Poisson regression (Chapter 14.13)

Department of Statistics, University of South Carolina

Stat 705: Data Analysis II

- Modeling Counts
- Contingency Tables
- Poisson Regression Models
- Number of traffic accidents per day
- Mortality counts in a given neighborhood per week
- Number of customers arriving in a shop daily

We discussed about

- Linear regression: for normally distributed errors
- Logistic regression: for binomial distributed errors

Features of count data

- Counts are not binary (0/1)
- Counts are discrete, not continuous
- Counts typically have a right skewed distribution

So far, the regression strategies we've discussed allow us to model

- Expected values and expected increase in linear regression
- Log odds or log odds ratios in logistic regression In modeling counts, we are typically more interested in
- Incidence rates
- Incidence ratios (when comparing across levels of a risk factor)

Poisson regression will provide us with a framework to handle counts properly!

Poisson Probability

- The probability of x occurrence of an event in an interval is:

$$
P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, x=0,1,2, \ldots
$$

where λ is the expected number of occurrences in the interval

- $E(X)=\operatorname{Var}(X)=\lambda$
- We can also think of λ as the rate parameter

Poisson Probability

Poisson and Binomial

The Poisson distribution can be used to approximate a binomial distribution when

- n is large and p is very small or
- $n p=\lambda$ is fixed and n becomes infinitely large

Cancer is a large population

- Yearly cases of esophageal cancer in a large city
- 30 cases observed in 1990

$$
P(X=30)=\frac{e^{\lambda} \lambda^{30}}{30!}
$$

- $\lambda=$ yearly average number of cases of esophageal cancer

Example: Belief in Afterlife

- Men and women are asked whether or not they believed in afterlife (General Social Survey 1991)
- Possible responses were: yes, no or unsure

	Y	N or U	
M	435	147	582
F	375	134	509
Total	810	281	1091

Example: Belief in Afterlife

- Question: Is belief in the afterlife independent of gender?
- We can address this question using a χ^{2} test

	Y	N or U	
M	$435(432)$	$147(150)$	582
F	$375(378)$	$134(131)$	509
Total	810	281	1091

Example: Belief in Afterlife

- We calculated the expected counts to perform the χ^{2} test
- Alternatively, we could use a linear model to expression the expected counts systematically

$$
\begin{array}{r}
Y_{i j} \sim \operatorname{Poisson}\left(\lambda_{i j}\right) \\
\lambda_{i j}=\lambda \cdot \alpha_{\text {male }} \cdot \gamma_{y e s}
\end{array}
$$

- λ is the baseline rate, α is the male effect, and γ is the response
- Taking the log of both sides, we have:

$$
\log \left(\lambda_{i j}\right)=\log (\lambda)+\log \left(\alpha_{\text {male }}\right)+\log \left(\gamma_{\text {yes }}\right)
$$

Poisson Models

$$
\log \left(\lambda_{i j}\right)=\log (\lambda)+\log \left(\alpha_{\text {male }}\right)+\log \left(\gamma_{\text {yes }}\right)
$$

We can also write using β 's

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} I(\text { male })+\beta_{2} I(\text { yes })
$$

The probabilistic portion of this model enters as:

$$
Y_{i j} \sim \operatorname{Poisson}\left(\lambda_{i j}\right)
$$

Poisson Models

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} l(\text { male })+\beta_{2} l(\text { yes })
$$

- The outcome is the log of the expected cell count
- The baseline β_{0} is the log expected cell count for females responding "no"
- β_{1} is the increase in log expected cell count for males compared to females
- β_{2} is the increase in log expected cell count for the response "yes" compared to "no"

Fitting the afterlife model in R

	Y	N or U	
M	$435(432)$	$147(150)$	582
F	$375(378)$	$134(131)$	509
Total	810	281	1091

	count	male	yes
1	435	1	1
2	147	1	0
3	375	0	1
4	134	0	0

Fitting the afterlife model in R

```
> summary(out<-glm(count ~ male + yes, family=poisson))
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.87595 0.06787 71.839 <2e-16 ***
male 0.13402 0.06069 2.208 0.0272 *
yes 1.05868 0.06923 15.291 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 272.685 on 3 degrees of freedom
Residual deviance: 0.162 on 1 degrees of freedom
AIC: 35.407
Number of Fisher Scoring iterations: 3
```


Fitting the afterlife model

So we fit the model:

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} I(\text { male })+\beta_{2} I(\text { yes })
$$

and out fitted model is:

$$
\log \left(\lambda_{i j}\right)=4.88+0.13 I(\text { male })+1.06 I(\text { yes })
$$

Fitting the afterlife model

Using the fitted model:

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} I(\text { male })+\beta_{2} I(\text { yes })
$$

we can get predicted values for log counts in each of the four cells:

- For females responding "no":

$$
\log E(\text { count } \mid \text { female }, \text { no })=4.88+0.134 \cdot 0+1.06 \cdot 0=4.88
$$

- For males responding "no":

$$
\log E(\text { count } \mid \text { female }, \text { no })=4.88+0.134 \cdot 1+1.06 \cdot 0=5.01
$$

- Fo female responding "yes":

$$
\log E(\text { count } \mid \text { female }, n o)=4.88+0.134 \cdot 0+1.06 \cdot 1=5.94
$$

- For males responding "yes":

$$
\log E(\text { count } \mid \text { female }, n o)=4.88+0.134 \cdot 1+1.06 \cdot 1=6.07
$$

Predicting expected cell counts

Using the fitted model

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} I(\text { male })+\beta_{2} I(\text { yes })
$$

we can get predicted values for counts in each of the four cells:

- For females responding "no":

$$
E(\text { count } \mid \text { female }, n o)=\exp (4.88)=131
$$

- For males responding "no": $\exp (5.01)=150$
- For females responding "yes": $\exp (5.94)=378$
- For males responding "no" : $\exp (6.07)=432$

	Y	N or U	
M	$435(432)$	$147(150)$	582
F	$375(378)$	$134(131)$	509
Total	810	281	1091

which are exactly what we got by Poisson regression!

Afterlife Example

- By fitting the independence model, we force the relative rate of responding "yes" versus "no" to the question of belief in the afterline to be fixed across males and females
- Deviation from the independence model suggests the proportion of those believing in afterlife differs by gender

Afterlife Coefficients

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} l(\text { male })+\beta_{2} l(\text { yes })
$$

- $\beta_{0}=4.88$ is

Afterlife Coefficients

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} l(\text { male })+\beta_{2} l(\text { yes })
$$

- $\beta_{0}=4.88$ is the log expected count of females responding "no", the baseline group
- $\beta_{1}=0.134$ is

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} l(\text { male })+\beta_{2} l(\text { yes })
$$

- $\beta_{0}=4.88$ is the log expected count of females responding "no", the baseline group
- $\beta_{1}=0.134$ is the difference in log expected counts comparing males to females
- $\beta_{2}=1.05$ is

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} l(\text { male })+\beta_{2} l(\text { yes })
$$

- $\beta_{0}=4.88$ is the log expected count of females responding "no", the baseline group
- $\beta_{1}=0.134$ is the difference in log expected counts comparing males to females
- $\beta_{2}=1.05$ is the difference in log expected counts for "yes" responses compared to "no" responses

Afterlife Coefficients

$$
\log \left(\lambda_{i j}\right)=\beta_{0}+\beta_{1} l(\text { male })+\beta_{2} l(\text { yes }),
$$

under this independence model:

- $\exp \left(\beta_{0}\right)=131.5$ is the expected count for females responding "no", the baseline group
- $\exp \left(\beta_{1}\right)=1.14$ is the ratio comparing the counts of males to females
- $\exp \left(\beta_{1}\right)=2.85$ is the ratio of the number of "yes" responses compared to "no" responses

Customers at a lumber company

Outcome $\mathrm{Y}=$ number of customers visiting store from region Predictors:

- X_{1} : number of housing units in region
- X_{2} : average household income
- X_{3} : average housing unit age in region
- X_{4} : distance to nearest competitor
- X_{5} : average distance to store in miles

Counts are obtained for 110 regions, so our $n=110$

Lumber Company Data

	umber [1:10 customers	,] housing	income		compet_dist	store_dist
	9	606	41393	3	3.04	6.32
	6	641	23635	18	1.95	8.89
	28	505	55475	27	6.54	2.05
	11	866	64646	31	1.67	5.81
	4	599	31972	7	0.72	8.11
	4	520	41755	23	2.24	6.81
	0	354	46014	26	0.77	9.27
	14	483	34626	1	3.51	7.92
	16	1034	85207	13	4.23	4.40
	13	456	33021	32	3.07	6.03

Examples for Multinomial Logistic Regression

Histogram of Customer

- The distribution of customer counts is clearly not normally distributed
- Linear regression would not work well here
- Log-linear regression will work just fine

The Fitted Model

```
> summary(lumber.glm <- glm(customers ~ housing +
+ income +age + compet_dist +store_dist, family=poisson()) )
Coefficients:
            Estimate Std. Error z value Pr (> |z|)
(Intercept) 2.942e+00 2.072e-01 14.198 < 2e-16 ***
housing 6.058e-04 1.421e-04 4.262 2.02e-05 ***
income -1.169e-05 2.112e-06 -5.534 3.13e-08 ***
age -3.726e-03 1.782e-03 -2.091 0.0365 *
compet_dist 1.684e-01 2.577e-02 6.534 6.39e-11 ***
store_dist -1.288e-01 1.620e-02 -7.948 1.89e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 422.22 on 109 degrees of freedom Residual deviance: 114.99 on 104 degrees of freedom AIC: 571.02

Number of Fisher Scoring iterations: 4

The Fitted Model

- We interpret $\widehat{\beta_{0}}$ as baseline log expected count, or log rate, in the group with all covariates (housing, income, age, distance to nearest competitor, and average distance to store) set to zero
- $\exp \left(\widehat{\beta}_{0}\right)=\exp (2.94)=18.9$ is the expected count of customers in the baseline group
- This baseline value does not quite make sense
- It may be helpful to center our covariates, but this is not a big deal if we don't care about baseline because our primary inference is about the increase with respect to covariates

The Fitted Model

- We interpret $\widehat{\beta_{1}}=6.05 \times 10^{-4}$ as
- We interpret $\widehat{\beta_{1}}=6.05 \times 10^{-4}$ as the increase in log expected count, or the log rate ratio comparing districts whose number of housing units differ by one, adjusting for other covariates
- $\exp \left(\widehat{\beta_{1}}\right)=\exp \left(6.05 \times 10^{-4}\right)=1.000605$ is

The Fitted Model

- We interpret $\widehat{\beta_{1}}=6.05 \times 10^{-4}$ as the increase in log expected count, or the log rate ratio comparing districts whose number of housing units differ by one, adjusting for other covariates
- $\exp \left(\widehat{\beta_{1}}\right)=\exp \left(6.05 \times 10^{-4}\right)=1.000605$ is the rate ratio comparing districts whose mean housing units differ by one, adjusting for other covariates
- $\exp \left(100 \cdot \widehat{\beta}_{1}\right)=\exp \left(100 \cdot 6.05 \times 10^{-4}\right)=1.062$ is
- We interpret $\widehat{\beta_{1}}=6.05 \times 10^{-4}$ as the increase in log expected count, or the log rate ratio comparing districts whose number of housing units differ by one, adjusting for other covariates
- $\exp \left(\widehat{\beta_{1}}\right)=\exp \left(6.05 \times 10^{-4}\right)=1.000605$ is the rate ratio comparing districts whose mean housing units differ by one, adjusting for other covariates
- $\exp \left(100 \cdot \widehat{\beta_{1}}\right)=\exp \left(100 \cdot 6.05 \times 10^{-4}\right)=1.062$ is the rate ratio comparing districts whose mean housing units differ by one hundred \rightarrow Keeping other factors constant, a 100 unit increase in housing units, would yield an expected 6.2% increase in customer count.
- Question: Based on this model, if we are going to choose a location to build a new store, should we choose areas with higher or lower income? Does it matter?

Summary

- Poisson regression gives us a framework in which to build models for count data
- It is a special case of generalized linear models, so it is closely related to linear and logistic regression modelling
- All of the same modelling techniques will carry over from linear regression:
- Adjustment for confounding
- Allowing for effect modification by fitting interactions
- Splines and polynomial terms

