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Choosing Between Logistic Regression 


and Discriminant Analysis 
S. JAMES PRESS and SANDRA WILSON* 

Classifying an observation into one of several populations is dis- 
criminant analysis, or classification. Relating qualitative variables 
to other variables through a logistic cdf functional form is logistic 
regression. Estimators generated for one of these proPlems are often 
used in the other. If the populations are normal with identical 
covariance matrices, discriminant analysis estimators are preferred 
to logistic regression estimators for the discriminant analysis prob- 
lem. In most discriminant analysis applications, however, a t  least 
one variable is qualitative (ruling out multivariate normality). Under 
nonnormality, we prefer the logistic regression model with maximum 
likelihood estimators for solving both problems. In  this article we 
summarize the related arguments, and report on our own supportive 
empirical studies. 

KEY WORDS : Logistic regression ;Discriminant analysis ;Qualita-
tive variables ;Classification. 

1. INTRODUCTION 

We will consider two problems. The first is the one of 
relating a qualitative dependent variable to one or more 
independent variables, which may or may not be qualita- 
tive. This problem has its multivariate analogs as well. 
When the dependent and independent variables are re- 
lated by a logistic distribution functional form, the model 
is often referred to as a logistic regression. 

The second problem under discussion is the one of 
classification, or discrimination, in which an object of 
given characteristics is to be classified into one of several 
alternative populations. The discrimination problem is 
distinct from the logistic regression problem and, as 
might be expected, solutions generally proposed for the 
one are different from those forthe other, although they 
are related. In  some situations (such as when a t  least 
one variable is qualitative), the differences in solution 
become substantial (Halperin, Blackwelder, and Verter 
1971, p. 128). 

The logistic regression model is usually formulated 
mathematically byrelating the probability of some event, 
E, occurring, conditional on a vector, x, of explanatory 
variables, to the vector x, through the functional form 
of a logistic cdf. Thus, 

p(x) = P r ( E l x ]  = 1/[1 + exp { - a  - @'x)] , 
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where (a,0) are unknown parameters that are estimated 
from the data. This model may be used for classifying an 
object into one of two populations by letting E denote 
the event that the object belongs to the first population, 
and letting x denote a profile vector of attributes of the 
object to be classified. (See, e.g., Nerlove and Press 1973 
for more detail.) 

The normal discrimination or classification problem is 
usually formulated by assuming that the two populations 
are multivariate normal with equal covariance matrices, 
8, and that the costs of misclassification are equal. If 81 
and h2 denote the mean vectors of the two populations, 
a likelihood ratio test readily yields the classification pro- 
cedure to classify the object into the first population if 

where (ql, q2) denote the prior classification probabilities. 
The parameters (01, 82, 8 )  are estimated from the data, 
while (ql, q2) are assessed from the context. (See, e.g., 
Press 1972, p. 372 for more detail.) 

The article begins with a synthesis of earlier published 
results on the problem of estimation involving qualitative 
variables in logistic regression. We contrast the merits of 
logistic regression maximum likelihood estimators 
(MLEs) with those of discriminant function estimators. 
We also illustrate how some trouble spots are often 
masked. Finally, we present the results of several empiri- 
cal comparisons of the MLE logistic regression and dis- 
criminant analysis estimators in the contexts of (1) 
studies involving breast cancJr, and (2) population 
changes across states of the U.S. 

2. DISCUSSION 

Discriminant function estimators have often been used 
in logistic regression, in both theory and applications (see, 
for eriamvle, Truett, Cornfield, and Kannel 1967). When 

A , 


such estimators were compared empirically with maxi- 
mum likelihood estimators for logistic regression prob- 
lems, however, they were found to be generally inferior, 
&lthough (see 
Halperin, Blackwelder, and Verter 1971, and D'Agostino 
,t 1978). we will show why we prefer alternatives to 
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discriminant function estimators for the logistic regres- 
sion problem, as well as for the nonnormal discriminant 
analysis problem. 

I t  has been common practice to use discriminant func- 
tion estimators as starting values in iterative maximum 
likelihood estimation and in exploratory data analysis, 
for the purpose of fitting logistic regression models. Other 
starting and exploratory estimators that have been sug- 
gested include "reverse Taylor series approximations," 
and "conditional estimators" (Nerlove and Press 1973). 
"Conditional estimators" are obtained by maximizing 
the conditional likelihood (conditional on the explanatory 
variables). "Reverse Taylor series approximations" arise 
from the logistic cdf, 

Expanding about x = Z (the sample mean) in a Taylor 
series, we get 

1 bze- (a+b*)
F(x) = 

l + e - ( a + b Z )  
- -

[1+e-(a+b2) 12 

where R(x) 'denotes a remainder containing terms of 
order 0 (x - Z)2. Neglecting R (x), this may be interpreted 
as the linear function A + Bx, where 

Solving these equations for a and b (in reverse from the 
usual direction), we find 

b = B/[(A + B z ) ( ~- A - BZ)] 
and 

a = -b$ - log 
(A :BZ -

as the reverse Taylor series approximation. The results 
are easily generalized when x, b, and B are vectors. 

We prefer the reverse Taylor series estimators to the 
discriminant function estimators since the former are 
appropriate regardless of the underlying distribution of 
explanatory variables, while the latter are really ap-
propriate and justifiable only under (a) multivariate 
normality of the explanatory variables (a difficult as- 
sumption to satisfy in practice), and (b) complete 
equality of all of the underlying covariance matrices. 
(Transformations to induce multivariate normality will 
not typically induce equality of covariance matrices.) In 
any case we are speaking only of initial values to get the 
iterative maximum likelihood estimation process started. 

There are really two general questions (relating to the 
logistic regression problem) that need to be addressed. 
The first is, why use a logistic formulation rather than 
some other functional form? The second is, how should 
the parameters of the model be estimated? We now 
examine both questions. 

2.1 Functional Form 

The rationale for a logistic formulation of the relation- 
ship between qualitative and other variables, rather than 
a normal (probit analysis), angular (such as arcsine), or 
other relationship, has been discussed extensively in the 
literature and is summarized in the excellent book by 
Cox (1970). We do not repeat it here. To provide addi- 
tional support for the logistic formulation, however, we 
note that Anderson (1972) pointed out that it results 
from a wide variety of underlying assumptions about the 
explanatory variables. In particular, the logistic formula- 
tion results not only from assuming that the explanatory 
variables are multivariate normally distributed with 
equal covariance matrices, but also from assuming that 
the explanatory variables are independent and dichoto- 
mous zero-or-one variables, or that some are multi-
variate normal and some dichotomous. Thus, one ad- 
vantage of using the logistic model for discriminant 
analysis (rather than a linear discriminant function) is 
that it is relatively robust; i.e., many types of underlying 
assumptions lead to the same logistic formulation. The 
linear discriminant analysis approach, by contrast, is 
strictly applicable only when the underlying variables 
are jointly normal with equal covariance matrices. 

Another advantage of logistic modeling relates to its 
use as an alternative to contingency table analysis. 
Gordon (1974) pointed out that logistic regression models 
have played a major role in biological and medical appli- 
cations where cross-classified tables with large numbers 
of cells (and usually too few observations per cell) are 
typically replaced by a logistic or log-linear relationship 
among the variables, thus obviating the need for the 
table. In spite of how attractive the logistic formulation 
appears, however, Gordon cautions that the linear com- 
bination of variables in a multivariate logistic formulation 
is not always an appropriate model, in that some types 
of interaction may not be expressible in that form. Keep- 
ing in mind the possible hazards, however, the logistic 
function can be appropriately used in many such 
applications. 

2.2 Estimation 

The second question of fundamental interest centers 
around the problem of estimation. In their comparison 
of maximum likelihood estimation and linear discriminant 
function estimation (for a logistic regression), Halperin, 
Blackwelder, and Verter (1971) used an IBM-360-50 and 
-65 and found that "the times required for compilation 
and execution of the programs were higher for the 
maximum likelihood method than for the discriminant 
function method by factors ranging approximately from 
1.3 to 2." Factors of economy in particular systems, and 
a t  particular times, however, will depend upon the rela- 
tive efficiency of algorithms which may be developed. 
Economy of computation should not usually be the 
dominant consideration. Estimation efficiency is generally 
more important. Efron (1975) has shown that logistic 
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regression estimators are between one-half and two-thirds 
as efficient as discriminant function estimators when the 
data are multivariate normal with equal covariance 
matrices. Thus, as long as the data are strictly normal 
with equal covariance matrices, linear disgiminant 
function estimators are more economical to calculate and 
are more efficient than logistic regression MLEs. But, 
"Another important unanswered question -is the relative 
efficiency under some model other than [multivariate 
normality] . . ." (Efron 1975, p. 893). Simulation might 
be used to determine the relative efficiency of the two 
estimators under nonnormality, but it would not be 
surprising to find the sufficient estimator (maximum like- 
lihood estimation) dominant. 

On the other side of the question of estimation, how- 
ever, there are many arguments which strongly militate 
against the general use of discriminant function 
estimators : 

1. When the explanatory variables don't follow a 
multivariate normal distribution with equal covariance 
matrices for each state of the dependent variables, dis- 
criminant function estimators of the slope coefficients in 
the logistic regression will not be consistent. Thus, even 
in large samples there is no guarantee that good fits or 
good prediction will be obtained by this method. This 
means, in particular, that if the explanatory variables are 
binary, we cannot expect, with discriminant function 
estimators, to predict accurately the probability that the 
dependent variables will be in a given state, even with an 
infinite amount of data ! Since many situations commonly 
encountered are of this type, having a t  least one dummy 
explanatory variable, the practical solution is to use a 
consistent method of estimation, such as MLE. The 
results on inconsistency are carefully and extensively 
proven, for various cases, in Halperin, Blackwelder, and 
Verter (1971). This argument really negates the use of 
discriminant function estimators in large samples [under 
nonnormality). 

2. Discriminant function estimation can give mis-
leading results regarding significance of the logistic 
regression coefficients when the normality condition is 
violated. That is, under nonnormality of the explanatory 
variables, a slope coefficient which is really zero will tend 
to be estimated as zero by MLE in large samples, but 
not necessarily by the discriminant function method; so 
when underlying normality is violated, meaningless vari- 
ables will tend to be erroneously included in logistic 
regressions estimated by discriminant functions. 

3. Numerical comparisons of MLE and discriminant 
function estimation for the logistic regression function 
model were made in Halperia, Blackwelder, and Verter 
(1971). They found that, under nonnormal conditions, 
"the maximum likelihood method usually gives slightly 
better fits to the model, as evaluated from observed and 
expected numbers of cases per decile of risk." They also 
found that "there is a theoretical basis for the possibility 

that the discriminant function will give a very poor fit, 
even if the [logistic regression] model holds." 

4. Use of discriminant function estimators tends to 
mask the troublesome cases by not providing danger 
signals. As an illustration of the masking effect, we take 
an example suggested by G. Haggstrom of The Rand 
Corporation. Observed values of (z, y) are : 

Observation 1 2 3 4 5 6 7 8 

In  this example, y is the dependent variable, and z the 
independent variable. If a logistic relationship is assumed, 
the MLEs of the slope and intercept terms fail to exist1 
(a warning of trouble). Moreover, this is a case in which 
a perfect fit to the data may be obtained. Thus, take y to 
be zero for z 5 -1, and one for z 2 1. For -1 < z < 1, 
there is no unique solution and any curve is as good as 
any other curve in this region. Therefore, prior informa- 
tion should be used as a guide to understanding the 
relationship in this important central region. MLE 
signals that there is a problem here and that the researcher 
should exercise great care in fitting the central region. But 
discriminant function estimation provides no warning 
signal whatsoever, and quite incautiously suggests a slope 
coefficient estimate of b" = 4. This follows since 

P r (y  = l l z ]  = [l + exp ( - a  - bz)]-I 

and b = ($1 - $o)/a2, where the two hypotheses under 
consideration are H,:  z 1 H z  -- N($,, a2), i = 0, 1. 

5. The logistic regression model is well-known to have 
sufficient statistics associated with it  (see, for instance, 
Press 1972, p. 267). The MLEs are functions of the suffi- 
cient statistics, while the discriminant function estimators 
are not. We know from the Rao-Blackwell theorem (Rao 
1965), that we can always achieve smaller mean squared 
error using estimators based on sufficient statistics (when 
they exist, as they do here) than by using estimators not 
based upon sufficient statistics. 

6. Maximum likelihood estimation of the logistic 
regression model forces the expected number of cases 
to equal the observed number of cases; in the nota- 
tion of Halperin, Blackwelder, and Verter (1971), 
C y2 = C P ( x I ~ ,. . . , xkl;). This is an intuitively desirable 
property of any smoothing procedure, and it is one which 
is not enjojred by the discriminant function approach 
(which sometimes generates estimated numbers much 
greater than actual numbers of observations). 

7. There is some evidence that use of discriminant 
function estimators may tend to generate substantial 
bias in some applications. McFadden (1976, p. 521) con- 
cludes that in a Bayesian analysis, "for a typical [natural 
conjugate] prior distribution of the explanatory variables, 
multivariate normal, estimates of the selection prob-

I t  is easy to check that one of the two equations that must be solved 
for unknown coefficients a and b is C: zi[l + exp ( -a  - bzi)]-I 
= 10. But this is impossible since the left side must be strictly less 
than 10. 
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ability parameters [probabilities for the dependent 
variable] based on discriminant analysis will be sub- 
stantially biased." 

3. EMPIRICAL APPLICATIONS 

To illustrate some of the ideas presented in the previous 
section, two classification problems involving empirical 
data were studied. In each case, both a linear discriminant 
analysis and a logistic regression were carried out. In  
both cases, the logistic regression outperformed the dis- 
criminant analysis in terms of the proportion of correct 
classifications (although computation time was greater 
for the logistic regression). 

3.1 Example 1 

, The first example is based on data collected for certain 
breast cancer patients initially treated a t  the British 
Columbia Cancer Institute between 1955 and 1963. A 
study (Wilson 1977) was undertaken in 1976 to classify 
the patients by extent of nodal metastases from clinical 
and historical evidence. As with most medical data, the 
variables for the study were mixed-continuous and 
discrete. Many of the variables were binary. A linear 
discriminant analysis and a logistic regression were pro- 
posed to study the problem. 

The individuals who were observed were 173 of the 
female breast cancer patients for whom no data were 
missing and whose nodal status had been determined by 
a surgical procedure. The were randomly divided 
into two groups. The first group of 115 patients was used 
as the training set for the classification procedures. The 
remaining group of 58 patients was used to cross-validate 
the classification functions estimated from the first group. 
These .data are available on request from the authors. 

The binary grouping variable was defined to be 0 if 
the lymph nodes were not involved with metastatic 
carcinoma, and 1 if the nodes were involved. The at- 
tribute (independent) variables were number of births, a 
history of hysterectomy (0-l), a history of benign breast 
disease during lactation (0-I), presence of nipple changes 
as the first disease symptom (0-I), and duration of 
symptoms in months. Thus, there were three binary 
independent variables, one ordered .categorical indepen- 
dent variable, and one continuous independent variable. 

The discriminant analysis was performed using the 
computer program BMD Stepwise Discriminant Analy- 
sis. The logistic regression was performed with the 
program listed in Nerlove and Press (1973, pp. 101-130), 
as implemented a t  the University of British Columbia. 
All computations were done on an IBM 370-168. After 
the appropriate functions were calculated, the individuals 
in both the training sets were classified from the estimated 
functions (the functions estimated from the training sets). 
The equations used for classification are given below. 

The logistic regression classified 82 (65 + 17) of the 
115 patients in the training set correctly, for a 71.30 
percent classification rate (see Table 1). In the validation 
set, 36 (25 + 11) of the 58 patients were correctly classi- 
fied, for a 62.07 percent correct classification rate. The 
discriminant analysis correctly classified 77 of the 115 
patients in the training set, for a 66.96 percent correct 
classification rate. The prior probabilities used were .66 
of having no metastases, and .34 of having metastases, 
the approximate proportions of actual cases in our data. 
In  the validation set only 34 of the 58 patients were cor- 
rectly classified, for a 58.62 percent correct classification 
rate. In Table 1 , 0  and 1 indicate the absence and presence 
of nodal metastases, respectively. 

Of particular interest in this example is the pattern of 
errors. When we looked a t  the cases that were misclassi- 
fied in the validation set by each procedure, we found 
some overlap. Sixteen cases were misclassified the same 
by both procedures. All sixteen were positives that were 
classified as negatives. In addition, logistic regression mis- 
classified six negatives as positives that discriminant 
analysis classified properly. Discriminant analysis classi- 
fied eight positives as negatives that logistic regression 
correctly classified. Thus, there is a clear difference in the 
types of cases misclassified by the two procedures. The 
discriminant functions consistently misclassify many 
more patients into the 0 group than does the logistic 
function. 

Computing time for logistic regression was found to be 
1.38 times longer than that for discriminant analysis, but 
this may primarily reflect the pan-ticular computational 
algorithms that were used. 

The associations of the variables with metastases pro- 
vide some new areas of interest to the medical researcher. 
These associations may be studied by inspection of the 

1.  Summary of Classifications of Breast Cancer Patients by Logistic Regression 
and Discriminant Function Methods 

Discriminant classification Logistic regression classification 

Actual Classification Classification 
Case group 0 1 rate (%) 0 1 rate (?) 

Training set 0 7 1 5 65 11 
1 33 6 67 22 17 71 

Total 104 11 87 28 

Validation set 0 31 
1 24 

Total 55 
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2. Summary of Classifications of 50 States by Logistic Regression and Discriminant Function Methods 

Discriminant analysis Logistic regression 

Nodal status Nodalstatus 

Case Set Group 0 

1 Training set 

Validation set 

2 Training set 

Validation set 

3 Training set 

Validation set 

4 Training set 

Validation set 

5 Training set 

Validation set 

equations estimated. The estimated functions are for 
logistic regression : 

Y(X) = .058 - .233X1 - 1.096Xz 
+ -713x3 - .O28X4 + .995X,5 , 

and for discriminant analysis : 

where X1 is number of births, X z  is hysterectomy, X 3  is 
benign breast disease, X4 is duration of symptoms, and 
X 5  is nipple change symptom. As we might have expected 
from the earlier analyses, the two functions are quite . 
similar. We observe that absence of nodal metastases was 
associated with a larger number of births than presence 
of metastases. Absence of metastases was also associated 
with a history of hysterectomy. A longer duration of 
symptoms was slightly correlated with absence of 
metastases. The presence of nodal metastases was as-
sociated with a history of benign breast disease during 
lactation and nipple changes as the first disease symptom. 

3.2 Example 2 

Population change data were collected for the 50 
states of the U.S. Associated demographic data were 
collected for each state in an effort to explain population 
changes. The data were obtained from census records 
(Delury 1973). The percent change in population from 
the 1960 census to the 1970 census for each state was 
coded 0 or 1,according as the change was below or above 
the median change for all states. This became the binary 
"grouping" or dependent variable for the analyses. The 
median was chosen to divide the groups so that the prior 

Classification Classification 
1 rate (O/O) 0 1 rate (O/O) 

probabilities are .5 for each group. The attribute (in- 
dependent) variables were (for the year 1970) per capita 
income (in $1,000), birth rate (percent), death rate 
(percent), urbanization of population (0 or 1 as popula- 
tion is less than or greater than 70 percent urban), and 
absence or presence of coastline (0 or I) .  Thus, there are 
three continuous independent variables and two binary 
independent variables. None of the continuous variables 
were normally distributed. Births were skewed, deaths 
were peaked (not normal a t  5 percent of significance), 
and income was quite flat with a suggestion of tri-
modality. No other assumptions about the distributions 
of the variables were made. 

The same computational procedures used in the pre- 
vious example were used in this example. Because the 
data set contained only 50 cases, a different method of 
cross-validation was necessar?. The 50 states were 
randomly assigned to five groups of ten states each. 
Estimation procedures were performed on 40 states 
(four groups) and then validated on the remaining ten 
states (fifth group). This was done five times with a 
different group as the validation set each time. The 
results of the five analyses appear in Table 2. The new 
data and the sets of excluded states are presented in 
Table 3. For the training sets the mean correct classifica- 
tion rate was 68.00 percent for discriminant analysis and 
80.00 percent for logistic regression. For the validation 
sets the respective mean correct classification rates were 
68.00 and 72.00 percent. The mean execution times were 
1.50 seconds for discriminant analysis and 2.37 seconds 
for logistic regression. 

As might be expected, the states with increasing 
population had higher birth rates and lower death rates 
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than the states with decreasing (relative to median in- sion, but it  provided better discrimination for both the 
crease) population. Increasing population was also as- training set and the validation set. The coefficients 
sociated with higher per capita income, a nonurban (less estimated for the two types of analyses are presented in 
than 70 percent urban) environment, and the presence Table 4. 
of a coastline. People were choosing the good life-higher The pattern of misclassifications in this example was 
wages and nice surroundings. somewhat different from that in Example 1. Combining 

Again computation time was longer for logistic regres- all cases we found twelve cases incorrectly classified by 

3. Raw Data for Example 2 

Population 
State change Income Births Coast Urban Deaths 

a. Set 1 

Arkansas 1.8 
Colorado 1.9 
Delaware 1.9 
Georgia 2.1 
Idaho 1.9 
Iowa 
Mississippi 
New Jersey 
Vermont 
Washington 

b. Set 11 

Kentucky 
Louisiana 
Minnesota 
New Hampshire 
North Dakota 
Ohio 
Oklahoma 
Rhode Island 
South Carolina 
West Virginia 

c. Set 111 

Connecticut 1.6 
Maine 1.8 
Maryland 1.5 
Massachusetts 1.7 
Michigan 1.9 
Missouri 1.8 
Oregon 1.7 
Pennsylvania 1.6 
Texas ' 2.0 
Utah 2.6 

d .  Set IV 

Alabama 2.0 
Alaska 2.5 
Arizona 2.1 
California 1.8 
Florida 1.7 
Nevada 1.8 
New York 1.7 
South Dakota 1.7 
Wisconsin 1.7 
Wyoming 1.9 

e. Set V 

Hawaii 2.2 
Illinois 1.8 
Indiana 1.9 
Kansas 1.6 
Montana 1.8 
Nebraska 1.8 
New Mexico 2.2 
North Carolina 1.9 
Tennessee 1.9 
Virginia 1.8 
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4. Coefficients for Classification Equations of Example 2 

Case 
Classification 

Method Constant Income Births Coast Urban Deaths 

1 Discriminant analysis 
Logistic regression 

-10.500 
-6.238 

+1.610 
+1.388 

+3.060 
+2.484 

+1.118 
+0.874 

-0.360 
-0.579 

-1.830 
-4.046 

2 Discriminant analysis 
Logistic regression 

-7.000 
+1.918 

+1.110 
+0.580 

+2.240 
+0.560 

+0.972 
+0.706 

+0.710 
+0.249 

-2.240 
-5.91 0 

3 	 Discriminant analysis 

Logistic regression 


4 	 Discriminant analysis 

Logistic regression 


5 	 Discriminant analysis 

Logistic regression 


Mean of Discriminant analysis 
5 cases Logistic regression 

both procedures. Six of 12 cases were positives (increasing 
population) and six were negatives. Discriminant analy- 
sis misclassified four cases that logistic regression classi- 
fied correctly-two negatives and two positives. Logistic 
regression misclassified two cases that discriminant 
analysis had correct-one negative and one positive. 
Thus, there did not appear to be a bias to negative cases 
for discriminant analysis for this example. 

4. SUMMARY AND CONCLUSIONS 

We have presented theoretical arguments for using 
logistic regression with maximum likelihood estimation 

to using linear discriminant analysis, in both 
the classification problem and the problem of relating 
qualitative to explanatory variables. We carried out two 
empirical studies of nonnormal classification problems, 
compared the two methods, and found logistic regression 
with MLE outperforming classical linear discriminant 
analysis in both cases (supporting the results of ~ ~ l 
Blackwelder, and Verter 19711, but not b~ a large 
amount. I t  is unlikely that the two methods will give 
markedly different results, or yield subs tan ti ally^ different 
linear functions unless there is a large prop~rtion of ob- 
servations whose x-values lie in regions of the factor 
space with linear logistic response near 
or one. 

Truett, Cornfield, and Kannel (1967) emphasize that 
the assumption of multivariate normality is unlikely to 
be satisfied in applications, even approximately. We thus 
agree with the conclusion of Halperin, Blackwelder, and 
Verter (1971) that "use of the maximum likelihood 
method be preferable, whenever practical, in situa-
tions where the normality assumptions are violated, 

especially when many of the independent variables are 
qualitative." 

[Received February 1977. Revised May 1978.1 
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