Logistic regression

Department of Statistics, University of South Carolina

Stat 705: Data Analysis II

Ordinary Least Square (OLS) for Linear Regression

In OLS, we have

$$
\begin{gathered}
\operatorname{argmin}_{\beta} \sum_{i}\left(y_{i}-x_{i} \boldsymbol{\beta}\right)^{2}, \\
\frac{\partial \ell}{\partial \boldsymbol{\beta}}=-2 \sum_{i}\left(y_{i}-x_{i} \boldsymbol{\beta}\right) x_{i}=0
\end{gathered}
$$

This is a linear system with p equations and p unknowns. So it can be solved using standard linear algebra theory with a closed form solution.

Likelihood

The logistic regression model can be written as

$$
\log \frac{p}{1-p}=\mathbf{X} \boldsymbol{\beta}
$$

Hence,

$$
p=\frac{e^{\mathbf{X} \beta}}{1+e^{\mathbf{X} \boldsymbol{\beta}}}
$$

The likelihood function for logistic regression is

$$
L(\boldsymbol{\beta})=\prod_{i=1}^{n} p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}
$$

The Score Function of Logistic Regression

$$
\begin{aligned}
\log L(\boldsymbol{\beta}) & =\boldsymbol{\ell}(\boldsymbol{\beta})=\sum_{i}^{n}\left[y_{i} \log p_{i}+\left(1-y_{i}\right) \log \left(1-p_{i}\right)\right] \\
& =\sum_{i}^{n}\left[y_{i} \boldsymbol{\beta}^{T} X_{i}-\log \left(1+e^{\boldsymbol{\beta}^{T} X_{i}}\right)\right] \\
\frac{\partial \boldsymbol{\ell}}{\partial \boldsymbol{\beta}} & =\sum_{i} X_{i}\left(y_{i}-p_{i}\right)=0
\end{aligned}
$$

In matrix form can be expressed as:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \boldsymbol{\beta}} & =X^{T}(y-p) \quad \text { Score Function } \\
\frac{\partial^{2} \ell}{\partial^{2} \boldsymbol{\beta}} & =-X^{T} W X
\end{aligned}
$$

where $W=\operatorname{diag}\left[p_{i}\left(1-p_{i}\right)\right]$.

How to get the estimates?

Newton-Raphson in one dimension: Say we want to find where $f(x)=0$ for differentiable $f(x)$. Let x_{0} be such that $f\left(x_{0}\right)=0$. Taylor's theorem tells us

$$
f\left(x_{0}\right) \approx f(x)+f^{\prime}(x)\left(x_{0}-x\right)
$$

Plugging in $f\left(x_{0}\right)=0$ and solving for x_{0} we get $\hat{x}_{0}=x-\frac{f(x)}{f^{\prime}(x)}$. Starting at an x near x_{0}, \hat{x}_{0} should be closer to x_{0} than x was. Let's iterate this idea t times:

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)}
$$

Eventually, if things go right, $x^{(t)}$ should be close to x_{0}.

Newton-Raphson

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)}
$$

Higher dimensions

If $\mathbf{f}(\mathbf{x}): \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$, the idea works the same, but in vector/matrix terms. Start with an initial guess $\mathbf{x}^{(0)}$ and iterate

$$
\mathbf{x}^{(t+1)}=\mathbf{x}^{(t)}-\left[D \mathbf{f}\left(\mathbf{x}^{(t)}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}^{(t)}\right)
$$

If things are "done right," then this should converge to x_{0} such that $\mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{0}$.
We are interested in solving $D L(\boldsymbol{\beta})=\mathbf{0}$ (the score, or likelihood equations!) where

$$
D L(\boldsymbol{\beta})=\left[\begin{array}{c}
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{1}} \\
\vdots \\
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{p}}
\end{array}\right] \text { and } D^{2} L(\boldsymbol{\beta})=\left[\begin{array}{ccc}
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{1}^{2}} & \cdots & \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{1} \partial \beta_{p}} \\
\vdots & \ddots & \vdots \\
\frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{p} \partial \beta_{1}} & \cdots & \frac{\partial L(\boldsymbol{\beta})}{\partial \beta_{p}^{2}}
\end{array}\right]
$$

Newton-Raphson

So for us, we start with $\boldsymbol{\beta}^{(0)}$ (maybe through a MOM or least squares estimate) and iterate

$$
\boldsymbol{\beta}^{(t+1)}=\boldsymbol{\beta}^{(t)}-\left[D^{2} L(\beta)\left(\beta^{(t)}\right)\right]^{-1} D L\left(\boldsymbol{\beta}^{(t)}\right)
$$

The process is typically stopped when $\left|\boldsymbol{\beta}^{(t+1)}-\boldsymbol{\beta}^{(t)}\right|<\epsilon$.

- Newton-Raphson uses $D^{2} L(\beta)$ as is, with the y plugged in.
- Fisher scoring instead uses $E\left\{D^{2} L(\boldsymbol{\beta})\right\}$, with expectation taken over \mathbf{Y}, which is not a function of the observed \mathbf{y}, but harder to get.
- The latter approach is harder to implement, but conveniently yields $\widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}}) \approx\left[-E\left\{D^{2} L(\boldsymbol{\beta})\right\}\right]^{-1}$ evaluated at $\hat{\boldsymbol{\beta}}$ when the process is done.

Newton-Raphson for Logistic Regression

$$
\begin{aligned}
\boldsymbol{\beta}_{\text {new }} & =\boldsymbol{\beta}_{\text {old }}-\left(\frac{\partial^{2} \ell}{\partial^{2} \boldsymbol{\beta}}\right)^{-1}\left(\frac{\partial \ell}{\partial \boldsymbol{\beta}}\right) \\
\boldsymbol{\beta}_{\text {new }} & =\boldsymbol{\beta}_{\text {old }}+\left(\mathbf{X}^{T} W X\right)^{-1} X^{T}(y-p) \\
\boldsymbol{\beta}_{\text {new }} & =\left(X^{T} W X\right)^{-1} X^{T} W\left[X \boldsymbol{\beta}_{\text {old }}+W^{-1}(y-p)\right] \\
\boldsymbol{\beta}_{\text {new }} & =\left(X^{T} W X\right)^{-1} X^{T} W z,
\end{aligned}
$$

where $z=X \boldsymbol{\beta}_{\text {old }}+W^{-1}(y-p)$.

- if \mathbf{z} is viewed as a response and \mathbf{X} is the input matrix, $\boldsymbol{\beta}_{\text {new }}$ is the solution to a weighted least square problem.

$$
\boldsymbol{\beta}_{\text {new }}=\operatorname{argmin}_{\boldsymbol{\beta}}(z-\mathbf{X} \boldsymbol{\beta})^{T} W(z-\mathbf{X} \boldsymbol{\beta})
$$

- z is referred to as the adjusted response.
- The algorithm is referred to as iteratively reweighted least square (IRLS)

Iteratively Re-weighted Least Squares (IRLS)

To set up the Newton-Raphson

- Set $\boldsymbol{\beta}$ to some initial value
- Set threshold values ϵ for convergence
- Set an iteration counter to track the number of iterations.

Iteratively Re-weighted Least Squares (IRLS)

- Set $\boldsymbol{\beta}$ to its initial value, $\boldsymbol{\beta}_{0}=\log \left(\frac{\bar{y}}{1-\bar{y}}\right)$
- Calculate p using $p=\frac{e^{\mathrm{x} \beta}}{1+e^{\mathrm{X} \beta}}$
- Calculate W using the updated p .
- Calculate $z=\mathbf{X} \boldsymbol{\beta}+W^{-1}(y-p)$
- Update $\boldsymbol{\beta}=\left(X^{T} W X\right)^{-1} X^{T} W z$
- Check if $\left|\beta_{\text {new }}-\beta_{\text {old }}\right|<\epsilon_{1}$, and $f\left(\beta_{\text {old }}\right)-f\left(\beta_{\text {new }}\right)<\epsilon_{2}$

Notice that in logistic regression $E\left\{D^{2} L(\boldsymbol{\beta})\right\}=D^{2} L(\boldsymbol{\beta})$, hence Newton-Raphson (NR) and Fisher Scoring methods ($\left.E\left\{D^{2} L(\beta)\right\}\right)$ are equivalent. For other models, there is a difference between NR and Fisher Scoring. Many statistical packages such as SAS, R use Fisher Scoring as default.

Logistic Regression Inference

- The resulting estimate is consistent and it's large-sample variance is

$$
\operatorname{var}(\widehat{\beta})=\left(X^{\top} W X\right)^{-1}
$$

- The Wald test for testing individual regression coefficient: $H_{0}: \beta_{i}=0$ versus $H_{a}: \beta_{i} \neq 0$ can be written as:

$$
Z=\frac{\widehat{\beta}_{i}}{S E\left(\widehat{\beta}_{i}\right)}
$$

- The $(1-\alpha) \%$ confidence interval can be constructed as

$$
\widehat{\beta}_{i} \pm Z_{1-\alpha / 2} S E\left(\widehat{\beta}_{i}\right)
$$

- There is an extensive literature on conditions for existence and uniqueness of MLEs for logistic regression
- MLEs may not exist. One case is when the data has "separation" of covariates (e.g., all success to left and all failures to right for some value of x.)

