linear, which we have as-
 sumed is not the case. Actually, even if we know the true
 parameters (, h(xo() is not the correct "estimate" of
 E Yo:

 E YO = E h(xo( + E) # h(xof).

 There is extensive literature (e.g., Neyman and Scott
 1960; Meulenberg 1965; Bradu and Mundlak 1970; Eb-
 beler 1973; Mehran 1973; Evans and Shaban 1974; Shim-
 izu and Iwase 1981) devoted to the problem of estimating
 the untransformed scale expectation under the assump-
 tion that the error distribution is normal. We refer to those
 results categorically as normal theory estimates.

 It should be noted that the normality assumption plays
 a very different role in estimating the untransformed scale
 expectations than in estimating the regression coeffi-
 cients. For estimating the regression coefficients,
 whether the true error distribution is normal or not, the
 least squares estimate, which is the maximum likelihood
 estimate under the normal assumption, is consistent and
 minimum variance linear unbiased. When the true error
 distribution is not normal, the normality assumption af-
 fects only the efficiency of our estimate (Cox and Hinkley
 1968). If we know the form of the true error distribution,
 we can sometimes derive alternative estimates that are

 more efficient than the least squares estimate. However,
 for estimating the untransformed scale expectation, an
 incorrect normality assumption can lead to inconsistent
 estimates.

 For example, in the case of a logarithmic transforma-
 tion with normally distributed error, the untransformed
 scale expectation is exp(xo( + r2/2), where (2 = var E.
 The expectation can be estimated consistently by any of
 the normal theory estimates, such as the naive estimate
 exp(xo + /212), where ( denotes the least squares
 regression coefficients and &2 denotes the mean squared
 error.

 Whether the true error distribution is normal or not,
 the above estimate is consistent for exp(xo( + or212);
 however, it might not be consistent for E YO. For ex-

 ample, if the true error distribution is actually a mixture
 of two normal distributions,

 E - N(0, .95uf2) with probability .995,

 E - N(0, 10.95u 2) with probability .005,

 (varE = 2),

 then the untransformed scale expectation is

 E Yo = .995 exp(xo + .475 U2)

 + .005 exp(xo + 5.475 U2)

 For U2 = 1, we have E Yo = 2.79 exp(xo3). The normal
 theory estimates converge almost surely to exp(xof +
 12/2) = 1.65 exp(xo 3), which has a 41 percent asymptotic
 bias.

 3. THE SMEARING ESTIMATE

 Our goal is to estimate the untransformed scale expec-
 tation

 E Yo = E h(xof + E) = h(xo + E) dF(E).

 Without knowing the error distribution function F or a
 reliable parametric form for it, we estimate F by the em-
 pirical cdf of the estimated residuals

 A n
 Fn(e) = - E I{-< 'e},

 ni=

 A ~~~~A
 where Ei = ni - xi denotes the least squares residual,
 I{I} denotes the indicator fuhction of the event " ".

 As is usual in nonparametric analyses, a population
 quantity with an expression in terms of the true cdf can
 be estimated by the corresponding expression in terms
 of the empirical cdf. For example, the population mean

 ji = f x dF(x) can be estimated nonparametrically by the
 sample mean x = f x dPn(x). Similarly, we estimate
 E Yo by substituting the unknown cdf F by its empirical
 estimate Fn:

 E YO = f h(xof + E)dFn(E)

 in
 = - , h(xof3 + E)d

 n i=1

 Further substituting the regression parameters i by their
 least squares estimates 3, we have the estimate

 E Yo = f h(xo( + E)dFn (E) (3.1)

 in
 = - , h(xof3 + i),

 n i=1

 which we.refer to as the smearing estimate.

 4. CONSISTENCY OF THE SMEARING ESTIMATE

 Assuming that h is continuously differentiable, we take
 the first-order Taylor expansion:

 h(xof + E) = h(xof + si)

 + 5i x h' (xof + ei + Oi5i),
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 where

 o c Ji 1,

 i (Xop + Ai) _ (Xop + i)

 = (xO -x)(X'X) 1X's.

 The smearing estimate can be decomposed as follows:

 A n
 E Yo = h (xo E+ i)

 n i=1

 in

 - a h(xof + Ej)
 n i=1

 I n
 + - ' 8, X h'(xo + Et + Oi8i). (4.1)

 n i=1
 By the strong law of large numbers, the first term on

 the right side of (4.1) is strongly consistent for the un-
 transformed scale expectation E Yo. It remains to show
 that the second term is stochastically small in some sense.

 By the Cauchy-Schwarz inequality, the square of the
 second term in (4.1) is bounded from above by the product

 in i n
 -E Bi2 x -E [h'(xof3 + E1 + O5)]2 (4.2)
 n i=1 ni=I

 Le?nma 1. Assume that (i) the retransformation h is
 continuously differentiable, (ii) X contains the intercept,
 and (iii) X'XIn - positive definite, then

 i n i n - I 52 = - I [(Xo -Xi)(X'X)-'XE]2
 n i=1 n =i

 =Op(n-1).

 (The proof is straightforward and can be found in Duan
 et al. 1982, Appendix B, Addendum I.)

 Assumption (iii) in the lemma is much stronger than
 we need. For most purposes in this article, it is sufficient
 to assume that xo(X'Xln) - 'xo' is bounded. Nevertheless,
 the present assumption is satisfied for many problems-
 for example, when the covariates xi are sampled ran-
 domly from a fixed parent population.

 It follows from Lemma 1 that we can choose M large
 enough such that, for n large enough, the inequality

 n

 z 5i2 < M2 (4.3)
 i=1I

 holds with probability arbitrarily close to one. When (4.3)
 holds, we have

 I bi<M i = 1l .. ,n,
 I h'(xo3 + Ei + 6i8i) I c sup I h'(xog3 + Ei + t) ;

 I:i-M

 thus

 in
 -E [h'(xof + c. + 0_A5)12

 n1=1

 1 n
 -_ , sup [h'(xoI3 + Es + t)]2 (4.4)

 n =1 lttIM

 By the strong law of large numbers, the right side of
 (4.4) converges almost surely to

 E sup [h'(xof3 + E + t)12 (4.5)
 ltl5M

 if the expectation is finite.
 To summarize, if the expectation (4.5) is finite for all

 M > 0, the second factor in (4.2) is bounded from above,
 with probability arbitrarily close to one, by a sequence
 of random variables that converge almost surely to a finite
 constant. In other words, the second factor in (4.2) is
 stochastically bounded. Thus we have proved the main
 result in this article.

 Theorem 1. Assume (i) the retransformation h is con-
 tinuously differentiable, (ii) X contains the intercept, (iii)
 X'XIn -E I positive definite, and (iv) the expectation (4.5)
 is finite for all M > 0. Then the smearing estimate (3.1)
 is weakly consistent.

 For most popular transformations, the supremum in
 (4.5) can be evaluated at the endpoints. For example, if

 I h' I is monotonic, we have

 E sup [h'(xop + E + t)]2

 c E [h'(xop + E + M)]2

 + E [h'(xop3 + e - M)]2.
 The moment condition (iv) in Theorem 1 can then be re-
 placed by (v) E [h'(c + E)]2 < +oo for all c, which is
 usually easy to check under hypothesized true error dis-
 tribution. For example, for the power transformations

 9 = g(Y) = Y s a 0,

 Y = h(q) = qIa,
 the desired moment condition is that E(c + E)2[(I/o- ] <
 + oo for all c, which is satisfied for the normal error dis-
 tribution if 0 < Kx < 1. For the logarithmic transformation
 1 = log(Y), Y = exp(,q), the desired moment condition
 reduces to E exp(2E) < +oo, which is satisfied for the
 normal error distribution.

 5. EFFICIENCY OF THE SMEARING ESTIMATE FOR
 LOGNORMAL LINEAR MODELS

 If the error distribution is indeed normal, both the nor-
 mal theory estimates and the smearing estimate are con-
 sistent, but the normal theory estimates can be more ef-
 ficient. In this section we examine the loss of efficiency
 of the smearing estimate relative to normal theory esti-
 mates when the error distribution is indeed normal. For
 simplicity, we consider only the logarithmic transfor-
 mation in this section.

 The smearing estimate (SE), as defined in Section 3,
 is exp(xo) x n-' exp(E), where p are the least
 squares regression coefficients and Ei = ' - xi3 are the
 estimated residuals. We consider three normal theory es-
 timates:

 1. The naive estimate (NE), exp(xo,3 + cr2/2), where
 &J2 is the mean square for error;
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 2. The uniformly minimum variance unbiased estimate

 (MVUE),

 exp(xof3) gm [(m + 1)(1 - vo)f212m],

 where m = degrees of freedom of 62, VO = Xo(X'X)- 1x',
 and

 gm(t) = k=O m(m + 2) *- (m + 2k) (m + k!

 3. Meulenberg's (1965) estimate (MEUL), exp[xO +
 (1 - vo)6f2/21.

 The proof of the following theorem is straightforward

 and can be found in Duan et al. (1982, Appendix B).

 Theorem 2. Assume (i) X'Xln -> E positive definite,

 (ii) X contains the intercept, and (iii) E- N(0, u2). Then

 nvar(SE) [(xOj - 0xO')cu2 + exp(U2) - 1 - U2]

 x exp(2xof3 + u2),

 nvar(NE) [(xOj - Ixo')ur2 + u4/2]

 x exp(2xo03 + o.2)

 The asymptotic relative efficiency of the smearing esti-
 mate to the naive normal theory estimate is therefore

 (Xo0 - 'xO')CF2 + u412
 (x0'x0')uf2 + [exp(o'2) - 1 - 21 (.

 Remarks.
 1. Note that U4/2 is the leading term in Taylor's ex-

 pansion of exp(or2) - 1 - U2
 2. Using either Mehran's (1973) or Bradu and Mun-

 dlak's (1970) exact variance formula, one can show that
 the asymptotic variance of MVUE is the same as that of
 NE given in Theorem 2.

 3. The proof in Duan et al. (1982, Appendix B, Ad-
 dendum II, pp. 99-102) can be modified to show that the
 asymptotic variance of Meulenberg's estimate (MEUL)
 is the same as that of NE given in Theorem 2.

 4. For the one population lognormal model with no
 covariates, the smearing estimate is the sample mean, and
 xoY,- 'xo' = 1. Theorem 2 is then equivalent to the asymp-
 totic case in Mehran's (1973) comparison of the sample
 mean and the normal theory estimate MVUE. The
 asymptotic variance formula for NE is the first-order term
 in Finney's (1941) approximation for this special case.

 The relative efficiency depends on both u2 and
 xol - 'xo'. If xo is sampled randomly from the same pop-
 ulation as xi's, we have

 E xol - xo' = trl -lE xo'xo

 = trl-` (I = Ex'x)

 = rank(X);

 thus xoE; - 'xo' is of the same order as rank(X). Table 1
 contains the relative efficiency for a wide range of values

 of uJ2 and x0>;- 'xo'. For u2 near or less than one, the

 Table 1. Relative Efficiency of the Smearing
 Estimate to the Normal Theory Estimate When the

 Normality Assumption is Satisfied

 x107x0' (- rankX)

 or2 1 2 3 10 20

 .10 1.00 1.00 1.00 1.00 1.00
 .50 .96 .98 .99 1.00 1.00
 1.00 .87 .92 .94 .98 .99
 2.00 .63 .72 .77 .90 .95
 3.00 .39 .48 .54 .75 .85

 relative efficiency is very high. Mehran (1973) also noted
 that the sample mean performed "surprisingly well" rel-
 ative to MVUE for the one population lognormal model.
 The column "xol - =xo' = 1" in Table 1 is equivalent to
 the column "n = 00" in Mehran's table.

 For large U2, the relative efficiency drops drastically.
 Under the assumed model, the untransformed scale re-
 sponses follow a lognormal distribution, with u2 being the
 shape parameter: large o2 indicates large skewness.

 For most empirical problems, the values of U2 are likely
 to belong to the range for which the smearing estimate
 has very high relative efficiency compared with the nor-
 mal theory estimates. Goldberger (1968) states that "a
 casual survey of empirical work suggests that uF2, the log-
 arithmic disturbance, is unlikely to exceed 0.5." Mincer
 (1974, p. 101) tabulated the variances of log annual (1959)
 earning within age x education groups. Most of the var-
 iances are near or below .5, except that several groups
 of higher-educated people have variances as high as .933,
 which are still within the range for which the smearing
 estimate has very high relative efficiency.

 The range of U2 might, however, depend on the field
 of application. Ott, Mage, and Randecker (1979) analyzed
 carbon monoxide concentration data from 11 U.S. cities.
 The variances of the log concentrations in some cities are
 rather high: 1.94 for Phoenix, Arizona; 1.42 for Barstow,
 California; and 1.27 for Denver, Colorado. Some of these
 values are in the range for which the smearing estimate
 does not have very high relative efficiency. For example,
 the relative efficiency for Phoenix is only 64 percent (u2
 = 1.94, xol - xo' = 1 for the one population lognormal
 model).

 For large u2, while the normal theory estimates are
 substantially more efficient than the smearing estimate
 when the normal assumption is true, they can also be
 more sensitive to departures from normality. As an il-
 lustration, we will consider again the example used in
 Section 2:

 E -N(O, 95u 2) with probability .995,

 e N(O, 10.95uf2) with probability .005,

 (varE = cr2).

 Table 2 provides the asymptotic relative bias of the
 normal theory estimate. Under the assumed model, the
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 Table 2. Asymptotic Relative Bias of the Normal
 Theory Estimate Under the Mixture Model

 Asymptotic
 Relative Bias (%)

 .50 -4
 .75 -16
 1.00 -41
 1.50 -90
 2.00 -99
 3.00 -100

 asymptotic relative bias is

 exp(xof + 92/2) - 1

 exp(xo) * [.995 exp(.475U2) + .005 exp(5.475U2)]

 The asymptotic relative bias increases with U2; for U2
 near or larger than one, the normal theory estimates are
 severely biased.

 6. HEALTH INSURANCE STUDY EXPENDITURE
 ANALYSIS

 To illustrate the use of the smearing estimate, we con-
 sider a real-world problem, predicting individual medical
 expenditures on the Rand Health Insurance Study (HIS).
 (Rubin 1983 and Morris 1983 address similar problems in
 a broader context.) The study is a longitudinal social ex-
 periment designed to study, among other things, how dif-
 ferent health insurance policies affect the demand for
 health care. A random sample of 2,756 families from six
 sites across the U.S. are assigned to 14 different insur-
 ance plans that vary the amount of cost sharing. The study
 reimburses their insurance claims, thereby obtaining a
 measure of their demand for health care. Further details
 on the study can be found in Newhouse et al. (1981).

 Duan et al. (1982) have proposed a model for individual
 health expenditures on HIS, one part of which models
 the annual expenditure of individuals with positive am-
 bulatory expenditure and no inpatient expenditure in a
 given year as a linear regression model on the log scale:

 qi = log Yi = xi4 + Ei, (6.1)

 where Y1 denotes the annual expenditure. The explana-
 tory variables x include five different levels of experi-
 mental cost sharing, demographic characteristics, preex-
 perimental use of medical care, and the individual's self-
 perception of his health. The sample is partitioned into
 nine subsamples, each consisting of a specific year from
 a specific site. Equation (6.1) is fitted to the subsamples
 separately. The sample sizes in the nine subsamples range
 from 501 to 857; the total sample size is 6,479. The number
 of explanatory variables range from 24 to 27, depending
 on the subsample; some explanatory variables are not
 available or are not applicable in certain sites. Further
 details on the sample and the analysis can be found in
 Duan et al. (1982).

 The error distribution in (6.1) is fairly close to a normal
 distribution, but it is slightly skewed towards the lower
 extreme. (Skewness = -.37, Kolmogorov-Smirnov sta-
 tistic = .034.) Apparently both the normal theory esti-
 mate and the smearing estimate are plausible candidates
 for predicting the untransformed scale expectation.

 As was noted in the previous section, the relative ef-
 ficiency of the smearing estimate depends on the error
 variance U2 = var(E). The estimated Or2's for the nine
 subsamples range from 1.03 to 1.34, and fall mostly in
 the range in which the smearing estimate is fairly efficient
 under the normal assumption.

 To compare the prediction performance of various
 models, Duan et al. (1982) developed a cross-validation-
 type technique. They split the sample randomly into two
 parts, the training subsample and test subsample; the var-
 ious models are fitted on the training subsample, and then
 used to form predictions for all individuals in the test
 subsample. The prediction for each individual is then
 compared with that individual's response actually ob-
 served. The average squared prediction error (ASPE) is
 then computed for each model:

 ASPE = , (E Yk -Yk)2,

 where the index k runs through the m individuals in the
 test subsample. The ASPE's for different models can be
 compared directly, the model producing the smaller
 ASPE being the better one.

 For the HIS data, the smearing estimate has smaller
 ASPE (37429) than the normal theory estimates. For the
 naive estimate, ASPE = 38908; for MVUE, ASPE =
 38081; and for MEUL, ASPE = 38093. The differences
 might appear to be only a minor fraction of ASPE. How-
 ever, it should be noted that ASPE is a combination of
 estimation error and measurement error. A minor im-
 provement in terms of ASPE might actually be a major
 improvement in terms of estimation error. (The meth-
 odology presented here does not distinguish estimation
 error from measurement error, though.)

 An alternative procedure, the subpopulation sign test,
 also proposed in Duan et al. (1982), divides the test sam-
 ple into subpopulations. The ASPE's for each model are
 computed on each subpopulation. When comparing two
 models, the number of subpopulations on which each
 model has smaller ASPE than the other is calculated. The
 model that wins a larger number of subpopulations is
 judged to be the better model.

 The HIS data are naturally partitioned into 43 subpo-
 pulations, each consisting of a distinct combination of
 site, year, and experimental plan. Under a null hypothesis
 of no differences between the estimation techniques, the
 number of winning subpopulations follow a binomial dis-
 tribution with sample size 43 and null probability .5. The
 .05 two-sided rejection region is {# < 15} + {# > 28}.
 The smearing estimate wins 29 of the subpopulations
 when compared with the naive estimate. Compared with
 MVUE or MEUJL, the smearing estimate wins 28 sub-
 populations.

This content downloaded from 
������������129.252.69.147 on Thu, 23 Sep 2021 20:39:57 UTC������������� 

All use subject to https://about.jstor.org/terms
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 It should also be noted that the average bias,

 Bias = (average of individual predictions)

 - (average of actual observations),

 and relative bias,

 Relative bias = Bias/(average of actual observations),

 on the test sample are much smaller for the smearing
 estimates (bias = $7.00, relative bias = 4.3 percent) than
 the normal theory estimates. For the naive estimate, bias
 = $22.00, relative bias = 13.7 percent; for MVUE, bias
 = $13.70, relative bias = 8.5 percent; for MEUL, bias
 = $13.90, relative bias = 8.6 percent.

 Based on ASPE, on the subpopulation sign test, and
 on the bias, we conclude that the smearing estimate is
 the more appropriate procedure to use in this case.

 [Received December 1981. Revised February 1983.]
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