
On these review notes

1. You are responsible for the correctness of all of the formulae on this review sheet.
(There are undoubtedly ytopgraphical errors :-).

2. You should know, and understand, everything in these review notes.

3. The exam format will be a series of multiple choice, short answer questions and R codes.
Tedious calculations will be avoided.

4. You can bring a non-fancy (you know what I mean) scientific calculator. It must be able
to take logs and raise numbers to exponents.

5. You can bring in one sheet of 8.5 × 11 paper filled, front and back, with formulae and
notes.
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1 Random variables

1. A random variable is a function from Ω to the real numbers. A random variable is a
random number that is the result of an experiment governed by a probability distribu-
tion.

2. A Bernoulli random variable is one that takes the value 1 with probability p and 0 with
probability (1− p). That is, P (X = 1) = p and P (X = 0) = 1− p.

3. A probability mass function (pmf) is a function that yields the various probabilities
associated with a random variable. For example, the probability mass function for a
Bernoulli random variable is f(x) = px(1− p)1−x for x = 0, 1 as this yields p when x = 1
and (1− p) when x = 0.

4. The expected value or (population) mean of a discrete random variable, X, with pmf
f(x) is

µ = E[X] =
∑
x

xf(x).

The mean of a Bernoulli variable is then 1f(1) + 0f(0) = p.

5. The variance of any random variable, X, (discrete or continuous) is

σ2 = E
[
(X − µ)2

]
= E[X2]− E[X]2.

The latter formula being the most convenient for computation. The variance of a
Bernoulli random variable is p(1− p).

6. The (population) standard deviation, σ, is the square root of the variance.

7. A Binomial random variable, X, is obtained as the sum of n Bernoulli random variables
and has pmf

P (X = k) =

(
n
k

)
pk(1− p)n−k.

Binomial random variables have expected value np and variance np(1− p).

8. An uniform random variable, X. The expected value and variance of X.

2 Continuous random variables

1. Continuous random variables take values on a continuum.

2. The probability that a continuous random variable takes on any specific value is 0.
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3. Probabilities associated with continuous random variables are governed by probabil-
ity density functions (pdfs). Areas under probability density functions correspond to
probabilities. For example, if f is a pdf corresponding to random variable X, then

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

To be a pdf, a function must be positive and integrate to 1. That is,
∫∞
−∞ f(x)dx = 1

4. If h is a positive function such that
∫∞
−∞ h(x)dx ≤ ∞ then f(x) = h(x)/

∫∞
−∞ h(x)dx is a

valid density. Therefore, if we only know a density up to a constant of proportionality,
then we can figure out the exact density.

5. The expected value, or mean, of a continuous random variable, X, with pdf f , is

µ = E[X] =

∫ ∞
−∞

tf(t)dt.

6. The variance is σ2 = E[(X − µ)2] = E[X2]− E[X]2.

7. The distribution function, say F , corresponding to a random variable X with pdf, f ,
is

P (X ≤ x) = F (x) =

∫ x

−∞
f(t)dt.

(Note the common convention that X is used when describing an unobserved random
variable while x is for specific values.)

8. The pth quantile (for 0 ≤ p ≤ 1), say Xp, of a distribution function, say F , is the point
so that F (Xp) = p. For example, the .025th quantile of the standard normal distribution
is -1.96.

3 Properties of expected values and variances

The following properties hold for all expected values (discrete or continuous)

1. Expected values commute across sums: E[X + Y ] = E[X] + E[Y ].

2. Multiplicative and additive constants can be pulled out of expected values E[cX] =
cE[X] and E[c+X] = c+ E[X].

3. For independent random variables, X and Y , E[XY ] = E[X]E[Y ].

4. In general, E[h(X)] 6= h(E[X]).

5. Variances commute across sums for independent variables Var(X + Y ) = Var(X) +
Var(Y ).

6. Multiplicative constants are squared when pulled out of variances Var(cX) = c2Var(X).

7. Additive constants do not change variances: Var(c+X) = Var(X).

8. E(
∑
aiYi) =

∑
aiE(Yi), and V ar(

∑
aiYi).
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4 The normal distribution

a. The Bell curve or normal or Gaussian density is the most common density. It is speci-
fied by its mean, µ, and variance, σ2. The density is given by f(x) = (2πσ2)−1/2 exp{−(x−
µ)2/2σ2}. We write X ∼ N(µ, σ2) to denote that X is normally distributed with mean µ
and variance σ2.

b. The standard normal density, labeled φ, corresponds to a normal density with mean
µ = 0 and variance σ2 = 1.

φ(z) = (2π)−1/2 exp{−z2/2}.

The standard normal distribution function is usually labeled Φ.

c. If f is the pdf for a N(µ, σ2) random variable, X, then note that f(x) = φ{(x−µ)/σ}/σ.
Correspondingly, if F is the associated distribution function for X, then F (x) = Φ{(x−
µ)/σ}.

d. If X is normally distributed with mean µ and variance σ2 then the random variable Z =
(X − µ)/σ is standard normally distributed. Taking a random variable subtracting its
mean and dividing by its standard deviation is called “standardizing” a random variable.

e. If Z is standard normal then X = µ+ Zσ is normal with mean µ and variance σ2.

f. 68%, 95% and 99% of the mass of any normal distribution lies within 1, 2 and 3
(respectively) standard deviations from the mean.

g. Zα refers to the αth quantile of the standard normal distribution. Z.90, Z.95, Z.975 and
Z.99 are 1.28, 1.645, 1.96 and 2.32.

h. Sums and means of normal random variables are normal (regardless of whether or not
they are independent). You can use the rules for expectations and variances to figure
out µ and σ.

i. The sample standard deviation of iid normal random variables, appropriated normal-
ized, is a Chi-squared random variable (see below).

5 Sample means and variances

Throughout this section let Xi be a collection of iid random variables with mean µ and
variance σ2.

1. We say random variables are iid if they are independent and identically distributed.

2. For random variables, Xi, the sample mean is X̄ =
∑n

i=1Xi/n.

3. E[X̄] = µ = E[Xi] (does not require the independence or constant variance).

4. If the Xi are iid with variance σ2 then Var(X̄) = Var(Xi)/n = σ2/n.
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5. The sample variance is defined to be

S2 =

∑n
i=1(Xi − X̄)2

n− 1
.

6.
∑n

i=1(Xi − X̄)2 =
∑n

i=1X
2
i − nX̄2 is a shortcut formula for the numerator.

7. σ/
√
n is called the standard error of X̄. The estimated standard error of X̄ is S/

√
n.

Do not confuse dividing by this
√
n with dividing by n− 1 in the calculation of S2.

8. An estimator is unbiased if its expected value equals the parameter it is estimating.

9. E[S2] = σ2, which is why we divide by n − 1 instead of n. That is, S2 is unbiased.
However, dividing by n − 1 rather than n does increase the variance of this estimator
slightly, Var(S2) ≥ Var((n− 1)S2/n).

10. If the Xi are normally distributed with mean µ and variance σ2, then X̄ is normally
distributed with mean µ and variance σ2/n.

11. The Central Limit Theorem. If the Xi are iid with mean µ and (finite) variance σ2 then

Z =
X̄ − µ
σ/
√
n

will limit to a standard normal distribution. The result is true for small sample sizes, if
the Xi iid normally distributed.

12. If we replace σ with S; that is,

Z =
X̄ − µ
S/
√
n
,

then Z still limits to a standard normal. If the Xi are iid normally distributed, then Z
follows the Students T distribution for small n.

6 Confidence intervals for a mean using the CLT.

1. Using the CLT, we know that

P

(
−Z1−α/2 ≤

X̄ − µ
S/
√
n
≤ Z1−α/2

)
= 1− α

for large n. Solving the inequalities for µ, we calculated that in repeated sampling, the
interval

X̄ ± Z1−α/2
S√
n

will contain µ 100(1− α)% of the time.
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2. The probability that µ is in an observed confidence interval is either 1 or 0. The correct
interpretation is that in repeated sampling, the interval we obtain will contain µ 100(1−
α)% of the time. (Assumes that the CLT has kicked in).

3. As n increases, the interval gets narrower.

4. As S increases, the interval gets wider.

5. As the confidence level, (1− α), increases, the interval gets wider.

6. Fixing the confidence level controls the accuracy of the interval. A 95% interval has
95% coverage regardless of the sample size. (Again, assuming that the CLT has kicked
in.) Increasing n will improve the precision (width) of the interval.

7. Prior to conducting a study, you can fix the margin of error (half width), say δ, of the
interval by setting n = (Z1−α/2σ/δ)

2. Round up. Requires an estimate of σ.

7 Confidence intervals for a variance and T confidence
intervals

1. If Z is standard normal and X is and independent Chi-squared with df degrees of
freedom then Z√

X/df
follows what is called a Student’s T distribution with df degrees of

freedom.

2. The Student’s T density looks like a normal density with heavier tails (so it looks more
squashed down).

3. By the previous item, if the Xi are iid N(µ, σ2) then

Z =
X̄ − µ
S/
√
n

follows a Student’s T distribution with (n − 1) degrees of freedom. Therefore if tn−1,α

is the αth quantile of the Student’s T distribution then

X̄ ± tn−1,1−α/2
S√
n

is a 100(1− α)% confidence interval for µ.

4. The Student’s T confidence interval assumes normality of the Xi. However, the T
distribution has quite heavy tails and so the interval is conservative and works well in
many situations.

5. For large sample sizes, the Student’s T and CLT based intervals are nearly the same be-
cause the Student’s T quantiles become more and more like standard normal quantiles
as n increases.
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8 The bootstrap

1. The (non-parametric) bootstrap can be used to calculate percentile bootstrap confi-
dence intervals.

2. The bootstrap principle is to use the empirical distribution defined by the data to
obtain an estimate of the sampling distribution of a statistic. In practice the bootstrap
principle is always executed by resampling (with replacement) from the observed
data.

3. Assume that we have n data points. The bootstrap obtains a confidence interval by
sampling m complete data sets by drawing with replacement from the original data.
The statistic of interest, say the median, is applied to all m of the resampled data sets,
yielding m medians. The percentile confidence interval is obtained by taking the α/2
and 1− α/2 quantiles of the m medians.

4. Make sure you do enough resamples so that your confidence interval has stabilized.

5. Bootstrap intervals are interpreted the same as frequentist intervals.

6. To guarantee coverage, the bootstrap interval requires large sample sizes.

7. There are improvements to the percentile method that are not covered in this class.

9 Hypothesis testing for a single mean

1. The null, or status quo, hypothesis is labeled H0, the alternative Ha or H1 or H2 ...

2. A type I error occurs when we falsely reject the null hypothesis. The probability of a
type I error is usually labeled α.

3. A type II error occurs when we falsely fail to reject the null hypothesis. A type II error
is usually labeled β.

4. A Power is the probability that we correctly reject the null hypothesis, 1− β.

5. The Z test for H0 : µ = µ0 versus H1 : µ < µ0 or H2 : µ 6= µ0 or H3 : µ > µ0 constructs a
test statistic TS = X̄−µ0

S/
√
n

and rejects the null hypothesis when

H1 TS ≤ −Z1−α

H2 |TS| ≥ Z1−α/2

H3 TS ≥ Z1−α

respectively.

6. The Z test requires the assumptions of the CLT and for n to be large enough for it to
apply.
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7. If n is small, then a Student’s T test is performed exactly in the same way, with the
normal quantiles replaced by the appropriate Student’s T quantiles and n− 1 df.

8. Tests define confidence intervals by considering the collection of values of µ0 for which
you fail to reject a two sided test. This yields exactly the T and Z confidence intervals
respectively.

9. Conversely, confidence intervals define tests by the rule where one rejects H0 if µ0 is not
in the confidence interval.

10. A P-value is the probability of getting evidence as extreme or more extreme than we
actually got under the null hypothesis. For H3 above, the P-value is calculated as P (Z ≥
TSobs|µ = µ0) where TSobs is the observed value of our test statistic. To get the P-value
for H2, calculate a one sided P-value and double it.

11. The P-value is equal to the attained significance level. That is, the smallest α value
for which we would have rejected the null hypothesis. Therefore, rejecting the null
hypothesis if a P-value is less than α is the same as performing the rejection region test.

12. The power of a Z test for H3 is given by the formula (know how this is obtained)

P (TS > Z1−α|µ = µ1) = P

(
Z ≥ µ0 − µ1

σ/
√
n

+ Z1−α

)
.

Notice that power required a value for µ1, the value under the null hypothesis. Corre-
spondingly for H1 we have

P

(
Z ≤ µ0 − µ1

σ/
√
n
− Z1−α

)
.

For H2, the power is approximately the appropriate one sided power using α/2.

13. Some facts about power.

a. Power goes up as α goes down.

b. Power of a one sided test is greater than the power of the associated two sided test.

c. Power goes up as µ1 gets further away from µ0.

d. Power goes up as n goes up.

14. The prior formula can be used to calculate the sample size. For example, using the
power formula for H1, setting Z1−β = µ0−µ1

σ/
√
n
− Z1−α yields

n =
(Z1−β + Z1−α)2σ2

(µ0 − µ1)2
,

which gives the sample size to have power = 1 − β. This formula applies for H3 also.
For the two sided test, H2, replace α by α/2.
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15. Determinants of sample size.

a. n gets larger as α gets smaller.

b. n gets larger as the power you want gets larger.

c. n gets lager the closer µ1 is to µ0.

16. Paired T-test

17. Use simulation to calculate type I error rate and power

10 Group comparisons

1. For group comparisons, make sure to differentiate whether or not the observations are
paired (or matched) versus independent.

2. For paired comparisons for continuous data, one strategy is to calculate the differences
and use the methods for testing and performing hypotheses regarding a single mean.
The resulting tests and confidence intervals are called paired Student’s T tests and
intervals respectively.

3. For independent groups of iid variables, sayXi and Yi, with a constant variance σ2 across
groups

Z =
X̄ − Ȳ − (µx − µy)

Sp
√

1
nx

+ 1
ny

limits to a standard normal random variable as both nx and ny get large. Here

S2
p =

(nx − 1)S2
x + (ny − 1)S2

y

nx + ny − 2

is the pooled estimate of the variance. Obviously, X̄, Sx, nx are the sample mean,
sample standard deviation and sample size for the Xi and Ȳ , Sy and ny are defined
analogously.

4. If the Xi and Yi happen to be normal, then Z follows the Student’s T distribution with
nx + ny − 2 degrees of freedom.

5. Therefore a (1− α)× 100% confidence interval for µy − µx is

Ȳ − X̄ ± tnx+ny−2,1−α/2Sp

(
1

nx
+

1

ny

)1/2

6. The statistic
Ȳ − X̄ − (µy − µx)(

σ2
x1
nx

+
σ2
y

ny

)1/2
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approximately follows Gosset’s T distribution with degrees of freedom equal to(
S2
x/nx + S2

y/ny
)2(

S2
x

nx

)2

/(nx − 1) +
(
S2
y

ny

)2

/(ny − 1)

11 Non-parametric Tests, Permutation Test

1. Specify hypotheses for each test.

2. The assumptions of each test.

3. The power comparison of two-sample tests

12 Simple linear regression

1. Simple linear regression models

2. Least estimations

3. Normal equation

4. Estimates for β0, β1 and σ2

5. Properties of the residuals

6. Confidence intervals for the β estimates, Ŷ .

7. Prediction Intervals

10


