Estimation of Wage Equations: An Application of MLR

David Denteh ${ }^{\dagger}$
\dagger University of South Carolina

Statistics Department(STAT 705)

April 26, 2019

Outline of Presentation

(1) Goal and Statistical Tool
(2) Data
(3) Results

4 Discussion
(5) Validation and Reference

Income Equality or Inequality????

[^0]top 20\% second 20\% third 20\% fourth 20\% bottom 20\%

What's Multiple Linear Regression (MLR)?

Suppose a researcher wants to answer the following questions;

What is the effect of gender, race,education and experience on hourly earning? Do these variables interact?

What is the un/adjusted average wage gap between males and females?

Does wage gap suggest gender wage discrimination?

What is the rate of return to schooling?

What is the estimated effect of a unit increase in experience for an individual with 20 years of experience?

What's Multiple Linear Regression (MLR)?

We can answer the above questions using Multiple Linear Regression!

MLR is a statistical technique that uses several explanatory variables to predict the outcome of a response variable. MLR is an extension of linear (OLS) regression that uses just one explanatory variable.

In this presentation, we employ this simple but yet powerful statistical tool to answer the questions posed above.

2014 monthly Current Population Survey Outgoing Rotation Group (CPS-ORG)

The data set contains 137,374 non-student wage and salary workers, ages 18 to 65, in 2014, extracted from the Census Bureau's Current Population Survey Outgoing Rotation Group files (i.e., the 14 sample asked earnings and union questions each month).Define new variables;

- hrearn $=$ hourly earnings
- femalemarried $=$ female*married
- exper $=$ yrs of potential experience.MIN([age-school-6]or[age-18])
- expersquare $=$ the square of years of potential experience

Variable Description

school	Years of schooling completed $(0-20)$
age	18 to 65
female	$1=$ females, $0=$ males
black	$1=$ black, $0=$ other race
hispanic	$1=$ Hispanic; $0=$ other ethnicity
forborn	$1=$ foreign born (includes citizens and non-citizens); $0=$ native born
married	$1=$ married and spouse present; $0=$ ever married, spouse not present or never
union	$1=$ union member; $0=$ not a member
wkearn	Usual weekly earnings $(\$ 1$ to estimated mean above the topcode)
wkhours	Usual hours worked per week $(1-99)$
parttime	$1=$ less than 35 usual hours worked per week; $0=35+$ usual hours

Models 1 and 2

Consider the Models:
$\log ($ hrearn $)=\mathrm{B} 0+$ B1school + B2exper + B3exper2 + B4female +B5married+e

AND
$\log ($ hrearn $)=$ B0 + B1school + B2exper + B3exper2 + B4female +B5married+B6femalemarried+e

school	age	female	black	hispanic	forborn
Min. : 0.0	Min. :18	Min. :0.00	Min. :0.00	Min. :0.00	Min. :0.00
1st Qu.:12.0	1st Qu.:31	1st Qu.:0.00	1st Qu.:0.00	1st Qu.:0.00	1st Qu.:0.00
Median :13.3	Median :42	Median :0.00	Median :0.00	Median :0.00	Median :0.00
Mean : 14.0	Mean : 42	Mean :0.49	Mean :0.09	Mean :0.13	Mean :0.14
3rd Qu.:16.0	3rd Qu.:52	3rd Qu.:1.00	3rd Qu.:0.00	3rd Qu.:0.00	3rd Qu.:0.00
Max. :20.0	Max. :65	Max. $: 1.00$	Max. :1.00	Max. :1.00	Max. :1.0

married
Min $\quad 0.00$ Min
1st Qu.: 0.00
Median :1.00
Mean : 0.56
3rd Qu.: 1.00
Max. $: 1.00$
union

1st Qu.: 0.00
Median :0.00
Mean :0.12
3rd Qu.: 0.00
Max. :1.00
wkearn
Min. : 3
1st Qu.: 464
Median : 750
Mean : 1008
3rd Qu.: 1191
Max. :5940
wkhours parttime hrearn exper expersquare femalemarried
Min. : 1 Min. : 0.00 Min. : 3 Min. : 0 Min. : 0 Min. : 0.00

1st Qu.:40
Median :40
Mean :40
3rd Qu.:40
Max. 1.00
Max. :99 Max. $: 1.00$

1st Qu.: 12
Median : 19
Mean : 24
3rd Qu.: 29
Max. :297

1st Qu.:11 1st Qu.: 121
Median :22 Median : 471
Mean : 22 Mean : 624
3rd Qu.: 32 3rd Qu.:1024 Max. :2209 Max. :1.00

Call:
$\operatorname{lm}($ formula $=\underset{\text { married })}{\log (h r e a r n)} \sim$ school + exper + expersquare + female +
Residuals:
Min 1Q Median 30 Max
$-2.795-0.336-0.027 \quad 0.301 \quad 3.445$
Coefficients:

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.' 0.1 ' 1
Residual standard error: 0.53 on 137368 degrees of freedom Multiple R-squared: 0.308, Adjusted R-squared: 0.308 F-statistic: $1.22 \mathrm{e}+04$ on 5 and 137368 DF, p-value: <0.0000000000000002

Call:
lm(formula $=$ log(hrearn) \sim school + exper + expersquare + female + married + femalemarried)

Residuals:
Min 1Q Median 3Q Max
$-2.814-0.335-0.029 \quad 0.299 \quad 3.471$
Coefficients:

	Estimate	Std. Error	value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	1.03405525	0.00891359	116.0	<0.0000000000000002	
school	0.11373890	0.00055230	205.9	<0.0000000000000002	
exper	0.03114227	0.00045810	68.	<0.0000000000000002	
expersqu	-0.00050450	0.00000997	-50.6	<0.0000000000000002	
	-0.16618417	0.00427148	-38.9	<0.0000000000000002	
	0.15887739	0.00419997	37.	<0.0000000000000002	
lemarr	-0.10774463	0.00571207	-18	00	

Signif. codes: 0 '***' 0.001 '**’ 0.01 '*’ 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.52 on 137367 degrees of freedom Multiple R-squared: 0.31, Adjusted R-squared: 0.31 F-statistic: 1.03e+04 on 6 and 137367 DF, p-value: <0.0000000000000002

Unadjusted Wage differential??

One may say to find gender wage differential ,

Simply calculate the mean wage differential between men and women:

The unadjusted wage gap is $27.195-21.545=5.6$

Some findings

What is the rate of return to sch.?The rate of return to schooling is 11.398 pct

What is the approx. pct difference between women and men? The approx. pct difference between women and men is 22.632 pct, on average.

What is the exact pct difference between women and men? The exact pct difference between women and men is $[\exp (-0.22631766)-1]^{*} 100=20.254$ pct, on average.

Does the coef. est. on female suggest gender wage discrimination? If the model is correctly specified model, the coef. on female is suggestive of gender wage discrimination. However??

Some findings

What is the est. effect of a unit increase in exper. for an individual with $20 y$ rs of exper.? The est. increase is [0.0313869 $\left.\left(0.0005066^{*} 20^{*} 2\right)\right]{ }^{*} 100=1.11229$ pct.

Does exper. have an increasing or decreasing effect on hourly earnings? Exper. has a decreasing effect on hourly wages because of the neg. sign on the coef. on exper. squared.

Compute the turnaround point for the effect of exper. on hourly earnings? The turnaround point is given by 0.03114227 / $\left(2^{*} 0.00050450\right)=30.97 \mathrm{yrs}$.

Are hourly earnings minimized or maximized at this point? Hourly wages are maximized at this point.

Some findings

What is the omitted category in the 2 Model? Single males
What is the approx. pct wage difference $\mathrm{b} /$ tn married females and the single male? The approx. pct difference is $-0.1661842+0.1588774-0.1077446=-0.1150514$ (11.505pct lower).

What is the interpretation of the coef. est. on femalemarried? The coefficient estimate on females suggests that marriage premium differs by gender by approx. 10.774 pct. That is, the percentage hourly wage differential between the married and single is lower for women relative to men by approximately 10.774 pct.

Construct a 99pct. CI for the coef. est. on femalemarried.
$-0.1077446+/-\left(2.576^{*} 0.0057121\right)=(-0.12245897,-0.09303023)$

QQ Plot

Normal Q-Q Plot

Correlation Matrix

reference

http://ceprdata.org/cps-uniform-data-extracts/cps-outgoing-rotation-group/.

R Code available upon request.(Email:davident85@gmail.com)

Thank You!

[^0]: Source: Michael I. Norton, Harvard Business School; Dan Ariely, Duke University

