# STAT588/BIOL588: Genomic Data Science Lecture 15: Differential Expression Analysis 

Dr. Yen-Yi Ho (hoyen@stat.sc.edu)

## Objectives of Lecture 15

- Simple Differential Expression
- Advanced Differential Expression


## Borrowing Strength

- An advantage of having tens of thousands of genes is that we can try to learn about typical standard deviations by looking at all genes
- Empirical Bayes gives us a formal way of doing it

Air France 447
4ロ・4司〉4 三•




保

Air France







Air France








號







#  



## Bayesian Inference



- During the search for Air France 447, from 2009-2011, knowledge about the black box location was described via Bayesian inference.
- Eventually, the black box was found in the red area.
- Searching for a fisherman lost at sea
https://www.nytimes.com/2014/01/05/magazine/a-speck-in-the-sea.html?_r=1


## Bayesian Approach

$$
\begin{aligned}
\theta & \sim G \\
Y \mid \theta & \sim f(y \mid \theta)
\end{aligned}
$$

- $G$ is the prior
- $f$ is the sampling distribution

Posterior Distribution

$$
g(\theta \mid Y)=\frac{f(y \mid \theta) g(\theta)}{f_{G}(Y)}
$$



Marginal Distribution

$$
f_{G}(Y)=\int f(y \mid u) g(u) d u
$$

## Shrinkage Estimate

$$
\tilde{s}_{g}^{2}=\frac{s_{g}^{2} d_{g}+s_{0}^{2} d_{0}}{d_{g}+d_{0}}, \quad \tilde{t}_{g}=\frac{\hat{\beta_{g}}}{\tilde{s}_{g} \sqrt{c_{g}}}
$$

Histogram of sds


## Posterior Statistics: eBayes and SAM

Posterior variance estimators

$$
\tilde{s}_{g}^{2}=\frac{s_{g}^{2} d_{g}+s_{0}^{2} d_{0}}{d_{g}+d_{0}}
$$

Moderated t-statistics

$$
\tilde{t}_{g}=\frac{\hat{\beta}_{g}}{\tilde{s}_{g} \sqrt{c_{g}}}
$$

Eliminates large t-statistics merely from very small sd

## Advanced Differential Expression

$$
Y=\beta_{0}+\beta_{1} \times \mathrm{BCR} / \mathrm{ABL}
$$

>library("limma")
>design = cbind(mean = 1, diff = cl)
>design[1:5,]
>fit = lmFit(exprs(ALLset1), design)
>fit = eBayes(fit)
>topTable(fit, coef=2)

Genes

$\left(\begin{array}{cc}1 & 0 \\ 1 & 0 \\ 1 & 0 \\ \vdots & \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \vdots & \end{array}\right)$

## Top Table

|  | ID | logFC | AveExpr | t | P.Value | adj.P.Val | B |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 156 | 1636_g_at | 1.10 | 9.20 | 9.03 | $4.88 \mathrm{e}-14$ | $1.23 \mathrm{e}-10$ | 21.29 |
| 1915 | 39730_at | 1.15 | 9.00 | 8.59 | $3.88 \mathrm{e}-13$ | $4.89 \mathrm{e}-10$ | 19.34 |
| 155 | 1635_at | 1.20 | 7.90 | 7.34 | $1.23 \mathrm{e}-10$ | $1.03 \mathrm{e}-07$ | 13.91 |
| 163 | 1674_at | 1.43 | 5.00 | 7.05 | $4.55 \mathrm{e}-10$ | $2.87 \mathrm{e}-07$ | 12.67 |
| 2066 | 40504_at | 1.18 | 4.24 | 6.66 | $2.57 \mathrm{e}-09$ | $1.30 \mathrm{e}-06$ | 11.03 |
| 2014 | 40202_at | 1.78 | 8.62 | 6.39 | $8.62 \mathrm{e}-09$ | $3.63 \mathrm{e}-06$ | 9.89 |
| 1262 | 37015_at | 1.03 | 4.33 | 6.24 | $1.66 \mathrm{e}-08$ | $6.00 \mathrm{e}-06$ | 9.27 |
| 437 | 32434_at | 1.68 | 4.47 | 5.97 | $5.38 \mathrm{e}-08$ | $1.70 \mathrm{e}-05$ | 8.16 |
| 1269 | 37027_at | 1.35 | 8.44 | 5.81 | $1.10 \mathrm{e}-07$ | $3.08 \mathrm{e}-05$ | 7.49 |
| 1366 | 37403_at | 1.12 | 5.09 | 5.48 | $4.27 \mathrm{e}-07$ | $1.08 \mathrm{e}-04$ | 6.21 |

## Annotation

```
>library("hgu95av2.db")
>ALLset1Syms = unlist(mget(featureNames(ALLset1), env
= hgu95av2SYMBOL))
>topTable(fit, coef = "diff", adjust.method = "fdr",
sort.by = "p", genelist = ALLset1Syms)
>plot(-log10(tt$p.value), -log10(fit$p.value[,
"diff"]), xlab = "-log10(p) from two-sample t-test",
ylab = "-log10(p) from moderated t-test (limma)",
pch=".")
>abline(c(0, 1), col = "red")
```


## Top Table

|  | ID | logFC | AveExpr | t | P.Value | adj.P.Val | B |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 156 | ABL1 | 1.10 | 9.20 | 9.03 | $4.88 \mathrm{e}-14$ | $1.23 \mathrm{e}-10$ | 21.29 |
| 1915 | ABL1 | 1.15 | 9.00 | 8.59 | $3.88 \mathrm{e}-13$ | $4.89 \mathrm{e}-10$ | 19.34 |
| 155 | ABL1 | 1.20 | 7.90 | 7.34 | $1.23 \mathrm{e}-10$ | $1.03 \mathrm{e}-07$ | 13.91 |
| 163 | YES1 | 1.43 | 5.00 | 7.05 | $4.55 \mathrm{e}-10$ | $2.87 \mathrm{e}-07$ | 12.67 |
| 2066 | PON2 | 1.18 | 4.24 | 6.66 | $2.57 \mathrm{e}-09$ | $1.30 \mathrm{e}-06$ | 11.03 |
| 2014 | KLF9 | 1.78 | 8.62 | 6.39 | $8.62 \mathrm{e}-09$ | $3.63 \mathrm{e}-06$ | 9.89 |
| 1262 | ALDH1A1 | 1.03 | 4.33 | 6.24 | $1.66 \mathrm{e}-08$ | $6.00 \mathrm{e}-06$ | 9.27 |
| 437 | MARCKS | 1.68 | 4.47 | 5.97 | $5.38 \mathrm{e}-08$ | $1.70 \mathrm{e}-05$ | 8.16 |
| 1269 | AHNAK | 1.35 | 8.44 | 5.81 | $1.10 \mathrm{e}-07$ | $3.08 \mathrm{e}-05$ | 7.49 |
| 1366 | ANXA1 | 1.12 | 5.09 | 5.48 | $4.27 \mathrm{e}-07$ | $1.08 \mathrm{e}-04$ | 6.21 |

## $P$ values

Histogram of fit\$p.value


A p value of 0.05 implies that $5 \%$ of all the tests will result in false positives.
A FDR adjusted $p$ value (or $q$ value) of 0.05 implies that $5 \%$ of significant tests can be false positives.

## Volcano Plot



## Summary

- When sample size is small, sd estimates are unstable and t-test is less powerful.
- eBayes and SAM provide more powerful moderate t-statistics which borrow strength from all genes.

