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Ordinary Least Square (OLS) for Linear Regression

In OLS, we have

argminβ
∑
i

(yi − xiβ)2,

∂`

∂β
= −2

∑
i

(yi − xiβ)xi = 0

This is a linear system with p equations and p unknowns. So it can
be solved using standard linear algebra theory with a closed form
solution.
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Likelihood

The logistic regression model can be written as

log
p

1− p
= Xβ

Hence,

p =
eXβ

1 + eXβ

The likelihood function for logistic regression is

L(β) =
n∏

i=1

pyii (1− pi )
1−yi
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The Score Function of Logistic Regression

log L(β) = `(β) =
n∑
i

[yi log pi + (1− yi ) log(1− pi )]

=
n∑
i

[yiβ
TXi − log (1 + eβ

TXi )]

∂`

∂β
=

∑
i

Xi (yi − pi ) = 0

In matrix form can be expressed as:

∂`

∂β
= XT (y − p) Score Function

∂2`

∂2β
= −XTWX ,

where W = diag[pi (1− pi )].
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How to get the estimates?

Newton-Raphson in one dimension: Say we want to find where
f (x) = 0 for differentiable f (x). Let x0 be such that f (x0) = 0.
Taylor’s theorem tells us

f (x0) ≈ f (x) + f ′(x)(x0 − x).

Plugging in f (x0) = 0 and solving for x0 we get x̂0 = x − f (x)
f ′(x) .

Starting at an x near x0, x̂0 should be closer to x0 than x was.
Let’s iterate this idea t times:

x (t+1) = x (t) − f (x (t))

f ′(x (t))
.

Eventually, if things go right, x (t) should be close to x0.
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Newton-Raphson

x (t+1) = x (t) − f (x (t))

f ′(x (t))
.
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Higher dimensions

If f(x) : Rp → Rp, the idea works the same, but in vector/matrix
terms. Start with an initial guess x(0) and iterate

x(t+1) = x(t) − [Df(x(t))]−1f(x(t)).

If things are “done right,” then this should converge to x0 such
that f(x0) = 0.
We are interested in solving DL(β) = 0 (the score, or likelihood
equations!) where

DL(β) =


∂L(β)
∂β1
...

∂L(β)
∂βp

 and D2L(β) =


∂L(β)
∂β2

1
· · · ∂L(β)

∂β1∂βp
...

. . .
...

∂L(β)
∂βp∂β1

· · · ∂L(β)
∂β2

p

 .
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Newton-Raphson

So for us, we start with β(0) (maybe through a MOM or least
squares estimate) and iterate

β(t+1) = β(t) − [D2L(β)(β(t))]−1DL(β(t)).

The process is typically stopped when |β(t+1) − β(t)| < ε.

Newton-Raphson uses D2L(β) as is, with the y plugged in.

Fisher scoring instead uses E{D2L(β)}, with expectation
taken over Y, which is not a function of the observed y, but
harder to get.

The latter approach is harder to implement, but conveniently
yields ĉov(β̂) ≈ [−E{D2L(β)}]−1 evaluated at β̂ when the
process is done.
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Newton-Raphson for Logistic Regression

βnew = βold − (
∂2`

∂2β
)−1(

∂`

∂β
)

βnew = βold + (XTWX )−1XT (y − p)

βnew = (XTWX )−1XTW [Xβold + W−1(y − p)]

βnew = (XTWX )−1XTWz ,

where z = Xβold + W−1(y − p).

if z is viewed as a response and X is the input matrix, βnew is
the solution to a weighted least square problem.

βnew = argminβ(z − Xβ)TW (z − Xβ)

z is referred to as the adjusted response.

The algorithm is referred to as iteratively reweighted least
square (IRLS)
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Iteratively Re-weighted Least Squares (IRLS)

To set up the Newton-Raphson

Set β to some initial value

Set threshold values ε for convergence

Set an iteration counter to track the number of iterations.
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Iteratively Re-weighted Least Squares (IRLS)

Set β to its initial value, β0 = log ( y
1−y )

Calculate p using p = eXβ

1+eXβ

Calculate W using the updated p.

Calculate z = Xβ + W−1(y − p)

Update β = (XTWX )−1XTWz

Check if |βnew − βold | < ε1, and f (βold)− f (βnew ) < ε2

Notice that in logistic regression E{D2L(β)} = D2L(β), hence
Newton-Raphson (NR) and Fisher Scoring methods (E{D2L(β)})
are equivalent. For other models, there is a difference between NR
and Fisher Scoring. Many statistical packages such as SAS, R use
Fisher Scoring as default.
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Logistic Regression Inference

The resulting estimate is consistent and it’s large-sample
variance is

var(β̂) = (XTWX )−1

The Wald test for testing individual regression coefficient:
H0 : βi = 0 versus Ha : βi 6= 0 can be written as:

Z =
β̂i

SE (β̂i )

The (1− α)% confidence interval can be constructed as

β̂i ± Z1−α/2SE (β̂i )
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General Remarks

There is an extensive literature on conditions for existence and
uniqueness of MLEs for logistic regression

MLEs may not exist. One case is when the data has
“separation” of covariates (e.g., all success to left and all
failures to right for some value of x .)
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