STAT588/BIOL588: Genomic Data Science Lecture 5: Review Statistics (part I)

Dr. Yen-Yi Ho (hoyen@stat.sc.edu)

Objectives of Lecture 5

- Introduction to data analysis
- Uncertainty
- Random Variable
- Probability
- Conditional Probability
- Likelihood
- Maximum Likelihood Estimation
- Law of Large Numbers
- Association between Variables: one continuous variable
- Two sample Test
- Permutation Test
- ANOVA

Data Analysis

Data analysis should begin by examining the types of variables collected in the dataset. We distinguish between numerical and categorical variables.

- Numerical: continous or discrete variable
- Categorical: Nominal or ordinal variable

A continuous variable has infinite and uncountable number of possible values while a categorical variable has a finite and countable number of possible values. In R

```
fmsURL<-"http://people.stat.sc.edu/hoyen/BIOL599/Data/FMS_data.txt"
fms<-read.delim(file=fmsURL, header=TRUE, sep="\t")
colnames(fms)
dim(fms) ## check the dimension of the data
str(fms[,1:10]) ## check the structure of the data
'data.frame': 428 obs. of 10 variables:
    $ id : Factor w/ 428 levels "FA-1801","FA-1802",..: 1 2 3 4 5 6 7
    $ acdc_rs1501299 : Factor w/ 3 levels "AA","CA","CC": 2 2 2 3 2 3 3 3 3 3...
    $ ace_id : Factor w/ 3 levels "DD","ID","II": 1 2 2 1 2 2 3 2 2 2 ...
    $ actn3_r577x : Factor w/ 3 levels "CC","CT","TT": 1 2 2 2 1 2 3 2 2 1...
```


Uncertainty

Data is the realization of a random process.

weight $=5 \mathrm{lbs} \pm 0.1 \mathrm{lbs}$
Uncertainty is an interval around the measurement in which repeated measurements will fall.

Random Variables

Random variable: A number assigned to each outcome of a random experiment.

Example 1:
I toss a brick at my neighbor's house $\mathrm{D}=$ distance the brick travels
$\mathrm{X}=1$ if I break a window; 0 otherwise
$Y=$ cost of repair
$\mathrm{T}=$ time until the police arrive
$\mathrm{N}=$ number of people injured
Example 2:
Sample 20 students from the school $H_{i}=$ height of student i.
$\bar{H}=$ mean of the 20 student heights
$S_{H}=$ sample deviation of heights
Q: Which of the variables are continuous, which are discrete?

Simulate Random Numbers in R

```
>set.seed(1234)
>runif(10)
[1] 0.113703411 0.622299405 0.609274733 0.623379442
    [5] 0.860915384 0.640310605 0.009495756 0.232550506
    [9] 0.666083758 0.514251141
>rnorm(100)
>rbinom(100, size=1, prob=0.5)
[1] 11 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1
    [25] 0 1 0 0 1 1 1 100 100 1 1 0 0 1 0 0 1 1 0 1 0 1
```


Probability

Experiment: a well-defined process with an uncertain outcome. Example: Draw 2 balls with replacement from an urn containing 4 red and 6 blue balls.

Sample Space (S): The set of all possible outcomes. $\{R R, R B, B R, B B\}$

X: Number of red balls observed in our experiment. \{RB\}
$\operatorname{Pr}(X=1)$ (Probability can be assigned to outcome event)

Probability Rules

$$
0 \leq \operatorname{Pr}(A) \leq 1
$$

$$
\operatorname{Pr}(S)=1
$$

for any event A
where S is the sample space
$\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B) \quad$ if A and B are mutually exclusive
$\operatorname{Pr}($ not $A)=1-\operatorname{Pr}(A) \quad$ complement rule

Independence

Two events are independent if

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B})
$$

Example 1: flip a coin and draw a card from a random deck

$$
\operatorname{Pr}\{\text { head and } \boldsymbol{\uparrow} A\}=\frac{1}{2} \times \frac{1}{52}
$$

Example 2: Genotype at a autosomal SNP locus with two alleles, A and a, from a pair of randomly selected chromosomes. Events: \{genotype AA\}, \{genotype Aa\}, \{genotype aa\}

Let p_{A} be the allele frequency of A allele, and assume independence

Genotype	AA	Aa	aa
Probability	p_{A}^{2}	$2 p_{A}\left(1-p_{A}\right)$	$\left(1-p_{A}\right)^{2}$

Hardy-Weinberg equilibrium: independence of alleles across two homologous chromosomes.

Conditional Probability

$$
\begin{aligned}
\operatorname{Pr}(A \mid B) & =\operatorname{Probability~of~} A \text { given } B \\
& =\frac{\operatorname{Pr}(A \text { and } B)}{\operatorname{Pr}(B) .}
\end{aligned}
$$

If A and B are independent, $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$.

Probability

What is the probability of obtaining a head and a tail tossing a fair coin twice? Let X be the random variable denoting the number of heads.

$$
\operatorname{Pr}(X=1)=\binom{2}{1} \times\left(\frac{1}{2}\right) \times\left(\frac{1}{2}\right)=0.5
$$

In R
> dbinom(1, 2, 0.5)
[1] 0.5
> rbinom(1, 2, 0.5) \#\#\# toss a fair coin twice [1] 0

Likelihood

The likelihood is the probability of observing the data. What is the likelihood of tossing a coin 40 times and get 25 heads? Likelihood $($ data $\mid p)=\binom{40}{25} \times p^{25} \times(1-p)^{15}=\operatorname{dbinom}(25,40, p)$

Toss a coin 40 times and get 25 heads

The Law of Large Numbers

Toss a fair coin a lot of times ...

Association between Variables

		Independent Categorical	Variable Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

- Difference in gene expression in patients with/without a mutation (yes/no):

Association between Variables

		Independent Categorical	Variable Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

- Difference in gene expression in patients with/without a mutation (yes/no): A
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa):

Association between Variables

		Independent Categorical	Variable Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

- Difference in gene expression in patients with/without a mutation (yes/no): A
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa): B
- Predict father's height from daughter's height:

Association between Variables

		Independent Categorical	Variable Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

- Difference in gene expression in patients with/without a mutation (yes/no): A
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa): B
- Predict father's height from daughter's height: C
- Determine the relationship between smoking status (yes/no) and lung cancer (yes/no):

Association between Variables

		Independent Categorical	Variable Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

- Difference in gene expression in patients with/without a mutation (yes/no): A
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa): B
- Predict father's height from daughter's height: C
- Determine the relationship between smoking status (yes/no) and lung cancer (yes/no): B

The ALL Dataset

- Microarrays data with 12,625 gene expression probes (features) from 128 individuals with acute lymphoblastic leukemia (ALL).
- individual specific covariates: gender, age, tumor type and stage, translocation mutationÉ

	01005	01010	03002	04006	04007
1000_at	7.60	7.48	7.57	7.38	7.91
1001_at	5.05	4.93	4.80	4.92	4.84
1002_f_at	3.90	4.21	3.89	4.21	3.42
1003_s_at	5.90	6.17	5.86	6.12	5.69
1004_at	5.93	5.91	5.89	6.17	5.62

Access the ALL dataset

```
>source("http://www.bioconductor.org/biocLite.R")
>biocLite("ALL")
>library("ALL")
>data("ALL")
>table(ALL$BT)
B B1 B2 B3 B4 T T1 T2 T3 T4
    5}191936 23 12 5 5 11 15 10 2,
>table(ALL$mol.biol)
ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
    10 37
                                    5
                                    NEG NUP-98 
```


Philadelphia Chromosome

Gene Expression Example (ABL1 gene)

Distribution of 1636_g_at probe by cancer molecular subtypes

Gene Expression Example (ALL Data)

Distribution of 1636 _g_at probe by cancer molecular subtypes

- Is this difference worth reporting?
- Some journal requires statistical significance. What does it mean?

Men are taller than women

This statement refers to population averages: the population average of men's height is larger than the population average of women

One Data Point

Law of Large Numbers

Sample of 15 women and 15 men

Hypothesis Testing

Test of hypothesis: answer a yes, or no question regarding a population parameter.

Example: Does the ABL1 (measured by 1636_g_at) gene expression from the two molecular groups (BCR/ABL vs. NEG) have the same population mean?

Distribution of 1636 g_at probe by cancer molecular subtypes

Two Sample T-Test

$$
H_{0}: \mu_{1} \quad=\quad \mu_{2}
$$

$$
H_{a}: \mu_{1} \quad \neq \quad \mu_{2}
$$

Test Statistic: $\mathrm{T}=\frac{\overline{X_{1}}-\overline{X_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$ (signal to noise ratio)

Reject H_{0}, if $|T|>t_{\alpha / 2, k}$

Test Statistic: $\mathrm{T}=\frac{\overline{X_{1}}-\overline{X_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$ (signal to noise ratio)

p value: the probability of observing a test statistic more extreme as the one that was actually observed under the null distribution.

Two Sample T-Test

- When reject H_{0} :
- The difference is statistically significant.
- The observed difference can not be explained by chance variation.
- When fail to reject H_{0} :
- The difference is not statistically significant.
- There is insufficient evidence to conclude that $\mu_{1} \neq \mu_{2}$
- The observed difference could reasonably be the result of chance variation.

Two Sample T-Test

$>\mathrm{g} 1<-$ data[whp, ALL_bcrneg\$mol.biol=='‘BCR/ABL"]
$>g 2<-$ data[whp,ALL_bcrneg\$mol.biol==''NEG"]
$>t . t e s t(\mathrm{~g} 1, \mathrm{~g} 2)$
Welch Two Sample t-test
data: g1 and g2
$\mathrm{t}=9.1304, \mathrm{df}=68.717, \mathrm{p}$-value $=1.792 \mathrm{e}-13$
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.85964671 .3403765
sample estimates:
mean of x mean of y
9.7812368 .681225

Wilcoxon Rank-Sum Test (Nonparametric Test)

Small sample setting when normality assumption is not reasonable
$>$ wilcox.test(g1,g2)
Wilcoxon rank sum test data: g1 and g2
$\mathrm{W}=1432, \mathrm{p}$-value $=8.306 \mathrm{e}-13$
alternative hypothesis: true location shift is not equal to 0

Permutation

Null distribution: Distribution of the test statistic when the null hypothesis is true.
Idea: generate the null distribution by random shuffling group label.

Data	T	T	T	T	T	C	C	C	C	C
	5.4	6.2	3.8	4.4	3.3	8.1	8	7.2	7.8	7.9

Permutate T C C C T T T C T C $\begin{array}{llllllllll}5.4 & 6.2 & 3.8 & 4.4 & 3.3 & 8.1 & 8 & 7.2 & 7.8 & 7.9\end{array}$
Randomly assign the group labels $\rightarrow T^{*}$

Permutation Test

Permutation Test is A Good Friend

Good: Do not assume distribution for the test statistic Bad: Computational intense (longer computation time)

What to Use

The t-test relies on a normality assumption. When sample size is small, consider:

- Wilcoxon Rank Sum Test
- Permutation Test
\rightarrow The crucial assumption is independence between observations.

Multiple Groups Comparison

Distribution of 1636 _g_at probe by cancer molecular subtypes

Multiple groups comparison: Hypothesis

Are there differences in the means of gene expression among the three molecular groups (ALL1/AF4, BCR/ABL, NEG) ?

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& H_{a}: H_{0} \text { is false. }
\end{aligned}
$$

Two Sample T Test

Two Sample Test Statistic: $\mathrm{T}=\frac{\overline{X_{1}}-\overline{X_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$ (signal to noise ratio)
Three Samples $\mathrm{F}=\frac{\left(\overline{X_{1}}-\overline{X_{2}}\right)+\left(\overline{X_{2}}-\overline{X_{3}}\right)+\left(\overline{X_{1}}-\overline{X_{3}}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}+\frac{s_{3}^{2}}{n_{3}}}}$ (Is this a good idea?)

Distribution of 1636_g_at probe by cancer molecular subtypes

ANOVA (ANalysis Of VAriance)

Grouping variable is important if there is large between group variation, and small within group variation.

Multiple Groups Comparison

Multiple Groups Comparison

ANOVA: Gene Expression Example

>summary (aov(all[whs,] ~ ALL3\$mol.biol) $)$

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
ALL3\$mol.biol	2	25.77	12.88	44.04	0.0000
Residuals	86	25.16	0.29		

Distribution of 1636 g_at probe by cancer molecular subtypes

