STAT588/BIOL588: Genomic Data Science Lecture 6: Review Statistics (Part II)

Dr. Yen-Yi Ho (hoyen@stat.sc.edu)

Objectives of Lecture 6

Association between Variables

- Goodness of Fit Test
- Pearson χ^2 Test of Association
- Relative Risk
- Odds Ratio
- Statistical Models
- Linear Regression
- Multiple Linear Regression
- Interaction
- Likelihood Ratio Test for Model Seletion
- Logistic Regression

Association between Variables

		Independent	Variable
		Categorical	Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^2 , Fisher (B)	GLM (D)

- Difference in gene expression in patients with/without a mutation (yes/no): A
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa): B
- Predict father's height from daughter's height: C
- Determine the relationship between smoking status (yes/no) and lung cancer (yes/no): B

Goodness of Fit Test

	Count
AA	30
Aa	55
аа	15
Total	100

What is the allele frequency of A allele?

Goodness of Fit Test

	Count
AA	30
Aa	55
аа	15
Total	100

What is the allele frequency of A allele?

$$p(A) = rac{30 imes 2 + 55}{2 imes (30 + 55 + 15)} = 0.575$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is the expected counts if this locus is in Hardy-Weinberg equilibrium?

Goodness of Fit Test

	Count	Expected	$\frac{(O_i - E_i)^2}{E_i}$
AA	30	$100 \times 0.575^2 = 33$	0.28
Aa	55	$100 \times 2 \times 0.575 \times 0.425 = 49$	0.77
аа	15	18	0.52
Total	100	100	1.57

What is the expected counts if this locus is in Hardy-Weinberg equilibrium?

$$\chi^2 = \Sigma_i \frac{(O_i - E_i)^2}{E_i} = 1.57 < \chi^2_{1,0.95} = 3.84$$

Since $\chi^2 = 1.57 < 3.841$, we conclude that the genotype frequencies in this population are not significantly different than what would be expected if the population is in Hardy-Weinberg equilibrium.

Assumptions for Hardy-Weinberg Equilibrium

Random Mating

- No Nature Selection: neither allele confers a selective advantage or disadvantage
- ▶ No Migration: no one enters or leaves the population
- No Mutation: an A allele will never mutate into an a allele, and vice versa

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Infinite Population size: no genetic drift

Pearson χ^2 Test of Association

FAMuSS Data Example

		Genotype		
BMI>25	AA	GA	GG	Total
0	30	246	380	656
1	30	130	184	344
Total	60	376	564	1000

Test of Association

Hypothesis: no association between genotype and disease

$$\chi^2 = \Sigma_{allcells} rac{(oberseved - expected)^2}{expected}$$

p value = $\Pr(\chi^2_{df} > \chi^2_{obs})$

・ロト ・ 四ト ・ 日ト ・ 日下

 \rightarrow If p value is small, reject H_0 Hypothesis.

Expected Cell Count

	Observed					
			Genotype	e		
		AA	GA	GG	Total	
	0	30	246	380	656	
	1	30	130	184	344	
	Total	60	376	564	1000	
				Expecte	d	
				Genotyp	e	
		AA		GA	GG	Total
0	1000 \times	0.656	× 0.06			656
1						344
Total		60		376	564	1000

Degree of freedom

Pearson's χ^2 test for association

		Observed				Expected	
		Genotype				Genotype	
	AA	GA	GG		AA	GA	GG
0	30	246	380	0	39.36	246.66	369.98
1	30	130	184	1	20.64	129.34	194.02

$$\begin{split} \chi^2_{obs} &= \frac{(30-39.36)^2}{39.36} + \frac{(246-246.66)^2}{246.66} + \frac{(380-369.998)^2}{369.98} \\ &+ \frac{(30-20.64)^2}{20.64} + \frac{(130-129.34)^2}{129.34} + \frac{(184-194.02)^2}{194.02} \approx 7.26 \\ &> tab < -matrix(c(30, 30, 246, 130, 380, 184), nrow=2) \\ &> chisq.test(tab) \\ Pearson's Chi-squared test \\ data: tab, X-squared = 7.2638, df = 2, p-value = 0.02647 \end{split}$$

Relative Risk

	Smoker	Nonsmoker
Cancer	89	37
Normal	6063	5711

• $p_1 = \Pr(\text{Cancer}|\text{Smoker})$

$$\hat{p_1} - \hat{p_2} = 0.0145 - 0.00644 = 0.008.$$

- Relative Risk= \frac{\heta_1}{\heta_2} = \frac{0.0145}{0.00644} = 2.25. The probability of cancer is 2.25 times greater in smokers.
- To estimate p₁, p₂, we need to follow up many smokers and nonsmokers in a prospective study.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Relative Risk

	Smoker	Nonsmoker
Cancer	89	37
Normal	6063	5711

• $p_1 = \Pr(\text{Cancer}|\text{Smoker})$

$$\hat{p}_1 - \hat{p}_2 = 0.0145 - 0.00644 = 0.008.$$

- Relative Risk= \frac{\heta_1}{\heta_2} = \frac{0.0145}{0.00644} = 2.25. The probability of cancer is 2.25 times greater in smokers.
- To estimate p₁, p₂, we need to follow up many smokers and nonsmokers in a prospective study.
- In retrospective study, we can use odds ratio.

The odds in favor of an event are the ratio of the probability that the event will happen to the probability that it will not happen.

$$Odds = \frac{p}{1-p}$$

・ロト ・ ロト ・ ヨト ・ ヨー ・ つくぐ

What does "3 to 1 odds the Gamecocks will win" mean?

Apollo 13

NASA Director : He specifically wanted a quote from a flight director.

Gene Kranz : Who wanted a quote?

Deke Slayton : The president.

Gene Kranz : The president?

Glynn Lunney : Nixon. He wants odds.

Gene Kranz : We are not losing the crew.

NASA Director : Gene, I gotta give him odds. Five to one against? Three to one?

・ロト ・ 四ト ・ 日ト ・ 日下

Glynn Lunney : I don't think they're that good.

Gene Kranz : [firmly] We are not losing those men!

Odds ratio: Measuring Association

	Genotype		
BMI > 25	AA	(GA	or GG)
1	а		C
0	b		d
	a+b	С	+d
odds of disease	-	=	$\frac{\Pr(D^+ E^+)}{[1-\Pr(D^+ E^+)]}$ $\frac{\frac{a}{(a+b)}}{\frac{b}{(a+b)}} = \frac{a}{b},$ $\frac{\Pr(D^+ E^+)}{[1-\Pr(D^+ E^+)]}$ $\frac{\frac{c}{(c+d)}}{\frac{d}{(c+d)}} = \frac{c}{d}.$

・ロト・(中・・川・・日・・日・

Odds ratio (OR)

	Genotype	
BMI>25	AA	(GA and GG)
1	30	314
0	30	626
	60	940

$$OR_{\frac{AA}{GA \text{ and } GG}} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$
$$= \frac{30 \times 626}{30 \times 314} \approx 1.99$$

17/46

		Independent	Variable
		Categorical	Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^2 , Fisher (B)	GLM (D)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Statistical models can be powerful tools for understanding complex relationship among variables. First, we will start by looking at 2 continuous variables. Typically, we explore data by a scatter plot.

Gene Expression Example

```
>library(''Biobase")
>library(''annotate")
>library(''hgu95av2.db")
>library(ALL)
>data<-exprs(ALL_bcrneg)
>probename<-rownames(data)
>genename<-mget(probename, hgu95av2SYMBOL)
>genename[1:5]
>plot(data[4,], data[5,], pch=16)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Correlation

Correlation between 1003_s_at and 1004_at

Probe ("1003_s_at" and "1004_at") are mapped to the same gene (*CXCR5*), are their expression measures correlated?

Pearson Correlation

Consider n pairs of data: (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ..., (x_n, y_n)

$$r = \frac{\sum_{i} (X_i - \overline{X}) (Y_i - \overline{Y})}{(n-1) s_x s_y}$$

 s_x , s_y : SD of x and y. This is sometimes also called the correlation coefficient; $-1 \le r \le 1$.

- r=0 : no correlation
- r > 0: positive correlation; Y increases with increasing X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- r<0: negative correlation.</p>
- |r| > 0.7, strong correlation
- 0.3 < |r| < 0.7, moderate correlation
- ▶ |r| < 0.3, weak correlation

Gene Expression Example

• • • • • • • • • •

ъ

Correlation between 1003 s at and 1004 at

> cor(data[4,], data[5,])[1] 0.7499144

Example 2: Fathers' and daughters' heights

イロト 不得下 イヨト イヨト

э

Reference: Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Fathers' and daughters' heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Linear Regression

The regression model

Let X be the predictor and Y be the response. Assume we have n observations $(x_1, y_1), \ldots, (x_n, y_n)$ from X and Y. THe simple linear regression model is

$$\begin{array}{rcl} Y_i &=& \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2), \\ & \text{or} \\ \hat{Y} &=& \beta_0 + \beta_1 X. \end{array}$$

<□ > <同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

 \hat{Y} is the fitted value of Y.

 \rightarrow How do we decide the values β_0 , β_1 , and σ^2 ?

Residuals

$$\epsilon_i = y_i - (\beta_0 + \beta_1 x_i)$$

・ロト ・四ト ・ヨト ・ヨト

æ

28/46

Regression Coefficients

$$\hat{Y} = \beta_0 + \beta_1 X$$

β₁: the amount of change in y that occurs with on unit change in x.

・ コ ト ・ 一 ト ・ ヨ ト ・

3

▶ β_0 : the fitted value of y when x=0.

Fitting Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X + \epsilon_i$$

Data:

Obs	У	Х
1	0.72	0.43
2	0.65	1.51
3	0.81	-0.63
4	-0.06	-0.73
5	1.39	0.27
6	-0.04	0.13
7	-0.09	0.65
8	-0.31	-0.83
9	0.85	-0.54
10	0.35	0.04

. . .

fit<-lm(y \sim x)

Gene Expression Example

$$\hat{Y} = \beta_0 + \beta_1 X_1$$

>fit2<-lm(data[4,] \sim data[5,]) >aa<-summary(fit2)

	Estimate	Std.	Error	t value	$\Pr(> t)$
(Intercept)	1.6740		0.4348	3.85	0.0002
''1004_at"	0.7416		0.0746	9.95	0.0000

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Matrix Multiplication

$$x = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} 9 \\ 8 \\ 7 \end{pmatrix}$$
$$1 \times 9 + 2 \times 8 + 3 \times 7 = 46$$
$$4 \times 9 + 5 \times 8 + 6 \times 7 = 118$$
$$x = \begin{pmatrix} 46 \\ 118 \end{pmatrix}$$
Dimension: $(2 \times 3) \times (3 \times 1) = (2 \times 1)$

Fitting Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Design Matrix

More than one predictor

Data

	Ζ	<i>x</i> ₁	У	
	0	0.37	0.72	1
	0	0.19	0.65	2
$Y_i = \beta_0$	0	0.11	0.81	3
In other wo	0	-0.44	-0.06	4
in other wo	0	-0.31	1.39	5
,	1	-0.39	-0.04	6
$Y_i = \begin{cases} \beta_i \\ \beta_0 + \beta_i \end{cases}$	1	-0.20	-0.09	7
$(\beta_0 + \beta_0)$	1	-0.23	-0.31	8
	1	-0.01	0.85	9
	1	-0.45	0.35	10

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \epsilon_i$$

In other words (or, equations):

$$Y_i = \begin{cases} \beta_0 + \beta_1 X_1 + \epsilon_i, & \text{if } Z = 0\\ (\beta_0 + \beta_2) + \beta_1 X_1 + \epsilon_i, & \text{if } Z = 1 \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Multiple Linear Regression

 \rightarrow Assuming the same slope for both Z = 0 and Z = 1.

Multiple Linear Regression: Interaction

When slopes are different in Z = 0 vs. Z = 1,

Gene Expression Example

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \beta_3 X_1 \times Z + \epsilon_i$$

Y: measure of " 1003_s_at " probe

X: measure of " 1004_at " probe

Z: molecular type (BCR/ABL=0 or NEG=1)

Intercept	X_1	Ζ	$X_1 \times Z$
1	5.93	0	0.00
1	5.91	1	5.91
1	5.89	0	0.00
1	5.62	1	5.62
1	5.92	1	5.92

Table: Design Matrix

. . .

Gene Expression Example

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \frac{\beta_3 X_1}{2} \times Z + \epsilon_i$$

Y: measure of "1003_s_at" probe
X: measure of "1004_at" probe
Z: molecular type (BCR/ABL=1 or NEG=0)
> int <- as.numeric(ALL_bcrneg\$mol.biol) * data[5,]
> fit1<- lm(data[4,] ~ data[5,] +
ALL_bcrneg\$mol.biol + int)
> fitout <- summary(fit1)</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.5971	0.6249	2.56	0.0126
"1004_at"	0.7815	0.2398	3.26	0.0017
mol.biolNEG	0.1388	0.8821	0.16	0.8754
int	-0.0257	0.1513	-0.17	0.8656

Table: Linear regression model with interaction term

Gene Expression Example: Simplified model

 $Y_i = \beta_0 + \beta_1 X_1 + \epsilon_i$

linear association between 1003_s_at and 1004_at

>fit2<-lm(data[4,] \sim data[5,]) >aa<-summary(fit2)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.6740	0.4348	3.85	0.0002
"1004_at"	0.7416	0.0746	9.95	0.0000

Model Selection: Likelihood Ratio Test

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \beta_3 X_1 \times Z + \epsilon_i$$

or
$$Y_i = \beta_0 + \beta_1 X_1 + \epsilon_i$$

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
1	75	2.31				
2	77	2.31	-2	-0.00	0.05	0.9491

 $p\ value > 0.05\ suggests$ that both models fit data equally well. We choose the simple over the complicated model.

		Independent	Variable
		Categorical	Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^2 , Fisher (B)	GLM (D)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

For Binary Response

Y = 0 or 1, a binary response

$$\hat{Y} = \beta_0 + \beta_1 X ? Y=1.2 ?$$

$$Pr(Y=1) = \beta_0 + \beta_1 X ? Pr(Y=1) = 1.1 ?$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

The problem:

 \rightarrow the right hand side, $\beta_0 + \beta_1 X \in (-\infty, \infty)$

Logistic Regression

$$\log \left[\frac{\Pr(Y=1)}{1-\Pr(Y=1)}\right] = \beta_0 + \beta_1 X$$

or
$$\log it[\Pr(Y=1)] = \beta_0 + \beta_1 X$$

Figure: The logistic function

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Interpretation of β 's

$$\log\left[\frac{\Pr(Y=1)}{1-\Pr(Y=1)}\right] = \beta_0 + \beta_1 X$$

 β_0 : log odds when X=0 β_1 : change in log odds with 1 unit increase in X. For example:

X=4, odds = $e^{\beta_0+\beta_1\times 4}$ X=3, odds = $e^{\beta_0+\beta_1\times 3}$

$$OR_{rac{X=4}{X=3}} = rac{e^{eta_0+eta_1 imes 4}}{e^{eta_0+eta_1 imes 3}} = e^{eta_1}$$

With 1 unit increase in X, odds of Y=1 increases e^{β_1} times.

FAMuSS Example

		Genotype	
	BMI>25	AA	(GA and GG)
	1	30	314
	0	30	626
		60	940
>geno<-ife >fit4<-glm family=binc	lse(Geno==" $(trait \sim generics)$	AA", 1, eno, dat	

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.69	0.0692	-9.98	0.0000
geno	0.69	0.2673	2.58	0.0098