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Objectives of Lecture 6

▶ Association between Variables
▶ Goodness of Fit Test
▶ Pearson χ2 Test of Association
▶ Relative Risk
▶ Odds Ratio

▶ Statistical Models

▶ Linear Regression

▶ Multiple Linear Regression

▶ Interaction

▶ Likelihood Ratio Test for Model Seletion

▶ Logistic Regression
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Association between Variables

Independent Variable
Categorical Continuous

Outcome Continuous T-Test, ANOVA (A) Regression (C)
Variable Categorical χ2, Fisher (B) GLM (D)

▶ Difference in gene expression in patients with/without a
mutation (yes/no): A

▶ Determine the association between disease Status (yes/no)
and genotype (AA, Aa, aa): B

▶ Predict father’s height from daughter’s height: C

▶ Determine the relationship between smoking status (yes/no)
and lung cancer (yes/no): B
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Goodness of Fit Test

Count

AA 30
Aa 55
aa 15

Total 100

▶ What is the allele frequency of A allele?

p(A) =
30× 2 + 55

2× (30 + 55 + 15)
= 0.575

▶ What is the expected counts if this locus is in
Hardy-Weinberg equilibrium?
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Goodness of Fit Test

Count Expected (Oi−Ei )
2

Ei

AA 30 100 ×0.5752 = 33 0.28
Aa 55 100 ×2× 0.575× 0.425 = 49 0.77
aa 15 18 0.52

Total 100 100 1.57

▶ What is the expected counts if this locus is in
Hardy-Weinberg equilibrium?

χ2 = Σi
(Oi − Ei )

2

Ei
= 1.57 < χ2

1,0.95 = 3.84

Since χ2 = 1.57 < 3.841, we conclude that the genotype
frequencies in this population are not significantly different than
what would be expected if the population is in Hardy-Weinberg
equilibrium.
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Assumptions for Hardy-Weinberg Equilibrium

▶ Random Mating

▶ No Nature Selection: neither allele confers a selective
advantage or disadvantage

▶ No Migration: no one enters or leaves the population

▶ No Mutation: an A allele will never mutate into an a allele,
and vice versa

▶ Infinite Population size: no genetic drift
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Pearson χ2 Test of Association

FAMuSS Data Example

Genotype
BMI > 25 AA GA GG Total

0 30 246 380 656
1 30 130 184 344

Total 60 376 564 1000
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Test of Association

Hypothesis: no association between genotype and disease

χ2 = Σallcells
(oberseved − expected)2

expected

p value = Pr(χ2
df > χ2

obs)

→ If p value is small, reject H0 Hypothesis.
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Expected Cell Count

Observed

Genotype
AA GA GG Total

0 30 246 380 656
1 30 130 184 344

Total 60 376 564 1000

Expected

Genotype
AA GA GG Total

0 1000 × 0.656 × 0.06 656
1 344

Total 60 376 564 1000

Degree of freedom
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Pearson’s χ2 test for association

Observed

Genotype
AA GA GG

0 30 246 380
1 30 130 184

Expected

Genotype
AA GA GG

0 39.36 246.66 369.98
1 20.64 129.34 194.02

χ2
obs =

(30− 39.36)2

39.36
+

(246− 246.66)2

246.66
+

(380− 369.998)2

369.98

+
(30− 20.64)2

20.64
+

(130− 129.34)2

129.34
+

(184− 194.02)2

194.02
≈ 7.26

>tab< −matrix(c(30, 30, 246, 130, 380, 184), nrow=2)
>chisq.test(tab)
Pearson’s Chi-squared test
data: tab, X-squared = 7.2638, df = 2, p-value = 0.02647
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Relative Risk

Smoker Nonsmoker

Cancer 89 37
Normal 6063 5711

▶ p1 = Pr(Cancer|Smoker)

▶ p̂1 − p̂2 = 0.0145− 0.00644 = 0.008.

▶ Relative Risk= p̂1
p̂2

= 0.0145
0.00644 = 2.25. The probability of cancer

is 2.25 times greater in smokers.

▶ To estimate p1, p2, we need to follow up many smokers and
nonsmokers in a prospective study.

▶ In retrospective study, we can use odds ratio.
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Odds

The odds in favor of an event are the ratio of the probability that
the event will happen to the probability that it will not happen.

Odds =
p

1− p

What does “3 to 1 odds the Gamecocks will win” mean?
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Apollo 13

NASA Director : He specifically wanted a quote from a flight
director.
Gene Kranz : Who wanted a quote?
Deke Slayton : The president.
Gene Kranz : The president?
Glynn Lunney : Nixon. He wants odds.
Gene Kranz : We are not losing the crew.
NASA Director : Gene, I gotta give him odds. Five to one against?
Three to one?
Glynn Lunney : I don’t think they’re that good.
Gene Kranz : [firmly] We are not losing those men!
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Odds ratio: Measuring Association

Genotype
BMI > 25 AA (GA or GG)

1 a c
0 b d

a+b c+d

Odds of disease among AA =
Pr(D+|E+)

[1− Pr(D+|E+)]

=

a
(a+b)

b
(a+b)

=
a

b
,

Odds of disease among GA and GG =
Pr(D+|E+)

[1− Pr(D+|E+)]

=

c
(c+d)

d
(c+d)

=
c

d
.
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Odds ratio (OR)

Genotype
BMI > 25 AA (GA and GG)

1 30 314
0 30 626

60 940

OR AA
GA and GG

=
a
b
c
d

=
ad

bc

=
30× 626

30× 314
≈ 1.99
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Independent Variable

Categorical Continuous

Outcome Continuous T-Test, ANOVA (A) Regression (C)
Variable Categorical χ2, Fisher (B) GLM (D)
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Statistical Models

Statistical models can be powerful tools for understanding complex
relationship among variables. First, we will start by looking at 2
continuous variables. Typically, we explore data by a scatter plot.
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Gene Expression Example

>library(‘‘Biobase")
>library(‘‘annotate")
>library(‘‘hgu95av2.db")
>library(ALL)
>data<-exprs(ALL bcrneg)

>probename<-rownames(data)
>genename<-mget(probename, hgu95av2SYMBOL)

>genename[1:5]
>plot(data[4,], data[5,], pch=16)
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Correlation
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Probe (“1003 s at” and “1004 at”) are mapped to the same gene
(CXCR5), are their expression measures correlated?
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Pearson Correlation

Consider n pairs of data: (x1, y1), (x2, y2), (x3, y3), . . ., (xn, yn)

r =

∑
i (Xi − X )(Yi − Y )

(n − 1)sxsy

sx , sy : SD of x and y.
This is sometimes also called the correlation coefficient;
−1 ≤ r ≤ 1.

▶ r=0 : no correlation

▶ r > 0: positive correlation; Y increases with increasing X.

▶ r<0: negative correlation.

▶ |r | > 0.7, strong correlation

▶ 0.3 < |r | < 0.7, moderate correlation

▶ |r | < 0.3, weak correlation
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Gene Expression Example
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> cor(data[4,], data[5,])
[1] 0.7499144
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Example 2: Fathers’ and daughters’ heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462
1376 pairs
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Fathers’ and daughters’ heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462
1376 pairs
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Linear Regression

Yi = β0 + β1Xi + ϵi , ϵi ∼ N(0, σ2)
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The regression model

Let X be the predictor and Y be the response. Assume we have n
observations (x1, y1), . . ., (xn, yn) from X and Y. THe simple linear
regression model is

Yi = β0 + β1Xi + ϵi , ϵi ∼ N(0, σ2),

or

Ŷ = β0 + β1X .

Ŷ is the fitted value of Y.

→ How do we decide the values β0, β1, and σ2?
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Residuals

ϵi = yi − (β0 + β1xi )
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Regression Coefficients

Ŷ = β0 + β1X

▶ β1: the amount of change in y that occurs with on unit
change in x.

▶ β0: the fitted value of y when x=0.
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Fitting Linear Regression Model

Yi = β0 + β1X + ϵi

Data:

Obs y x

1 0.72 0.43
2 0.65 1.51
3 0.81 -0.63
4 -0.06 -0.73
5 1.39 0.27
6 -0.04 0.13
7 -0.09 0.65
8 -0.31 -0.83
9 0.85 -0.54

10 0.35 0.04
. . .fit<-lm(y ∼ x)
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Gene Expression Example

Ŷ = β0 + β1X1
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Y= 1.67 + 0.74 X

H0 : βi = 0 vs Ha : βi ̸= 0

t =
β̂i

SE (β̂i )

>fit2<-lm(data[4,] ∼ data[5,])

>aa<-summary(fit2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6740 0.4348 3.85 0.0002

‘‘1004 at" 0.7416 0.0746 9.95 0.0000
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Matrix Multiplication

x=

(
1 2 3
4 5 6

)
×

 9
8
7


1× 9 + 2× 8 + 3× 7 = 46

4× 9 + 5× 8 + 6× 7 = 118

x=

(
46
118

)
Dimension: (2× 3)× (3× 1) = (2× 1)
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Fitting Linear Regression Model

Yi = β0 + β1Xi + ϵi
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Design Matrix

Y = Xβ + ϵ
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More than one predictor

Data

y x1 z

1 0.72 0.37 0
2 0.65 0.19 0
3 0.81 0.11 0
4 -0.06 -0.44 0
5 1.39 -0.31 0
6 -0.04 -0.39 1
7 -0.09 -0.20 1
8 -0.31 -0.23 1
9 0.85 -0.01 1
10 0.35 -0.45 1
. . .

Yi = β0 + β1X1 + β2Z + ϵi

In other words (or, equations):

Yi =

{
β0 + β1X1 + ϵi , if Z = 0

(β0 + β2) + β1X1 + ϵi , if Z = 1
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Multiple Linear Regression

Yi = β0 + β1X1 + β2Z + ϵi
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Y=3+2*X1

Z=1
Z=0

Yi =

{
β0 + β1X1 + ϵi , if Z = 0

(β0 + β2) + β1X1 + ϵi , if Z = 1

→ Assuming the same slope for both Z = 0 and Z = 1.
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Multiple Linear Regression: Interaction

When slopes are different in Z = 0 vs. Z = 1,

Yi = β0 + β1X1 + β2Z + β3X1 × Z + ϵi
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{
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(β0 + β2) + (β1 + β3)X1 + ϵi , if Z = 1
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Gene Expression Example

Yi = β0 + β1X1 + β2Z + β3X1 × Z + ϵi

Y: measure of “1003 s at” probe
X: measure of “ 1004 at” probe
Z: molecular type (BCR/ABL=0 or NEG=1)

Intercept X1 Z X1 × Z

1 5.93 0 0.00
1 5.91 1 5.91
1 5.89 0 0.00
1 5.62 1 5.62
1 5.92 1 5.92

. . .

Table: Design Matrix
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Gene Expression Example

Yi = β0 + β1X1 + β2Z + β3X1 × Z + ϵi

Y: measure of “1003 s at” probe
X: measure of “ 1004 at” probe
Z: molecular type (BCR/ABL=1 or NEG=0)
> int <- as.numeric(ALL bcrneg$mol.biol) * data[5,]

> fit1<- lm(data[4,] ∼ data[5,] +

ALL bcrneg$mol.biol + int)

> fitout <- summary(fit1)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5971 0.6249 2.56 0.0126
“1004 at” 0.7815 0.2398 3.26 0.0017

mol.biolNEG 0.1388 0.8821 0.16 0.8754
int -0.0257 0.1513 -0.17 0.8656

Table: Linear regression model with interaction term
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Gene Expression Example: Simplified model

Yi = β0 + β1X1 + ϵi
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Y= 1.67 + 0.74 X

>fit2<-lm(data[4,] ∼ data[5,])

>aa<-summary(fit2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6740 0.4348 3.85 0.0002
“1004 at” 0.7416 0.0746 9.95 0.0000
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Model Selection: Likelihood Ratio Test

Yi = β0 + β1X1 + β2Z + β3X1 × Z + ϵi

or

Yi = β0 + β1X1 + ϵi

> anova(fit1, fit2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 75 2.31
2 77 2.31 -2 -0.00 0.05 0.9491

p value > 0.05 suggests that both models fit data equally well. We
choose the simple over the complicated model.
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Independent Variable

Categorical Continuous

Outcome Continuous T-Test, ANOVA (A) Regression (C)
Variable Categorical χ2, Fisher (B) GLM (D)
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For Binary Response

Y = 0 or 1, a binary response

Ŷ = β0 + β1X ? Y=1.2 ?

Pr(Y = 1) = β0 + β1X ? Pr(Y=1) =1.1 ?

The problem:
→ the right hand side, β0 + β1X ∈ (−∞,∞)
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Logistic Regression

log [
Pr(Y = 1)

1− Pr(Y = 1)
] = β0 + β1X

or

logit[Pr(Y = 1)] = β0 + β1X

logit(z) = log z
1−z

Figure: The logistic function
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Interpretation of β’s

log [
Pr(Y = 1)

1− Pr(Y = 1)
] = β0 + β1X

β0: log odds when X=0
β1: change in log odds with 1 unit increase in X.
For example:
X=4, odds = eβ0+β1×4

X=3, odds = eβ0+β1×3

ORX=4
X=3

=
eβ0+β1×4

eβ0+β1×3
= eβ1

With 1 unit increase in X, odds of Y=1 increases eβ1 times.
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FAMuSS Example

Genotype
BMI > 25 AA (GA and GG)

1 30 314
0 30 626

60 940

OR AA
other

=
ad

bc
= 1.99 = e0.69

>geno<-ifelse(Geno=="AA", 1, 0)

>fit4<-glm(trait ∼ geno, data=fms,

family=binomial(link=logit))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.69 0.0692 -9.98 0.0000

geno 0.69 0.2673 2.58 0.0098

46/46
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