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Another Cautionary Note About R?: Its Use in Weighted
Least-Squares Regression Analysis

JOHN B. WILLETT and JUDITH D. SINGER*

A recent article in this journal presented a variety of expres-
sions for the coefficient of determination (R?) and demon-
strated that these expressions were generally not equivalent.
The article discussed potential pitfalls in interpreting the R?
statistic in ordinary least-squares regression analysis. The
current article extends this discussion to the case in which
regression models are fit by weighted least squares and
points out an additional pitfall that awaits the unwary data
analyst. We show that unthinking reliance on the R? statistic
can lead to an overly optimistic interpretation of the pro-
portion of variance accounted for in the regression. We
propose a modification of the estimator and demonstrate its
utility by example.
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1. INTRODUCTION

Several recent papers have commented on the utility of
the coefficient of determination, R?, as a measure of good-
ness of fit in ordinary least-squares (OLS) regression. Draper
(1984) suggested that R? was misleading in data sets in
which there were replicate data points and suggested that
the Box—Wetz (1973) criterion was more appropriate, al-
though this view was modified later (Draper 1985). Healy
(1984) commented that R? was an unsatisfactory measure
of an OLS regression relationship, and that “an absolute
rather than a relative measure is to be preferred” (p. 608).

Kvalseth (1985) discussed the use of R? as a measure of
goodness of fit in OLS regression. He noted that the several
alternative definitions of R? that abound in the statistical
and data-analytic literature are not, in general, equivalent.
He suggested one definition of R? as being superior and
recommended its use consistently in data analysis:

(Y — XB) ' (Y ~ XB) W
Y'Y — nY? ’
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where Y is an (n X 1) vector of observations with Y as
their mean, X is an (n X k) matrix of measurements on k

predictors (including an intercept), B is the (k X 1) vector

of OLS parameter estimates, and (Y — Xﬁ) isthe (n X 1)
vector of residuals from the OLS fit. Kvalseth (1985) argued
that, whereas other estimators are flawed under particular
combinations of no intercept and nonlinearity, this particular
estimator successfully continues to offer, across a wide va-
riety of contexts, an intuitive interpretation in terms of the
“proportion of the total variation of Y (about its mean Y)
that is explained (accounted for) by the fitted model™ (p. 281).
A robust alternative to the estimator in (1) was presented
and its behavior examined empirically.

We extend the earlier discussion to situations in which
regression models are fitted by a weighted least-squares
(WLS) strategy, rather than an OLS strategy. We show that
unthinking reliance on an R? statistic, even the superior
estimator in (1), can lead the unwary data analyst to an
overly optimistic interpretation of the proportion of variance
accounted for in the regression. We propose a modification
of the estimator in (1) and demonstrate its utility by example.

2. WEIGHTED LEAST-SQUARES
REGRESSION ANALYSIS

As Mosteller and Tukey (1977, p. 346) suggested. the
action of assigning ‘“different weights to different obser-
vations, either for objective reasons or as a matter of judge-
ment” in order to recognize ““some observations as ‘better’
or ‘stronger’ than others” has an extensive history. Whether
the investigator wishes to downplay the importance of data
points that are intrinsically more variable at specific levels
of the predictor variables, or simply to decrease the effect
on the fit of remote data points, the strategy is the same.
The model under consideration is usually of the form

Y = XB + €, (2)

where B is a (k X 1) vector of unknown parameters, € is
an (n X 1) vector of unobserved random errors with € ~
(0, o*W), and W is a known (n X n) diagonal matrix with
wy; > 0. Usually, in an empirical analysis, W is not known
and has to be generated by a “combination of prior knowl-

© 1988 American Statistical Association



edge, intuition, and evidence” (Chatterjee and Price 1977,
p. 101). Often, the required evidence is derived from in-
spection of residuals obtained from an initial unweighted
(OLS) regression analysis.

Although WLS estimates of 3, var( ﬁ), and o? are usually
computed directly, it is informative to transform (2) in order
to create a model that can be fitted by OLS. Multiplying
(2) throughout by W ™2 gives

wfl/ZY — W—]/ZXB + VV*]/Ze
or

Y, = X,B+e, 3)

where Y, = W™ 1?%Y, X = W~ 2X,ande, = W €.
In the transformed model, var(e,) = a?I; therefore, the
assumptions of OLS regression are met. Then, providing
that (X'X) is nonsingular, estimates for B, var(B), 0%, and
the regression analysis-of-variance table can be obtained
directly by replacing Y and X by Y, and X, respectively,
in standard regression computations (Draper and Smith 1981,
pp. 85-96).

Thus, in the weighted analysis, Kvalseth’s coefficient of
determination becomes

2 1 _ (Y, — X*ﬁ*) (Y, — X*ﬁ*)
RWLS 1 |: Y,*Y* _ n}—,z* > (4)

where B « 1s the WLS estimate of B. The denominator of
the second term in (4) is the sum of squares of the weighted
Y values about their mean, and the numerator is the sum of
squares of the weighted residuals

€, =Y, - XB,. (5)
Therefore, R¥, s in (4) is the coefficient of determination
in the rransformed data set. It is a measure of the proportion
of the variation in weighted Y that can be accounted for by
weighted X, and it is the quantity that is output as “R?” by
the major statistical computer packages when a WLS regres-
sion is performed.

Weighted least-squares regression analysis minimizes the
sum of squared residuals (and therefore maximizes the coef-
ficient of determination) with respect to the transformed
variables, whereas OLS regression analysis minimizes the
sum of squared residuals (and maximizes the coefficient of
determination) with respect to the original variables. Pro-
viding that the weighting scheme has been chosen appro-
priately to counteract the heteroscedastic nature of the random
errors, a better fit will be achieved by WLS in the trans-
formed world. Thus the coefficient of determination ob-
tained unthinkingly from a statistical computer package under
WLS regression is frequently much larger than the value
obtained under the corresponding OLS fit. To the naive
consumer of computer output, this apparent increment to
the coefficient of determination can represent a considerable
improvement in fit and is displayed prominently in any
account of the analysis, whereas closer inspection reveals
that the increment reflects, in part, the success of the weight-
ing in solving the problem of heteroscedasticity.

From an applied perspective, however, it is more appro-
priate and less misleading to continue to report the “pro-
portion of variance explained” in the original metric, and
not in the transformed world. Attention should focus not on
R?,.s but on a modification of (1) that incorporates the
correct residuals for the model in (2),

¢ =Y - XB,, (6)

and not the weighted residuals in (5). Therefore, an appro-
priate modification of Kvalseth’s coefficient of determina-
tion becomes

(Y - XB,) (Y — Xﬁg] o

pseudoRy, s = 1 — [ T

a statistic that will necessarily be of smaller magnitude than
the coefficient of determination obtained in the initial un-
weighted analysis. But since the OLS and WLS estimates
of B remain unbiased even when var(e) o?l, it is likely
that, except in particularly idiosyncratic data sets, the WLS
estimate of 8 will not be much different from the OLS
estimate and, therefore, the difference between Ry, s and
pseudo R}, s will not be great.

A simple formula for computing the pseudo Rg; g statistic
can be obtained by summing and squaring the corrected
residuals in Equation (6), and by computing the sample
variance of the dependent variable, s7:

€' €
seudo Rés = | — | —— |- 8
p WLs [(" — l)s%] (8)
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Figure 1. Scatterplot of the Example Data Set: Dependent Vari-
able Y Versus Independent Variable X for a Sample of 35 Cases.
The plot was created from data presented by Draper and Smith
(1981, table 2.1).
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Table 1. Ordinary Least-Squares (OLS) and Weighted Least-
Squares (WLS) Parameter Estimates, Standard Errors, and
Coefficient of Determination for the Example Data Set

Estimated Estimated Coefficient
Type intercept slope of
of (standard (standard determination
fit error) error) (percent)
oLs —.579 (.679) 1.135 (.086) 84.0
WLS —~.889 (.300) 1.165 (.059) 92.1

NOTE: The estimated weight for Case 10 was misprinted as 6.70574 in Draper and Smith
(1981, table 2.1). Our analysis made use of the correct value of 6.78574, which was
recomputed according to directions given by Draper and Smith (1981, p. 115).

3. AN EXAMPLE

In this section we present a reanalysis of a small data set
provided by Draper and Smith (1981, table 2.1). This data
set contains information for 35 cases on a single outcome
variable, Y, and a single predictor, X. The data are plotted
in Figure 1. Inspection of the figure reveals a point cloud
in the familiar “right-opening megaphone” shape typical of
heteroscedastic random errors. Draper and Smith (1981,
pp. 112-115) described in considerable detail the estimation
of the elements of the W matrix. By inverting the diagonal
elements of this matrix, we can obtain the estimated weights
needed to fit a linear model to these data by WLS regression
analysis.

We have used the Draper and Smith data to fit the linear
model in Equation (2) (with a single predictor) using OLS
regression analysis and WLS regression analysis, respec-
tively. The results of these analyses are presented in Table
1, with the coefficients of determination estimated by Equa-
tions (1) and (4), respectively. Notice that, as anticipated,
there has been an increase in the estimated value of the
coefficient of determination from 84.0% to 92.1%. That
this apparent increase is easy to misinterpret is illustrated
by estimating the pseudo R%, s statistic in Equation (7).
This leads to an estimate of .839 for pseudo R3y s, a value

238 The American Statistician, August 1988, Vol. 42, No. 3

that is only marginally lower than the magnitude of the
coefficient of determination in the original OLS regression.

4. CONCLUSION

The small difference between R3, s and pseudo R, g raises
the following question: Why estimate pseudo R, s at all?
The answer is simply that such a computation emphasizes,
for the naive user, that the goodness of fit (as documented
by the coefficient of determination) has not been dramati-
cally improved by the WLS regression but, in fact, has
deteriorated slightly. This serves to refocus attention on
other aspects of the analysis, particularly the increased pre-
cision of the estimates of B. Therefore, our results reinforce
the view that statistics other than the coefficient of deter-
mination are of primary interest in both OLS and WLS
regressions, and they support Kvalseth’s contention that
“sole reliance on [the coefficient of determination] may fail
to reveal important data characteristics and model inade-
quacies” (1985, pp. 282-284).
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