STAT588/BIOL588: Genomic Data Science Lecture 6: Review Statistics (Part II)

Dr. Yen-Yi Ho (hoyen@stat.sc.edu)

Objectives of Lecture 6

- Association between Variables
- Goodness of Fit Test
- Pearson χ^{2} Test of Association
- Relative Risk
- Odds Ratio
- Statistical Models
- Linear Regression
- Multiple Linear Regression
- Interaction
- Likelihood Ratio Test for Model Seletion
- Logistic Regression

Association between Variables

		Independent Categorical	Variable Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

- Difference in gene expression in patients with/without a mutation (yes/no): A
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa): B
- Predict father's height from daughter's height: C
- Determine the relationship between smoking status (yes/no) and lung cancer (yes/no): B

Goodness of Fit Test

	Count
AA	30
Aa	55
aa	15
Total	100

- What is the allele frequency of A allele?

Goodness of Fit Test

	Count
AA	30
Aa	55
aa	15
Total	100

- What is the allele frequency of A allele?

$$
p(A)=\frac{30 \times 2+55}{2 \times(30+55+15)}=0.575
$$

- What is the expected counts if this locus is in Hardy-Weinberg equilibrium?

Goodness of Fit Test

	Count	Expected	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
AA	30	$100 \times 0.575^{2}=33$	0.28
Aa	55	$100 \times 2 \times 0.575 \times 0.425=49$	0.77
aa	15	18	0.52
Total	100	100	1.57

- What is the expected counts if this locus is in Hardy-Weinberg equilibrium?

$$
\chi^{2}=\Sigma_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=1.57<\chi_{1,0.95}^{2}=3.84
$$

Since $\chi^{2}=1.57<3.841$, we conclude that the genotype frequencies in this population are not significantly different than what would be expected if the population is in Hardy-Weinberg equilibrium.

Assumptions for Hardy-Weinberg Equilibrium

- Random Mating
- No Nature Selection: neither allele confers a selective advantage or disadvantage
- No Migration: no one enters or leaves the population
- No Mutation: an A allele will never mutate into an a allele, and vice versa
- Infinite Population size: no genetic drift

Pearson χ^{2} Test of Association

FAMuSS Data Example
Genotype

$\mathrm{BMI}>25$	AA	GA	GG	Total
0	30	246	380	656
1	30	130	184	344
Total	60	376	564	1000

Test of Association

Hypothesis: no association between genotype and disease

$$
\begin{gathered}
\chi^{2}=\Sigma_{\text {allcells }} \frac{(\text { oberseved }- \text { expected })^{2}}{\text { expected }} \\
p \text { value }=\operatorname{Pr}\left(\chi_{d f}^{2}>\chi_{o b s}^{2}\right)
\end{gathered}
$$

\rightarrow If p value is small, reject H_{0} Hypothesis.

Expected Cell Count

Observed
Genotype

	AA	GA	GG	Total
0	30	246	380	656
1	30	130	184	344
Total	60	376	564	1000

Expected

			Genotype	
	AA	GA	GG	Total
0	$1000 \times 0.656 \times 0.06$			656
1				344
Total	60	376	564	1000

Degree of freedom

Pearson's χ^{2} test for association

$$
\begin{aligned}
& \text { Observed } \\
& \text { Genotype } \\
& \chi_{\text {obs }}^{2}=\frac{(30-39.36)^{2}}{39.36}+\frac{(246-246.66)^{2}}{246.66}+\frac{(380-369.998)^{2}}{369.98} \\
& +\frac{(30-20.64)^{2}}{20.64}+\frac{(130-129.34)^{2}}{129.34}+\frac{(184-194.02)^{2}}{194.02} \approx 7.26 \\
& >\text { tab }<-\operatorname{matrix}(c(30,30,246,130,380,184) \text {, nrow }=2) \\
& >\text { chisq.test(tab) } \\
& \text { Pearson's Chi-squared test } \\
& \text { data: tab, X-squared }=7.2638, \mathrm{df}=2, \mathrm{p} \text {-value }=0.02647
\end{aligned}
$$

Relative Risk

	Smoker	Nonsmoker
Cancer	89	37
Normal	6063	5711

- $p_{1}=\operatorname{Pr}($ Cancer \mid Smoker $)$
- $\hat{p_{1}}-\hat{p_{2}}=0.0145-0.00644=0.008$.
- Relative Risk $=\frac{\hat{P_{1}}}{\hat{p_{2}}}=\frac{0.0145}{0.00644}=2.25$. The probability of cancer is 2.25 times greater in smokers.
- To estimate p_{1}, p_{2}, we need to follow up many smokers and nonsmokers in a prospective study.

Relative Risk

	Smoker	Nonsmoker
Cancer	89	37
Normal	6063	5711

- $p_{1}=\operatorname{Pr}($ Cancer \mid Smoker $)$
- $\hat{p_{1}}-\hat{p_{2}}=0.0145-0.00644=0.008$.
- Relative Risk $=\frac{\hat{P_{1}}}{\hat{p_{2}}}=\frac{0.0145}{0.00644}=2.25$. The probability of cancer is 2.25 times greater in smokers.
- To estimate p_{1}, p_{2}, we need to follow up many smokers and nonsmokers in a prospective study.
- In retrospective study, we can use odds ratio.

Odds

The odds in favor of an event are the ratio of the probability that the event will happen to the probability that it will not happen.

$$
O d d s=\frac{p}{1-p}
$$

What does " 3 to 1 odds the Gamecocks will win" mean?

Apollo 13

NASA Director: He specifically wanted a quote from a flight director.
Gene Kranz: Who wanted a quote?
Deke Slayton: The president.
Gene Kranz: The president?
Glynn Lunney: Nixon. He wants odds.
Gene Kranz: We are not losing the crew.
NASA Director: Gene, I gotta give him odds. Five to one against?
Three to one?
Glynn Lunney: I don't think they're that good.
Gene Kranz: [firmly] We are not losing those men!

Odds ratio: Measuring Association

Genotype

$\mathrm{BMI}>25$	AA	$(\mathrm{GA}$ or GG$)$
1	a	c
0	b	d
	$\mathrm{a}+\mathrm{b}$	$\mathrm{c}+\mathrm{d}$

Odds of disease among $A A=\frac{\operatorname{Pr}\left(D^{+} \mid E^{+}\right)}{\left[1-\operatorname{Pr}\left(D^{+} \mid E^{+}\right)\right]}$

$$
=\frac{\frac{a}{(a+b)}}{\frac{b}{(a+b)}}=\frac{a}{b},
$$

Odds of disease among GA and GG $=\frac{\operatorname{Pr}\left(D^{+} \mid E^{+}\right)}{\left[1-\operatorname{Pr}\left(D^{+} \mid E^{+}\right)\right]}$
$=\frac{\frac{c}{(c+d)}}{\frac{d}{(c+d)}}=\frac{c}{d}$.

Odds ratio (OR)

Genotype		
BMI >25	AA	(GA and GG)
1	30	314
0	30	626
	60	940
OR AA	$=\frac{a b}{c}=\frac{a d}{b c}$	
GA and GG		
	$=\frac{30 \times 626}{30 \times 314} \approx 1.99$	

		Independent	Variable
		Categorical	Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

Statistical Models

Statistical models can be powerful tools for understanding complex relationship among variables. First, we will start by looking at 2 continuous variables. Typically, we explore data by a scatter plot.

Gene Expression Example

>library(‘'Biobase")
>library("'annotate")
>library('‘hgu95av2.db")
$>$ library (ALL)
>data<-exprs(ALL_bcrneg)
$>$ probename<-rownames(data)
$>$ genename<-mget (probename, hgu95av2SYMBOL)
$>$ genename[1:5]
$>$ plot (data[4,], data[5,], pch=16)

Correlation

Probe ("1003_s_at" and "1004_at") are mapped to the same gene (CXCR5), are their expression measures correlated?

Pearson Correlation

Consider n pairs of data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)$

$$
r=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{(n-1) s_{x} s_{y}}
$$

s_{x}, s_{y} : SD of x and y.
This is sometimes also called the correlation coefficient;
$-1 \leq r \leq 1$.

- $\mathrm{r}=0$: no correlation
- $r>0$: positive correlation; Y increases with increasing X .
- $r<0$: negative correlation.
- $|r|>0.7$, strong correlation
- $0.3<|r|<0.7$, moderate correlation
- $|r|<0.3$, weak correlation

Gene Expression Example

Correlation between 1003_s_at and 1004_at

$>\operatorname{cor}(\operatorname{data}[4],, \operatorname{data}[5]$,
[1] 0.7499144

Example 2: Fathers' and daughters' heights

Fathers' heights

Daughters' heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Fathers' and daughters' heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Linear Regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

The regression model

Let X be the predictor and Y be the response. Assume we have n observations $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ from X and Y . THe simple linear regression model is

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right) \\
& \text { or } \\
\hat{Y} & =\beta_{0}+\beta_{1} X .
\end{aligned}
$$

\hat{Y} is the fitted value of Y.
\rightarrow How do we decide the values β_{0}, β_{1}, and σ^{2} ?

Residuals

$$
\epsilon_{i}=y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)
$$

Regression Coefficients

$$
\hat{Y}=\beta_{0}+\beta_{1} X
$$

- β_{1} : the amount of change in y that occurs with on unit change in x.
- β_{0} : the fitted value of y when $x=0$.

Fitting Linear Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X+\epsilon_{i}
$$

Data:

Obs	y	x
1	0.72	0.43
2	0.65	1.51
3	0.81	-0.63
4	-0.06	-0.73
5	1.39	0.27
6	-0.04	0.13
7	-0.09	0.65
8	-0.31	-0.83
9	0.85	-0.54
10	0.35	0.04

fit<-lm $(y \sim x)$

Gene Expression Example

$$
\hat{\gamma}=\beta_{0}+\beta_{1} X_{1}
$$

$H_{0}: \beta_{i}=0 \quad$ vs $\quad H_{a}: \beta_{i} \neq 0$
$t=\frac{\hat{\beta}_{i}}{S E\left(\hat{\beta}_{i}\right)}$
$>f i t 2<-\operatorname{lm}(\operatorname{data}[4,] \sim \operatorname{data}[5]$,
$>$ aa<-summary (fit2)

	Estimate	Std.	Error	t value
(Intercept) $(>\|\mathrm{t}\|)$				
''1004_at"	1.6740	0.7416	0.0746	3.85

Matrix Multiplication

$$
\begin{array}{r}
x=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \times\left(\begin{array}{l}
9 \\
8 \\
7
\end{array}\right) \\
1 \times 9+2 \times 8+3 \times 7=46 \\
4 \times 9+5 \times 8+6 \times 7=118
\end{array}
$$

$$
x=\binom{46}{118}
$$

Dimension: $(2 \times 3) \times(3 \times 1)=(2 \times 1)$

Fitting Linear Regression Model

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
{\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0}+\beta_{1} X_{1} \\
\beta_{0}+\beta_{1} X_{2} \\
\vdots \\
\beta_{0}+\beta_{1} X_{n}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]} \\
{\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & X_{1} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]}
\end{gathered}
$$

Design Matrix

$$
\left.\left.\begin{array}{c}
Y=X \beta+\epsilon \\
{\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0}+\beta_{1} X_{1} \\
\beta_{0}+\beta_{1} X_{2} \\
\vdots \\
\beta_{0}+\beta_{1} X_{n}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left(\left[\begin{array}{c}
X_{1} \\
1 \\
X_{2} \\
\vdots \\
\vdots \\
1
\end{array} X_{n}\right.\right.}
\end{array}\right]\right)\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right] .
$$

More than one predictor

Data

	y	x_{1}	z
1	0.72	0.37	0
2	0.65	0.19	0
3	0.81	0.11	0
4	-0.06	-0.44	0
5	1.39	-0.31	0
6	-0.04	-0.39	1
7	-0.09	-0.20	1
8	-0.31	-0.23	1
9	0.85	-0.01	1
10	0.35	-0.45	1

\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{1}+\epsilon_{i},

\beta_{0}+\beta_{1} X_{1}+\epsilon_{i},

if Z=1\end{array}\right.\)

Multiple Linear Regression

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\epsilon_{i} \\
& \text { Interaction X1X2 } \\
& Y_{i}=\left\{\begin{array}{cc}
\beta_{0}+\beta_{1} X_{1}^{*}+\epsilon_{i}, & \text { if } Z=0 \\
\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{1}+\epsilon_{i}, & \text { if } Z=1
\end{array}\right.
\end{aligned}
$$

\rightarrow Assuming the same slope for both $Z=0$ and $Z=1$.

Multiple Linear Regression: Interaction

When slopes are different in $Z=0$ vs. $Z=1$,

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\beta_{3} X_{1} \times Z+\epsilon_{i}
$$

Interaction X1X2

$$
Y_{i}=\left\{\begin{array}{cl}
\beta_{0}+\beta_{1} X_{1}^{\times}+\epsilon_{i}, & \text { if } Z=0 \\
\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X_{1}+\epsilon_{i}, & \text { if } Z=1
\end{array}\right.
$$

Gene Expression Example

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\beta_{3} X_{1} \times Z+\epsilon_{i}
$$

Y: measure of "1003_s_at" probe
X: measure of "1004_at" probe
Z: molecular type $(B C R / A B L=0$ or $N E G=1)$

Intercept	X_{1}	Z	$X_{1} \times Z$
1	5.93	0	0.00
1	5.91	1	5.91
1	5.89	0	0.00
1	5.62	1	5.62
1	5.92	1	5.92
\ldots			
Table: Design Matrix			

Gene Expression Example

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\beta_{3} X_{1} \times Z+\epsilon_{i}
$$

Y: measure of "1003_s_at" probe
X: measure of " 1004_at" probe
Z: molecular type ($B C R / A B L=1$ or $N E G=0$)
$>$ int <- as.numeric(ALL_bcrneg\$mol.biol) * data[5,]
$>$ fit1<- lm(data[4,] ~ data[5,] +
ALL_bcrneg\$mol.biol + int)
> fitout <- summary (fit1)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	1.5971	0.6249	2.56	0.0126
"1004_at"	0.7815	0.2398	3.26	0.0017
mol.bioINEG	0.1388	0.8821	0.16	0.8754
int	-0.0257	0.1513	-0.17	0.8656

Table: Linear regression model with interaction term

Gene Expression Example: Simplified model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\epsilon_{i}
$$

>fit2<-lm(data[4,] ~ data[5,])
$>$ aa<-summary (fit2)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	1.6740	0.4348	3.85	0.0002
"1004_at"	0.7416	0.0746	9.95	0.0000

Model Selection: Likelihood Ratio Test

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\beta_{3} X_{1} \times Z+\epsilon_{i} \\
& \text { or } \\
Y_{i} & =\beta_{0}+\beta_{1} X_{1}+\epsilon_{i}
\end{aligned}
$$

$>$ anova(fit1, fit2)

	Res.Df	RSS	Df	Sum of Sq	F	$\operatorname{Pr}(>F)$
1	75	2.31				
2	77	2.31	-2	-0.00	0.05	0.9491

p value >0.05 suggests that both models fit data equally well. We choose the simple over the complicated model.

		Independent	Variable
		Categorical	Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

For Binary Response

$\mathrm{Y}=0$ or 1 , a binary response

$$
\begin{aligned}
\hat{Y} & =\beta_{0}+\beta_{1} X \quad
\end{aligned} \quad ? \mathrm{Y}=1.2 ?
$$

The problem:
\rightarrow the right hand side, $\beta_{0}+\beta_{1} X \in(-\infty, \infty)$

Logistic Regression

$$
\begin{aligned}
\log \left[\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right] & =\beta_{0}+\beta_{1} X \\
& \text { or } \\
\operatorname{logit}[\operatorname{Pr}(Y=1)] & =\beta_{0}+\beta_{1} X
\end{aligned}
$$

$\operatorname{logit}(z)=\log \frac{z}{1-z}$

Figure: The logistic function

Interpretation of β 's

$$
\log \left[\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right]=\beta_{0}+\beta_{1} X
$$

$\beta_{0}: \log$ odds when $X=0$
β_{1} : change in log odds with 1 unit increase in X.
For example:
$X=4$, odds $=e^{\beta_{0}+\beta_{1} \times 4}$
$X=3$, odds $=e^{\beta_{0}+\beta_{1} \times 3}$

$$
O R_{X=4}^{X=3}=\frac{e^{\beta_{0}+\beta_{1} \times 4}}{e^{\beta_{0}+\beta_{1} \times 3}}=e^{\beta_{1}}
$$

With 1 unit increase in X, odds of $Y=1$ increases $e^{\beta_{1}}$ times.

FAMuSS Example

Genotype		
BMI >25	AA	$($ GA and GG)
1	30	314
0	30	626
	60	940
OR $_{\frac{A A}{\text { other }}}=\frac{a d}{b c}=1.99=e^{0.69}$		

$>$ geno<-ifelse (Geno=="AA", 1, 0)
$>f i t 4<-$ glm(trait \sim geno, data=fms,
family=binomial(link=logit))

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	-0.69	0.0692	-9.98	0.0000
geno	0.69	0.2673	2.58	0.0098

