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A Little Book of R For Bioinformatics, Release 0.1

By Avril Coghlan, Wellcome Trust Sanger Institute, Cambridge, U.K. Email: alc@sanger.ac.uk

This is a simple introduction to bioinformatics, with a focus on genome analysis, using the R statistics software.

To encourage research into neglected tropical diseases such as leprosy, Chagas disease, trachoma, schistosomiasis
etc., most of the examples in this booklet are for analysis of the genomes of the organisms that cause these diseases.

There is a pdf version of this booklet available at: https://github.com/avrilcoghlan/LittleBookofRBioinformatics/
raw/master/_build/latex/Bioinformatics.pdf.

If you like this booklet, you may also like to check out my booklet on using R for biomedical statistics, http:
//a-little-book-of-r-for-biomedical-statistics.readthedocs.org/, and my booklet on using R for time series analysis,
http://a-little-book-of-r-for-time-series.readthedocs.org/.
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CHAPTER 1

Chapters in this Book

How to install R and a Brief Introduction to R

Introduction to R

This little booklet has some information on how to use R for bioinformatics.

R (www.r-project.org) is a commonly used free Statistics software. R allows you to carry out statistical analyses
in an interactive mode, as well as allowing simple programming.

Installing R

To use R, you first need to install the R program on your computer.

How to check if R is installed on a Windows PC

Before you install R on your computer, the first thing to do is to check whether R is already installed on your
computer (for example, by a previous user).

These instructions will focus on installing R on a Windows PC. However, I will also briefly mention how to install
R on a Macintosh or Linux computer (see below).

If you are using a Windows PC, there are two ways you can check whether R is already isntalled on your computer:

1. Check if there is an “R” icon on the desktop of the computer that you are using. If so, double-click on the
“R” icon to start R. If you cannot find an “R” icon, try step 2 instead.

2. Click on the “Start” menu at the bottom left of your Windows desktop, and then move your mouse over
“All Programs” in the menu that pops up. See if “R” appears in the list of programs that pops up. If it does,
it means that R is already installed on your computer, and you can start R by selecting “R” (or R X.X.X,
where X.X.X gives the version of R, eg. R 2.10.0) from the list.

If either (1) or (2) above does succeed in starting R, it means that R is already installed on the computer that you
are using. (If neither succeeds, R is not installed yet). If there is an old version of R installed on the Windows PC
that you are using, it is worth installing the latest version of R, to make sure that you have all the latest R functions
available to you to use.
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Finding out what is the latest version of R

To find out what is the latest version of R, you can look at the CRAN (Comprehensive R Network) website,
http://cran.r-project.org/.

Beside “The latest release” (about half way down the page), it will say something like “R-X.X.X.tar.gz” (eg.
“R-2.12.1.tar.gz”). This means that the latest release of R is X.X.X (for example, 2.12.1).

New releases of R are made very regularly (approximately once a month), as R is actively being improved all the
time. It is worthwhile installing new versions of R regularly, to make sure that you have a recent version of R (to
ensure compatibility with all the latest versions of the R packages that you have downloaded).

Installing R on a Windows PC

To install R on your Windows computer, follow these steps:

1. Go to http://ftp.heanet.ie/mirrors/cran.r-project.org.

2. Under “Download and Install R”, click on the “Windows” link.

3. Under “Subdirectories”, click on the “base” link.

4. On the next page, you should see a link saying something like “Download R 2.10.1 for Windows” (or R
X.X.X, where X.X.X gives the version of R, eg. R 2.11.1). Click on this link.

5. You may be asked if you want to save or run a file “R-2.10.1-win32.exe”. Choose “Save” and save the file
on the Desktop. Then double-click on the icon for the file to run it.

6. You will be asked what language to install it in - choose English.

7. The R Setup Wizard will appear in a window. Click “Next” at the bottom of the R Setup wizard window.

8. The next page says “Information” at the top. Click “Next” again.

9. The next page says “Information” at the top. Click “Next” again.

10. The next page says “Select Destination Location” at the top. By default, it will suggest to install R in
“C:\Program Files” on your computer.

11. Click “Next” at the bottom of the R Setup wizard window.

12. The next page says “Select components” at the top. Click “Next” again.

13. The next page says “Startup options” at the top. Click “Next” again.

14. The next page says “Select start menu folder” at the top. Click “Next” again.

15. The next page says “Select additional tasks” at the top. Click “Next” again.

16. R should now be installed. This will take about a minute. When R has finished, you will see “Completing
the R for Windows Setup Wizard” appear. Click “Finish”.

17. To start R, you can either follow step 18, or 19:

18. Check if there is an “R” icon on the desktop of the computer that you are using. If so, double-click on the
“R” icon to start R. If you cannot find an “R” icon, try step 19 instead.

19. Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and
start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of
programs.

20. The R console (a rectangle) should pop up:
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How to install R on non-Windows computers (eg. Macintosh or Linux computers)

The instructions above are for installing R on a Windows PC. If you want to install R on a computer that has a
non-Windows operating system (for example, a Macintosh or computer running Linux, you should download the
appropriate R installer for that operating system at http://ftp.heanet.ie/mirrors/cran.r-project.org and follow the R
installation instructions for the appropriate operating system at http://ftp.heanet.ie/mirrors/cran.r-project.org/doc/
FAQ/R-FAQ.html#How-can-R-be-installed_003f).

Installing R packages

R comes with some standard packages that are installed when you install R. However, in this booklet I will also tell
you how to use some additional R packages that are useful, for example, the “rmeta” package. These additional
packages do not come with the standard installation of R, so you need to install them yourself.

How to install an R package

Once you have installed R on a Windows computer (following the steps above), you can install an additional
package by following the steps below:

1. To start R, follow either step 2 or 3:

2. Check if there is an “R” icon on the desktop of the computer that you are using. If so, double-click on the
“R” icon to start R. If you cannot find an “R” icon, try step 3 instead.
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3. Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and
start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of
programs.

4. The R console (a rectangle) should pop up.

5. Once you have started R, you can now install an R package (eg. the “rmeta” package) by choosing “Install
package(s)” from the “Packages” menu at the top of the R console. This will ask you what website you
want to download the package from, you should choose “Ireland” (or another country, if you prefer). It will
also bring up a list of available packages that you can install, and you should choose the package that you
want to install from that list (eg. “rmeta”).

6. This will install the “rmeta” package.

7. The “rmeta” package is now installed. Whenever you want to use the “rmeta” package after this, after
starting R, you first have to load the package by typing into the R console:

> library("rmeta")

Note that there are some additional R packages for bioinformatics that are part of a special set of R packages called
Bioconductor (www.bioconductor.org) such as the “yeastExpData” R package, the “Biostrings” R package, etc.).
These Bioconductor packages need to be installed using a different, Bioconductor-specific procedure (see How to
install a Bioconductor R package below).

How to install a Bioconductor R package

The procedure above can be used to install the majority of R packages. However, the Bioconductor set of bioinfor-
matics R packages need to be installed by a special procedure. Bioconductor (www.bioconductor.org) is a group
of R packages that have been developed for bioinformatics. This includes R packages such as “yeastExpData”,
“Biostrings”, etc.

To install the Bioconductor packages, follow these steps:

1. To start R, follow either step 2 or 3:

2. Check if there is an “R” icon on the desktop of the computer that you are using. If so, double-click on the
“R” icon to start R. If you cannot find an “R” icon, try step 3 instead.

3. Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and
start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of
programs.

4. The R console (a rectangle) should pop up.

5. Once you have started R, now type in the R console:

> source("http://bioconductor.org/biocLite.R")
> biocLite()

6. This will install a core set of Bioconductor packages (“affy”, “affydata”, “affyPLM”, “annaffy”, “annotate”,
“Biobase”, “Biostrings”, “DynDoc”, “gcrma”, “genefilter”, “geneplotter”, “hgu95av2.db”, “limma”, “mar-
ray”, “matchprobes”, “multtest”, “ROC”, “vsn”, “xtable”, “affyQCReport”). This takes a few minutes (eg.
10 minutes).

7. At a later date, you may wish to install some extra Bioconductor packages that do not belong to the core set
of Bioconductor packages. For example, to install the Bioconductor package called “yeastExpData”, start
R and type in the R console:

> source("http://bioconductor.org/biocLite.R")
> biocLite("yeastExpData")

8. Whenever you want to use a package after installing it, you need to load it into R by typing:
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> library("yeastExpData")

Running R

To use R, you first need to start the R program on your computer. You should have already installed R on your
computer (see above).

To start R, you can either follow step 1 or 2: 1. Check if there is an “R” icon on the desktop of the computer that
you are using.

If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 2 instead.

2. Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and
start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of
programs.

This should bring up a new window, which is the R console.

A brief introduction to R

You will type R commands into the R console in order to carry out analyses in R. In the R console you will see:

>

This is the R prompt. We type the commands needed for a particular task after this prompt. The command is
carried out after you hit the Return key.

Once you have started R, you can start typing in commands, and the results will be calculated immediately, for
example:

> 2*3
[1] 6
> 10-3
[1] 7

All variables (scalars, vectors, matrices, etc.) created by R are called objects. In R, we assign values to variables
using an arrow. For example, we can assign the value 2*3 to the variable x using the command:

> x <- 2*3

To view the contents of any R object, just type its name, and the contents of that R object will be displayed:

> x
[1] 6

There are several possible different types of objects in R, including scalars, vectors, matrices, arrays, data frames,
tables, and lists. The scalar variable x above is one example of an R object. While a scalar variable such as x
has just one element, a vector consists of several elements. The elements in a vector are all of the same type (eg.
numeric or characters), while lists may include elements such as characters as well as numeric quantities.

To create a vector, we can use the c() (combine) function. For example, to create a vector called myvector that has
elements with values 8, 6, 9, 10, and 5, we type:

> myvector <- c(8, 6, 9, 10, 5)

To see the contents of the variable myvector, we can just type its name:

> myvector
[1] 8 6 9 10 5

1.1. How to install R and a Brief Introduction to R 7



A Little Book of R For Bioinformatics, Release 0.1

The [1] is the index of the first element in the vector. We can extract any element of the vector by typing the vector
name with the index of that element given in square brackets. For example, to get the value of the 4th element in
the vector myvector, we type:

> myvector[4]
[1] 10

In contrast to a vector, a list can contain elements of different types, for example, both numeric and character
elements. A list can also include other variables such as a vector. The list() function is used to create a list. For
example, we could create a list mylist by typing:

> mylist <- list(name="Fred", wife="Mary", myvector)

We can then print out the contents of the list mylist by typing its name:

> mylist
$name
[1] "Fred"

$wife
[1] "Mary"

[[3]]
[1] 8 6 9 10 5

The elements in a list are numbered, and can be referred to using indices. We can extract an element of a list by
typing the list name with the index of the element given in double square brackets (in contrast to a vector, where
we only use single square brackets). Thus, we can extract the second and third elements from mylist by typing:

> mylist[[2]]
[1] "Mary"
> mylist[[3]]
[1] 8 6 9 10 5

Elements of lists may also be named, and in this case the elements may be referred to by giving the list name, fol-
lowed by “$”, followed by the element name. For example, mylist$name is the same as mylist[[1]] and mylist$wife
is the same as mylist[[2]]:

> mylist$wife
[1] "Mary"

We can find out the names of the named elements in a list by using the attributes() function, for example:

> attributes(mylist)
$names
[1] "name" "wife" ""

When you use the attributes() function to find the named elements of a list variable, the named elements are always
listed under a heading “$names”. Therefore, we see that the named elements of the list variable mylist are called
“name” and “wife”, and we can retrieve their values by typing mylist$name and mylist$wife, respectively.

Another type of object that you will encounter in R is a table variable. For example, if we made a vector variable
mynames containing the names of children in a class, we can use the table() function to produce a table variable
that contains the number of children with each possible name:

> mynames <- c("Mary", "John", "Ann", "Sinead", "Joe", "Mary", "Jim", "John",
→˓"Simon")
> table(mynames)
mynames

Ann Jim Joe John Mary Simon Sinead
1 1 1 2 2 1 1
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We can store the table variable produced by the function table(), and call the stored table “mytable”, by typing:

> mytable <- table(mynames)

To access elements in a table variable, you need to use double square brackets, just like accessing elements in a
list. For example, to access the fourth element in the table mytable (the number of children called “John”), we
type:

> mytable[[4]]
[1] 2

Alternatively, you can use the name of the fourth element in the table (“John”) to find the value of that table
element:

> mytable[["John"]]
[1] 2

Functions in R usually require arguments, which are input variables (ie. objects) that are passed to them, which
they then carry out some operation on. For example, the log10() function is passed a number, and it then calculates
the log to the base 10 of that number:

> log10(100)
2

In R, you can get help about a particular function by using the help() function. For example, if you want help
about the log10() function, you can type:

> help("log10")

When you use the help() function, a box or webpage will pop up with information about the function that you
asked for help with.

If you are not sure of the name of a function, but think you know part of its name, you can search for the function
name using the help.search() and RSiteSearch() functions. The help.search() function searches to see if you
already have a function installed (from one of the R packages that you have installed) that may be related to some
topic you’re interested in. The RSiteSearch() function searches all R functions (including those in packages that
you haven’t yet installed) for functions related to the topic you are interested in.

For example, if you want to know if there is a function to calculate the standard deviation of a set of numbers, you
can search for the names of all installed functions containing the word “deviation” in their description by typing:

> help.search("deviation")
Help files with alias or concept or title matching
'deviation' using fuzzy matching:

genefilter::rowSds
Row variance and standard deviation of
a numeric array

nlme::pooledSD Extract Pooled Standard Deviation
stats::mad Median Absolute Deviation
stats::sd Standard Deviation
vsn::meanSdPlot Plot row standard deviations versus row

Among the functions that were found, is the function sd() in the “stats” package (an R package that comes with
the standard R installation), which is used for calculating the standard deviation.

In the example above, the help.search() function found a relevant function (sd() here). However, if you did not
find what you were looking for with help.search(), you could then use the RSiteSearch() function to see if a search
of all functions described on the R website may find something relevant to the topic that you’re interested in:

> RSiteSearch("deviation")

1.1. How to install R and a Brief Introduction to R 9
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The results of the RSiteSearch() function will be hits to descriptions of R functions, as well as to R mailing list
discussions of those functions.

We can perform computations with R using objects such as scalars and vectors. For example, to calculate the
average of the values in the vector myvector (ie. the average of 8, 6, 9, 10 and 5), we can use the mean() function:

> mean(myvector)
[1] 7.6

We have been using built-in R functions such as mean(), length(), print(), plot(), etc. We can also create our own
functions in R to do calculations that you want to carry out very often on different input data sets. For example,
we can create a function to calculate the value of 20 plus square of some input number:

> myfunction <- function(x) { return(20 + (x*x)) }

This function will calculate the square of a number (x), and then add 20 to that value. The return() statement
returns the calculated value. Once you have typed in this function, the function is then available for use. For
example, we can use the function for different input numbers (eg. 10, 25):

> myfunction(10)
[1] 120
> myfunction(25)
[1] 645

To quit R, type:

> q()

Links and Further Reading

Some links are included here for further reading.

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.
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Neglected Tropical diseases

Neglected tropical diseases are serious diseases that affect many people in tropical countries and which have
been relatively little studied. The World Health Organisation lists the following as neglected tropical diseases:
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trachoma, leprosy, schistosomiasis, soil transmitted helminths, lymphatic filariasis, onchocerciasis, Buruli ul-
cer, yaws, Chagas disease, African trypanosomiasis, leishmaniasis, Dengue fever, rabies, Dracunculiasis (guinea-
worm disease), and Fascioliasis (see http://www.who.int/neglected_diseases/diseases/en/).

The genomes of many of the organisms that cause neglected tropical diseases have been fully sequenced, or are
currently being sequenced, including:

• the bacterium Chlamydia trachomatis, which causes trachoma

• the bacterium Mycobacterium leprae, which causes leprosy

• the bacterium Mycobacterium ulcerans, which causes Buruli ulcer

• the bacterium Treponema pallidum subsp. pertenue, which causes yaws

• the protist Trypanosoma cruzi, which causes Chagas disease

• the protist Trypanosoma brucei, which causes African trypanosomiasis

• the protist Leishmania major, and related Leishmania species, which cause leishmaniasis

• the schistosome worm Schistosoma mansoni, which causes schistosomiasis

• the nematode worms Brugia malayi and Wuchereria bancrofti, which cause lymphatic filariasis

• the nematode worm Loa loa, which causes subcutaneous filariasis

• the nematode worm Onchocerca volvulus, which causes onchocerciasis

• the nematode worm Necator americanus, which causes soil-transmitted helminthiasis

• the Dengue virus, which causes Dengue fever

• the Rabies virus, which causes Rabies

To encourage research into these organisms, many of the examples in this booklet are based on analysing these
genomes.

Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email
address alc@sanger.ac.uk

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

DNA Sequence Statistics (1)

Using R for Bioinformatics

This booklet tells you how to use the R software to carry out some simple analyses that are common in bioinfor-
matics. In particular, the focus is on computational analysis of biological sequence data such as genome sequences
and protein sequences.

This booklet assumes that the reader has some basic knowledge of biology, but not necessarily of bioinformatics.
The focus of the booklet is to explain simple bioinformatics analysis, and to explain how to carry out these analyses
using R.

To use R, you first need to start the R program on your computer. You should have already installed R on your
computer (if not, for instructions on how to install R, see How to install R).
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R packages for bioinformatics: Bioconductor and SeqinR

Many authors have written R packages for performing a wide variety of analyses. These do not come with the
standard R installation, but must be installed and loaded as “add-ons”.

Bioinformaticians have written several specialised packages for R. In this practical, you will learn to use the
SeqinR package to retrieve sequences from a DNA sequence database, and to carry out simple analyses of DNA
sequences.

Some well known bioinformatics packages for R are the Bioconductor set of R packages (www.bioconductor.org),
which contains several packages with many R functions for analysing biological data sets such as microarray data;
and the SeqinR package (pbil.univ-lyon1.fr/software/seqinr/home.php?lang=eng), which contains R functions for
obtaining sequences from DNA and protein sequence databases, and for analysing DNA and protein sequences.

To use function from the SeqinR package, we first need to install the SeqinR package (for instructions on how to
install an R package, see How to install an R package). Once you have installed the “SeqinR” R package, you can
load the “SeqinR” R package by typing:

> library("seqinr")

Remember that you can ask for more information about a particular R command by using the help() function. For
example, to ask for more information about the library() function, you can type:

> help("library")

FASTA format

The FASTA format is a simple and widely used format for storing biological (DNA or protein) sequences. It was
first used by the FASTA program for sequence alignment. It begins with a single-line description starting with a
“>” character, followed by lines of sequences. Here is an example of a FASTA file:

> A06852 183 residues
MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEE
PQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSN
LNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIAR
LC

The NCBI sequence database

The National Centre for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov) in the US maintains
a huge database of all the DNA and protein sequence data that has been collected, the NCBI Sequence
Database. This also a similar database in Europe, the European Molecular Biology Laboratory (EMBL) Sequence
Database (www.ebi.ac.uk/embl), and also a similar database in Japan, the DNA Data Bank of Japan (DDBJ;
www.ddbj.nig.ac.jp). These three databases exchange data every night, so at any one point in time, they contain
almost identical data.

Each sequence in the NCBI Sequence Database is stored in a separate record, and is assigned a unique identifier
that can be used to refer to that sequence record. The identifier is known as an accession, and consists of a mixture
of numbers and letters. For example, Dengue virus causes Dengue fever, which is classified as a neglected tropical
disease by the WHO. by any one of four types of Dengue virus: DEN-1, DEN-2, DEN-3, and DEN-4. The NCBI
accessions for the DNA sequences of the DEN-1, DEN-2, DEN-3, and DEN-4 Dengue viruses are NC_001477,
NC_001474, NC_001475 and NC_002640, respectively.

Note that because the NCBI Sequence Database, the EMBL Sequence Database, and DDBJ exchange data every
night, the DEN-1 (and DEN-2, DEN-3, DEN-4) Dengue virus sequence will be present in all three databases, but
it will have different accessions in each database, as they each use their own numbering systems for referring to
their own sequence records.
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Retrieving genome sequence data via the NCBI website

You can easily retrieve DNA or protein sequence data from the NCBI Sequence Database via its website
www.ncbi.nlm.nih.gov.

The Dengue DEN-1 DNA sequence is a viral DNA sequence, and as mentioned above, its NCBI accession is
NC_001477. To retrieve the DNA sequence for the Dengue DEN-1 virus from NCBI, go to the NCBI website,
type “NC_001477” in the Search box at the top of the webpage, and press the “Search” button beside the Search
box:

On the results page you will see the number of hits to “NC_001477” in each of the NCBI databases on the NCBI
website. There are many databases on the NCBI website, for example, the “PubMed” data contains abstracts from
scientific papers, the “Nucleotide” database contains DNA and RNA sequence data, the “Protein” data contains
protein sequence data, and so on. The picture below shows what the results page should look like for your
NC_001477 search. As you are looking for the DNA sequence of the Dengue DEN-1 virus genome, you expect
to see a hit in the NCBI Nucleotide database, and indeed there is hit in the Nucleotide database (indicated by the
“1” beside the icon for the Nucleotide database):

To look at the one sequence found in the Nucleotide database, you need to click on the icon for the NCBI Nu-
cleotide database on the results page for the search:

1.3. DNA Sequence Statistics (1) 13
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When you click on the icon for the NCBI Nucleotide database, it will bring you to the record for NC_001477 in
the NCBI Nucleotide database. This will contain the name and NCBI accession of the sequence, as well as other
details such as any papers describing the sequence:

To retrieve the DNA sequence for the DEN-1 Dengue virus genome sequence as a FASTA format sequence file,
click on “Send” at the top right of the NC_001477 sequence record webpage, and then choose “File” in the pop-up
menu that appears, and then choose FASTA from the “Format” menu that appears, and click on “Create file”.

A box will pop up asking you what to name the file, and where to save it. You should give it a sensible name (eg.
“den1.fasta”) and save it in a place where you will remember (eg. in the “My Documents” folder is a good idea):

You can now open the FASTA file containing the DEN-1 Dengue virus genome sequence using WordPad on your
computer. To open WordPad, click on “Start” on the bottom left of your screen, click on “All Programs” in the
menu that appears, and then select “Accessories” from the menu that appears next, and then select “WordPad”
from the menu that appears next. WordPad should start up. In Wordpad, choose “Open” from the “File” menu.
The WordPad “Open” dialog will appear. Set “Files of type” to “All Documents” at the bottom of the WordPad
“Open” dialog. You should see a list of files, now select the file that contains the DEN-1 Dengue virus sequence
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(eg. “den1.fasta”). The contents of the FASTA format file containing the Dengue DEN-1 sequence should now be
displayed in WordPad:

Retrieving genome sequence data using SeqinR

Instead of going to the NCBI website to retrieve sequence data from the NCBI database, you can retrieve sequence
data from NCBI directly from R, by using the SeqinR R package.

For example, you learnt above how to retrieve the DEN-1 Dengue virus genome sequence, which has NCBI
accession NC_001477, from the NCBI website. To retrieve a sequence with a particular NCBI accession, you can
use R function “getncbiseq()” below, which you will first need to copy and paste into R:

> getncbiseq <- function(accession)
{

require("seqinr") # this function requires the SeqinR R package
# first find which ACNUC database the accession is stored in:
dbs <- c("genbank","refseq","refseqViruses","bacterial")
numdbs <- length(dbs)
for (i in 1:numdbs)
{

db <- dbs[i]
choosebank(db)
# check if the sequence is in ACNUC database 'db':
resquery <- try(query(".tmpquery", paste("AC=", accession)), silent = TRUE)
if (!(inherits(resquery, "try-error")))
{

queryname <- "query2"
thequery <- paste("AC=",accession,sep="")
query(`queryname`,`thequery`)
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# see if a sequence was retrieved:
seq <- getSequence(query2$req[[1]])
closebank()
return(seq)

}
closebank()

}
print(paste("ERROR: accession",accession,"was not found"))

}

Once you have copied and pasted the function getncbiseq() into R, you can use it to retrieve a sequence from the
NCBI Nucleotide database, such as the sequence for the DEN-1 Dengue virus (accession NC_001477):

> dengueseq <- getncbiseq("NC_001477")

The variable dengueseq is a vector containing the nucleotide sequence. Each element of the vector contains one
nucleotide of the sequence. Therefore, to print out a certain subsequence of the sequence, we just need to type the
name of the vector dengueseq followed by the square brackets containing the indices for those nucleotides. For
example, the following command prints out the first 50 nucleotides of the DEN-1 Dengue virus genome sequence:

> dengueseq[1:50]
[1] "a" "g" "t" "t" "g" "t" "t" "a" "g" "t" "c" "t" "a" "c" "g" "t" "g" "g" "a"
[20] "c" "c" "g" "a" "c" "a" "a" "g" "a" "a" "c" "a" "g" "t" "t" "t" "c" "g" "a"
[39] "a" "t" "c" "g" "g" "a" "a" "g" "c" "t" "t" "g"

Note that dengueseq[1:50] refers to the elements of the vector dengueseq with indices from 1-50. These elements
contain the first 50 nucleotides of the DEN-1 Dengue virus sequence.

Writing sequence data out as a FASTA file

If you have retrieved a sequence from the NCBI database using the “getncbiseq()” function, you may want to save
the sequence to a FASTA-format file on your computer, in case you need the sequence for further analyses (either
in R or in other software).

You can write out a sequence to a FASTA-format file in R by using the “write.fasta()” function from the SeqinR R
package. The write.fasta() function requires that you tell it the name of the output file using the “file.out” argument
(input). You also need to specify the R variable that contains the sequence using the “sequences” argument, and
the name that you want to give to the sequence using the “names” argument.

For example, if you have stored the DEN-1 Dengue virus sequence in a vector dengueseq, to write out the sequence
to a FASTA-format file called “den1.fasta” that contains the sequence labelled as “DEN-1”, you can type:

> write.fasta(names="DEN-1", sequences=dengueseq, file.out="den1.fasta")

Reading sequence data into R

Using the SeqinR package in R, you can easily read a DNA sequence from a FASTA file into R. For example, we
described above how to retrieve the DEN-1 Dengue virus genome sequence from the NCBI database, or from R
using the getncbiseq() function, and save it in a FASTA format file (eg. “den1.fasta”).

You can read this FASTA format file into R using the read.fasta() function from the SeqinR R package:

> library("seqinr")
> dengue <- read.fasta(file = "den1.fasta")

Note that R expects the files that you read in (eg. “den1.fasta”) to be in the “My Documents” folder on your
computer, so if you stored “den1.fasta” somewhere else, you will have to move or copy it into “My Documents”.

The command above reads the contents of the fasta format file den1.fasta into an R object called dengue. The
variable dengue is an R list object. As explained above, a list is an R object that is like a vector, but can contain
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elements that are numeric and/or contain characters. In this case, the list dengue contains information from the
FASTA file that you have read in (ie. the name given to the dengue sequence in the FASTA file, and the DNA
sequence itself). In fact, the first element of the list object dengue contains the the DNA sequence. As described
above, we can access the elements of an R list object using double square brackets. Thus, we can store the DNA
sequence for DEN-1 Dengue virus in a variable dengueseq by typing:

> dengueseq <- dengue[[1]]

Now the variable dengueseq is a vector containing the nucleotide sequence.

Length of a DNA sequence

Once you have retrieved a DNA sequence, we can obtain some simple statistics to describe that sequence, such as
the sequence’s total length in nucleotides. In the above example, we retrieved the DEN-1 Dengue virus genome se-
quence, and stored it in the vector variable dengueseq. To subsequently obtain the length of the genome sequence,
we would use the length() function, typing:

> length(dengueseq)
[1] 10735

The length() function will give you back the length of the sequence stored in variable dengueseq, in nucleotides.
The length() function actually gives the number of elements in the input vector that you pass to it, which in this
case in the number of elements in the vector dengueseq. Since each element of the vector dengueseq contains
one nucleotide of the DEN-1 Dengue virus sequence, the result for the DEN-1 Dengue virus genome tells us the
length of its genome sequence (ie. 10735 nucleotides long).

Base composition of a DNA sequence

An obvious first analysis of any DNA sequence is to count the number of occurrences of the four different nu-
cleotides (“A”, “C”, “G”, and “T”) in the sequence. This can be done using the the table() function. For example,
to find the number of As, Cs, Gs, and Ts in the DEN-1 Dengue virus sequence (which you have put into vector
variable dengueseq, using the commands above), you would type:

> table(dengueseq)
dengueseq

a c g t
3426 2240 2770 2299

This means that the DEN-1 Dengue virus genome sequence has 3426 As, 2240 Cs, 2770 Gs and 2299 Ts.

GC Content of DNA

One of the most fundamental properties of a genome sequence is its GC content, the fraction of the sequence that
consists of Gs and Cs, ie. the %(G+C).

The GC content can be calculated as the percentage of the bases in the genome that are Gs or Cs. That is, GC
content = (number of Gs + number of Cs)*100/(genome length). For example, if the genome is 100 bp, and 20
bases are Gs and 21 bases are Cs, then the GC content is (20 + 21)*100/100 = 41%.

You can easily calculate the GC content based on the number of As, Gs, Cs, and Ts in the genome sequence. For
example, for the DEN-1 Dengue virus genome sequence, we know from using the table() function above that the
genome contains 3426 As, 2240 Cs, 2770 Gs and 2299 Ts. Therefore, we can calculate the GC content using the
command:

> (2240+2770)*100/(3426+2240+2770+2299)
[1] 46.66977
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Alternatively, if you are feeling lazy, you can use the GC() function in the SeqinR package, which gives the
fraction of bases in the sequence that are Gs or Cs.

> GC(dengueseq)
[1] 0.4666977

The result above means that the fraction of bases in the DEN-1 Dengue virus genome that are Gs or Cs is
0.4666977. To convert the fraction to a percentage, we have to multiply by 100, so the GC content as a per-
centage is 46.66977%.

DNA words

As well as the frequency of each of the individual nucleotides (“A”, “G”, “T”, “C”) in a DNA sequence, it is also
interesting to know the frequency of longer DNA “words”. The individual nucleotides are DNA words that are
1 nucleotide long, but we may also want to find out the frequency of DNA words that are 2 nucleotides long (ie.
“AA”, “AG”, “AC”, “AT”, “CA”, “CG”, “CC”, “CT”, “GA”, “GG”, “GC”, “GT”, “TA”, “TG”, “TC”, and “TT”), 3
nucleotides long (eg. “AAA”, “AAT”, “ACG”, etc.), 4 nucleotides long, etc.

To find the number of occurrences of DNA words of a particular length, we can use the count() function from the
R SeqinR package. For example, to find the number of occurrences of DNA words that are 1 nucleotide long in
the sequence dengueseq, we type:

> count(dengueseq, 1)
a c g t

3426 2240 2770 2299

As expected, this gives us the number of occurrences of the individual nucleotides. To find the number of occur-
rences of DNA words that are 2 nucleotides long, we type:

> count(dengueseq, 2)
aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt

1108 720 890 708 901 523 261 555 976 500 787 507 440 497 832 529

Note that by default the count() function includes all overlapping DNA words in a sequence. Therefore, for
example, the sequence “ATG” is considered to contain two words that are two nucleotides long: “AT” and “TG”.

If you type help(‘count’), you will see that the result (output) of the function count() is a table object. This means
that you can use double square brackets to extract the values of elements from the table. For example, to extract
the value of the third element (the number of Gs in the DEN-1 Dengue virus sequence), you can type:

> denguetable <- count(dengueseq,1)
> denguetable[[3]]
[1] 2770

The command above extracts the third element of the table produced by count(dengueseq,1), which we have stored
in the table variable denguetable.

Alternatively, you can find the value of the element of the table in column “g” by typing:

> denguetable[["g"]]
[1] 2770

Summary

In this practical, you will have learnt to use the following R functions:

1. length() for finding the length of a vector or list

2. table() for printing out a table of the number of occurrences of each type of item in a vector or list.
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These functions belong to the standard installation of R.

You have also learnt the following R functions that belong to the SeqinR package:

1. GC() for calculating the GC content for a DNA sequence

2. count() for calculating the number of occurrences of DNA words of a particular length in a DNA sequence

Links and Further Reading

Some links are included here for further reading.

For background reading on DNA sequence statistics, it is recommended to read Chapter 1 of Introduction
to Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/).

For more in-depth information and more examples on using the SeqinR package for sequence analysis, look at the
SeqinR documentation, http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

There is also a very nice chapter on “Analyzing Sequences”, which includes examples of using SeqinR for se-
quence analysis, in the book Applied statistics for bioinformatics using R by Krijnen (available online at cran.r-
project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf).

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.
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Exercises

Answer the following questions, using the R package. For each question, please record your answer, and what
you typed into R to get this answer.

Model answers to the exercises are given in Answers to the exercises on DNA Sequence Statistics (1).

Q1. What are the last twenty nucleotides of the Dengue virus genome sequence?
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Q2. What is the length in nucleotides of the genome sequence for the bacterium Mycobacterium leprae strain TN (accession NC_002677)?
Note: Mycobacterium leprae is a bacterium that is responsible for causing leprosy, which is classified by
the WHO as a neglected tropical disease. As the genome sequence is a DNA sequence, if you are retrieving
its sequence via the NCBI website, you will need to look for it in the NCBI Nucleotide database.

Q3. How many of each of the four nucleotides A, C, T and G, and any other symbols, are there in the Mycobacterium leprae TN genome sequence?
Note: other symbols apart from the four nucleotides A/C/T/G may appear in a sequence. They correspond
to positions in the sequence that are are not clearly one base or another and they are due, for example,
to sequencing uncertainties. or example, the symbol ‘N’ means ‘aNy base’, while ‘R’ means ‘A or G’
(puRine). There is a table of symbols at www.bioinformatics.org/sms/iupac.html.

Q4. What is the GC content of the Mycobacterium leprae TN genome sequence, when (i) all non-A/C/T/G nucleotides are included, (ii) non-A/C/T/G nucleotides are discarded?
Hint: look at the help page for the GC() function to find out how it deals with non-A/C/T/G nucleotides.

Q5. How many of each of the four nucleotides A, C, T and G are there in the complement of the Mycobacterium leprae TN genome sequence?
Hint: you will first need to search for a function to calculate the complement of a sequence. Once you have
found out what function to use, remember to use the help() function to find out what are the arguments
(inputs) and results (outputs) of that function. How does the function deal with symbols other than the four
nucleotides A, C, T and G? Are the numbers of As, Cs, Ts, and Gs in the complementary sequence what
you would expect?

Q6. How many occurrences of the DNA words CC, CG and GC occur in the Mycobacterium leprae TN genome
sequence?

Q7. How many occurrences of the DNA words CC, CG and GC occur in the (i) first 1000 and (ii) last 1000 nucleotides of the Mycobacterium leprae TN genome sequence?
How can you check that the subsequence that you have looked at is 1000 nucleotides long?

DNA Sequence Statistics (2)

A little more introduction to R

In the chapter on How to install R, you learnt about variables in R, such as scalars, vectors, and lists. You also
learnt how to use functions to carry out operations on variables, for example, using the log10() function to calculate
the log to the base 10 of a scalar variable x, or using the mean() function to calculate the average of the values in
a vector variable myvector:

> x <- 100
> log10(x)
[1] 2
> myvector <- c(30,16,303,99,11,111)
> mean(myvector)
[1] 95

You also learnt that you can extract an element of a vector by typing the vector name with the index of that element
given in square brackets. For example, to get the value of the 3rd element in the vector myvector, we type:

> myvector[3]
[1] 303

A useful function in R is the seq() function, which can be used to create a sequence of numbers that run from a
particular number to another particular number. For example, if we want to create the sequence of numbers from
1-100 in steps of 1 (ie. 1, 2, 3, 4, ... 97, 98, 99, 100), we can type:

> seq(1, 100, by = 1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
[91] 91 92 93 94 95 96 97 98 99 100
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We can change the step size by altering the value of the “by” argument given to the function seq(). For example,
if we want to create a sequence of numbers from 1-100 in steps of 2 (ie. 1, 3, 5, 7, ... 97, 99), we can type:

> seq(1, 100, by = 2)
[1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

[26] 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

In R, just as in programming languages such as Python, it is possible to write a for loop to carry out the same
command several times. For example, if we want to print out the square of each number between 1 and 10, we
can write the following for loop:

> for (i in 1:10) { print (i*i) }
[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36
[1] 49
[1] 64
[1] 81
[1] 100

In the for loop above, the variable i is a counter for the number of cycles through the loop. In the first cycle through
the loop, the value of i is 1, and so i * i =1 is printed out. In the second cycle through the loop, the value of i is 2,
and so i * i =4 is printed out. In the third cycle through the loop, the value of i is 3, and so i * i =9 is printed out.
The loop continues until the value of i is 10. In the tenth cycle through the loop, the value of i is 10, and so i * i
=100 is printed out.

Note that the commands that are to be carried out at each cycle of the for loop must be enclosed within curly
brackets (“{” and “}”).

You can also give a for loop a vector of numbers containing the values that you want the counter i to take in
subsequent cycles. For example, you can make a vector avector containing the numbers 2, 9, 100, and 133, and
write a for loop to print out the square of each number in vector avector:

> avector <- c(2, 9, 100, 133)
> for (i in avector) { print (i*i) }
[1] 4
[1] 81
[1] 10000
[1] 17689

How can we use a for loop to print out the square of every second number between 1 and 10? The answer is to
use the seq() function to tell the for loop to take every second number between 1 and 10:

> for (i in seq(1, 10, by = 2)) { print (i*i) }
[1] 1
[1] 9
[1] 25
[1] 49
[1] 81

In the first cycle of this loop, the value of i is 1, and so i * i =1 is printed out. In the second cycle through the
loop, the value of i is 3, and so i * i =9 is printed out. The loop continues until the value of i is 9. In the fifth cycle
through the loop, the value of i is 9, and so i * i =81 is printed out.

R allows the production of a variety of plots, including scatterplots, histograms, piecharts, and boxplots. For
example, if you have two vectors of numbers myvector1 and myvector2, you can plot a scatterplot of the values in
myvector1 against the values in myvector2 using the plot() function. If you want to label the axes on the plot, you
can do this by giving the plot() function values for its optional arguments xlab and ylab:
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> myvector1 <- c(10, 15, 22, 35, 43)
> myvector2 <- c(3, 3.2, 3.9, 4.1, 5.2)
> plot(myvector1, myvector2, xlab="myvector1", ylab="myvector2")

If you look at the help page for the plot() function, you will see that there are lots of optional arguments (inputs)
that it can take that. For example, one optional argument is the type argument, that determines the type of the
plot. By default, plot() will draw a dot at each data point, but if we set type to be “b”, then it will also draw a line
between each subsequent data point:

> plot(myvector1, myvector2, xlab="myvector1", ylab="myvector2", type="b")
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We have been using built-in R functions such as mean(), length(), print(), plot(), etc. We can also create our own
functions in R to do calculations that you want to carry out very often on different input data sets. For example,
we can create a function to calculate the value of 20 plus the square of some input number:

> myfunction <- function(x) { return(20 + (x*x)) }

This function will calculate the square of a number (x), and then add 20 to that value. The return() statement
returns the calculated value. Once you have typed in this function, the function is then available for use. For
example, we can use the function for different input numbers (eg. 10, 25):

> myfunction(10)
[1] 120
> myfunction(25)
[1] 645

You can view the code that makes up a function by typing its name (without any parentheses). For example, we
can try this by typing “myfunction”:

> myfunction
function(x) { return(20 + (x*x)) }
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When you are typing R, if you want to, you can write comments by writing the comment text after the “#” sign.
This can be useful if you want to write some R commands that other people need to read and understand. R will
ignore the comments when it is executing the commands. For example, you may want to write a comment to
explain what the function log10() does:

> x <- 100
> log10(x) # Finds the log to the base 10 of variable x.
[1] 2

Reading sequence data with SeqinR

In the previous chapter you learnt how to use to search for and download the sequence data for a given NCBI
accession from the NCBI Sequence Database, either via the NCBI website or using the getncbiseq() function in
R.

For example, you could have downloaded the sequence data for a the DEN-1 Dengue virus sequence (NCBI
accession NC_001477), and stored it on a file on your computer (eg. “den1.fasta”).

Once you have downloaded the sequence data for a particular NCBI accession, and stored it on a file on your
computer, you can then read it into R by using read.fasta function from the SeqinR R package. For example, if
you have stored the DEN-1 Dengue virus sequence in a file “den1.fasta”, you can type:

> library("seqinr") # Load the SeqinR package.
> dengue <- read.fasta(file = "den1.fasta") # Read in the file "den1.fasta".
> dengueseq <- dengue[[1]] # Put the sequence in a vector
→˓called "dengueseq".

Once you have retrieved a sequence from the NCBI Sequence Database and stored it in a vector variable such as
dengueseq in the example above, it is possible to extract subsequence of the sequence by type the name of the
vector (eg. dengueseq) followed by the square brackets containing the indices for those nucleotides. For example,
to obtain nucleotides 452-535 of the DEN-1 Dengue virus genome, we can type:

> dengueseq[452:535]
[1] "c" "g" "a" "g" "g" "g" "g" "g" "a" "g" "a" "g" "c" "c" "g" "c" "a" "c" "a"

[20] "t" "g" "a" "t" "a" "g" "t" "t" "a" "g" "c" "a" "a" "g" "c" "a" "g" "g" "a"
[39] "a" "a" "g" "a" "g" "g" "a" "a" "a" "a" "t" "c" "a" "c" "t" "t" "t" "t" "g"
[58] "t" "t" "t" "a" "a" "g" "a" "c" "c" "t" "c" "t" "g" "c" "a" "g" "g" "t" "g"
[77] "t" "c" "a" "a" "c" "a" "t" "g"

Local variation in GC content

In the previous chapter, you learnt that to find out the GC content of a genome sequence (percentage of nucleotides
in a genome sequence that are Gs or Cs), you can use the GC() function in the SeqinR package. For example, to
find the GC content of the DEN-1 Dengue virus sequence that we have stored in the vector dengueseq, we can
type:

> GC(dengueseq)
[1] 0.4666977

The output of the GC() is the fraction of nucleotides in a sequence that are Gs or Cs, so to convert it to a percentage
we need to multiply by 100. Thus, the GC content of the DEN-1 Dengue virus genome is about 0.467 or 46.7%.

Although the GC content of the whole DEN-1 Dengue virus genome sequence is about 46.7%, there is probably
local variation in GC content within the genome. That is, some regions of the genome sequence may have GC
contents quite a bit higher than 46.7%, while some regions of the genome sequence may have GC contents that are
quite a big lower than 46.7%. Local fluctuations in GC content within the genome sequence can provide different
interesting information, for example, they may reveal cases of horizontal transfer or reveal biases in mutation.
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If a chunk of DNA has moved by horizontal transfer from the genome of a species with low GC content to a species
with high GC content, the chunk of horizontally transferred DNA could be detected as a region of unusually low
GC content in the high-GC recipient genome.

On the other hand, a region unusually low GC content in an otherwise high-GC content genome could also arise
due to biases in mutation in that region of the genome, for example, if mutations from Gs/Cs to Ts/As are more
common for some reason in that region of the genome than in the rest of the genome.

A sliding window analysis of GC content

In order to study local variation in GC content within a genome sequence, we could calculate the GC content for
small chunks of the genome sequence. The DEN-1 Dengue virus genome sequence is 10735 nucleotides long. To
study variation in GC content within the genome sequence, we could calculate the GC content of chunks of the
DEN-1 Dengue virus genome, for example, for each 2000-nucleotide chunk of the genome sequence:

> GC(dengueseq[1:2000]) # Calculate the GC content of nucleotides 1-2000 of
→˓the Dengue genome
[1] 0.465
> GC(dengueseq[2001:4000]) # Calculate the GC content of nucleotides 2001-4000
→˓of the Dengue genome
[1] 0.4525
> GC(dengueseq[4001:6000]) # Calculate the GC content of nucleotides 4001-6000
→˓of the Dengue genome
[1] 0.4705
> GC(dengueseq[6001:8000]) # Calculate the GC content of nucleotides 6001-8000
→˓of the Dengue genome
[1] 0.479
> GC(dengueseq[8001:10000]) # Calculate the GC content of nucleotides 8001-10000
→˓of the Dengue genome
[1] 0.4545
> GC(dengueseq[10001:10735]) # Calculate the GC content of nucleotides 10001-10735
→˓of the Dengue genome
[1] 0.4993197

From the output of the above calculations, we see that the region of the DEN-1 Dengue virus genome from
nucleotides 1-2000 has a GC content of 46.5%, while the region of the Dengue genome from nucleotides 2001-
4000 has a GC content of about 45.3%. Thus, there seems to be some local variation in GC content within the
Dengue genome sequence.

Instead of typing in the commands above to tell R to calculate the GC content for each 2000-nucleotide chunk
of the DEN-1 Dengue genome, we can use a for loop to carry out the same calculations, but by typing far fewer
commands. That is, we can use a for loop to take each 2000-nucleotide chunk of the DEN-1 Dengue virus genome,
and to calculate the GC content of each 2000-nucleotide chunk. Below we will explain the following for loop that
has been written for this purpose:

> starts <- seq(1, length(dengueseq)-2000, by = 2000)
> starts
[1] 1 2001 4001 6001 8001
> n <- length(starts) # Find the length of the vector "starts"
> for (i in 1:n) {

chunk <- dengueseq[starts[i]:(starts[i]+1999)]
chunkGC <- GC(chunk)
print (chunkGC)

}
[1] 0.465
[1] 0.4525
[1] 0.4705
[1] 0.479
[1] 0.4545

The command “starts <- seq(1, length(dengueseq)-2000, by = 2000)” stores the result of the seq() command in the
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vector starts, which contains the values 1, 2001, 4001, 6001, and 8001.

We set the variable n to be equal to the number of elements in the vector starts, so it will be 5 here, since the
vector starts contains the five elements 1, 2001, 4001, 6001 and 8001. The line “for (i in 1:n)” means that the
counter i will take values of 1-5 in subsequent cycles of the for loop. The for loop above is spread over several
lines. However, R will not execute the commands within the for loop until you have typed the final “}” at the end
of the for loop and pressed “Return”.

Each of the three commands within the for loop are carried out in each cycle of the loop. In the first cycle of
the loop, i is 1, the vector variable chunk is used to store the region from nucleotides 1-2000 of the Dengue
virus sequence, the GC content of that region is calculated and stored in the variable chunkGC, and the value of
chunkGC is printed out.

In the second cycle of the loop, i is 2, the vector variable chunk is used to store the region from nucleotides
2001-4000 of the Dengue virus sequence, the GC content of that region is calculated and stored in the variable
chunkGC, and the value of chunkGC is printed out. The loop continues until the value of i is 5. In the fifth cycle
through the loop, the value of i is 5, and so the GC content of the region from nucleotides 8001-10000 is printed
out.

Note that we stop the loop when we are looking at the region from nucleotides 8001-10000, instead of continuing
to another cycle of the loop where the region under examiniation would be from nucleotides 10001-12000. The
reason for this is because the length of the Dengue virus genome sequence is just 10735 nucleotides, so there is
not a full 2000-nucleotide region from nucleotide 10001 to the end of the sequence at nucleotide 10735.

The above analysis of local variation in GC content is what is known as a sliding window analysis of GC content.
By calculating the GC content in each 2000-nucleotide chunk of the Dengue virus genome, you are effectively
sliding a 2000-nucleotide window along the DNA sequence from start to end, and calculating the GC content in
each non-overlapping window (chunk of DNA).

Note that this sliding window analysis of GC content is a slightly simplified version of the method usually carried
out by bioinformaticians. In this simplified version, we have calculated the GC content in non-overlapping win-
dows along a DNA sequence. However, it is more usual to calculate GC content in overlapping windows along a
sequence, although that makes the code slightly more complicated.

A sliding window plot of GC content

It is common to use the data generated from a sliding window analysis to create a sliding window plot of GC
content. To create a sliding window plot of GC content, you plot the local GC content in each window of the
genome, versus the nucleotide position of the start of each window. We can create a sliding window plot of GC
content by typing:

> starts <- seq(1, length(dengueseq)-2000, by = 2000)
> n <- length(starts) # Find the length of the vector "starts"
> chunkGCs <- numeric(n) # Make a vector of the same length as vector "starts",
→˓but just containing zeroes
> for (i in 1:n) {

chunk <- dengueseq[starts[i]:(starts[i]+1999)]
chunkGC <- GC(chunk)
print(chunkGC)
chunkGCs[i] <- chunkGC

}
> plot(starts,chunkGCs,type="b",xlab="Nucleotide start position",ylab="GC content")
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In the code above, the line “chunkGCs <- numeric(n)” makes a new vector chunkGCs which has the same number
of elements as the vector starts (5 elements here). This vector chunkGCs is then used within the for loop for
storing the GC content of each chunk of DNA.

After the loop, the vector starts can be plotted against the vector chunkGCs using the plot() function, to get a plot
of GC content against nucleotide position in the genome sequence. This is a sliding window plot of GC content.

You may want to use the code above to create sliding window plots of GC content of different species’ genomes,
using different windowsizes. Therefore, it makes sense to write a function to do the sliding window plot, that can
take the windowsize that the user wants to use and the sequence that the user wants to study as arguments (inputs):

> slidingwindowplot <- function(windowsize, inputseq)
{

starts <- seq(1, length(inputseq)-windowsize, by = windowsize)
n <- length(starts) # Find the length of the vector "starts"
chunkGCs <- numeric(n) # Make a vector of the same length as vector "starts",

→˓but just containing zeroes
for (i in 1:n) {

chunk <- inputseq[starts[i]:(starts[i]+windowsize-1)]
chunkGC <- GC(chunk)
print(chunkGC)
chunkGCs[i] <- chunkGC
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}
plot(starts,chunkGCs,type="b",xlab="Nucleotide start position",ylab="GC content

→˓")
}

This function will make a sliding window plot of GC content for a particular input sequence inputseq specified
by the user, using a particular windowsize windowsize specified by the user. Once you have typed in this function
once, you can use it again and again to make sliding window plots of GC contents for different input DNA
sequences, with different windowsizes. For example, you could create two different sliding window plots of the
DEN-1 Dengue virus genome sequence, using windowsizes of 3000 and 300 nucleotides, respectively:

> slidingwindowplot(3000, dengueseq)

> slidingwindowplot(300, dengueseq)
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Over-represented and under-represented DNA words

In the previous chapter, you learnt that the count() function in the SeqinR R package can calculate the frequency
of all DNA words of a certain length in a DNA sequence. For example, if you want to know the frequency of all
DNA words that are 2 nucleotides long in the Dengue virus genome sequence, you can type:

> count(dengueseq, 2)
aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt

1108 720 890 708 901 523 261 555 976 500 787 507 440 497 832 529

It is interesting to identify DNA words that are two nucleotides long (“dinucleotides”, ie. “AT”, “AC”, etc.) that
are over-represented or under-represented in a DNA sequence. If a particular DNA word is over-represented in
a sequence, it means that it occurs many more times in the sequence than you would have expected by chance.
Similarly, if a particular DNA word is under-represented in a sequence, it means it occurs far fewer times in the
sequence than you would have expected.

A statistic called 𝜌 (Rho) is used to measure how over- or under-represented a particular DNA word is. For a
2-nucleotide (dinucleotide) DNA word 𝜌 is calculated as:

𝜌(xy) = fxy/(fx*fy),
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where fxy and fx are the frequencies of the DNA words xy and x in the DNA sequence under study. For example,
the value of 𝜌 for the DNA word “TA” can be calculated as: 𝜌(TA) = fTA/(fT* fA), where fTA, fT and fA are the
frequencies of the DNA words “TA”, “T” and “A” in the DNA sequence.

The idea behind the 𝜌 statistic is that, if a DNA sequence had a frequency fx of a 1-nucleotide DNA word x, and a
frequency fy of a 1-nucleotide DNA word y, then we expect the frequency of the 2-nucleotide DNA word xy to be
fx* fy. That is, the frequencies of the 2-nucleotide DNA words in a sequence are expected to be equal the products
of the specific frequencies of the two nucleotides that compose them. If this were true, then 𝜌 would be equal to
1. If we find that 𝜌 is much greater than 1 for a particular 2-nucleotide word in a sequence, it indicates that that
2-nucleotide word is much more common in that sequence than expected (ie. it is over-represented).

For example, say that your input sequence has only 5% Ts (ie. fT = 0.05). In a random DNA sequence with 5%
Ts, you would expect to see the word “TT” very infrequently. In fact, we would only expect 0.05 * 0.05=0.0025
(0.25%) of 2-nucleotide words to be TTs (ie. we expect fTT = fT* fT). This is because Ts are rare, so they are
expected to be adjacent to each other very infrequently if the few Ts are randomly scattered throughout the DNA.
Therefore, if you see lots of TT 2-nucleotide words in your real input sequence (eg. fTT = 0.3, so 𝜌 = 0.3/0.0025
= 120), you would suspect that natural selection has acted to increase the number of occurrences of the TT word
in the sequence (presumably because it has some beneficial biological function).

To find over-represented and under-represented DNA words that are 2 nucleotides long in the DEN-1 Dengue
virus sequence, we can calculate the 𝜌 statistic for each 2-nucleotide word in the sequence. For example, given
the number of occurrences of the individual nucleotides A, C, G and T in the Dengue sequence, and the number
of occurrences of the DNA word GC in the sequence (500, from above), we can calculate the value of 𝜌 for the
2-nucleotide DNA word “GC”, using the formula 𝜌(GC) = fGC/(fG * fC), where fGC, fG and fC are the frequencies
of the DNA words “GC”, “G” and “C” in the DNA sequence:

> count(dengueseq, 1) # Get the number of occurrences of 1-nucleotide DNA words
a c g t

3426 2240 2770 2299
> 2770/(3426+2240+2770+2299) # Get fG
[1] 0.2580345
> 2240/(3426+2240+2770+2299) # Get fC
[1] 0.2086633
> count(dengueseq, 2) # Get the number of occurrences of 2-nucleotide DNA words

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
1108 720 890 708 901 523 261 555 976 500 787 507 440 497 832 529

> 500/(1108+720+890+708+901+523+261+555+976+500+787+507+440+497+832+529) # Get fGC
[1] 0.04658096
> 0.04658096/(0.2580345*0.2086633) # Get rho(GC)
[1] 0.8651364

We calculate a value of 𝜌(GC) of approximately 0.865. This means that the DNA word “GC” is about 0.865 times
as common in the DEN-1 Dengue virus sequence than expected. That is, it seems to be slightly under-represented.

Note that if the ratio of the observed to expected frequency of a particular DNA word is very low or very high,
then we would suspect that there is a statistical under-representation or over-representation of that DNA word.
However, to be sure that this over- or under-representation is statistically significant, we would need to do a
statistical test. We will not deal with the topic of how to carry out the statistical test here.

Summary

In this chapter, you will have learnt to use the following R functions:

1. seq() for creating a sequence of numbers

2. print() for printing out the value of a variable

3. plot() for making a plot (eg. a scatterplot)

4. numeric() for making a numeric vector of a particular length

5. function() for making a function
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All of these functions belong to the standard installation of R. You also learnt how to use for loops to carry out the
same operation again and again, each time on different inputs.

Links and Further Reading

Some links are included here for further reading.

For background reading on DNA sequence statistics, it is recommended to read Chapter 1 of Introduction
to Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/).

For more in-depth information and more examples on using the SeqinR package for sequence analysis, look at the
SeqinR documentation, http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

There is also a very nice chapter on “Analyzing Sequences”, which includes examples of using SeqinR for se-
quence analysis, in the book Applied statistics for bioinformatics using R by Krijnen (available online at cran.r-
project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf).

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.
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Exercises

Answer the following questions, using the R package. For each question, please record your answer, and what
you typed into R to get this answer.

Model answers to the exercises are given in Answers to the exercises on DNA Sequence Statistics (2).

Q1. Draw a sliding window plot of GC content in the DEN-1 Dengue virus genome, using a window size of 200 nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?
Make a sketch of each plot that you draw. At what position (in base-pairs) in the genome is there the largest
change in local GC content (approximate position is fine here)? Compare the sliding window plots of GC
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content created using window sizes of 200 and 2000 nucleotides. How does window size affect your ability
to detect differences within the Dengue virus genome?

Q2. Draw a sliding window plot of GC content in the genome sequence for the bacterium Mycobacterium leprae strain TN (accession NC_002677) using a window size of 20000 nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?
Make a sketch of each plot that you draw. Write down the approximate nucleotide position of the highest
peak or lowest trough that you see. Why do you think a window size of 20000 nucleotides was chosen?
What do you see if you use a much smaller windowsize (eg. 200 nucleotides) or a much larger windowsize
(eg. 200,000 nucleotides)?

Q3. Write a function to calculate the AT content of a DNA sequence (ie. the fraction of the nucleotides in the sequence that are As or Ts). What is the AT content of the Mycobacterium leprae TN genome?
Hint: use the function count() to make a table containing the number of As, Gs, Ts and Cs in the sequence.
Remember that function count() produces a table object, and you can access the elements of a table object
using double square brackets. Do you notice a relationship between the AT content of the Mycobacterium
leprae TN genome, and its GC content?

Q4. Write a function to draw a sliding window plot of AT content. Use it to make a sliding window plot of AT content along the Mycobacterium leprae TN genome, using a windowsize of 20000 nucleotides. Do you notice any relationship between the sliding window plot of GC content along the Mycobacterium leprae genome, and the sliding window plot of AT content?
Make a sketch of the plot that you draw.

Q5. Is the 3-nucleotide word GAC GC over-represented or under-represented in the Mycobacterium leprae TN genome sequence?
What is the frequency of this word in the sequence? What is the expected frequency of this word in the
sequence? What is the 𝜌 (Rho) value for this word? How would you figure out whether there is already an
R function to calculate 𝜌 (Rho)? Is there one that you could use?

Sequence Databases

The NCBI Sequence Database

All published genome sequences are available over the internet, as it is a requirement of every scientific journal
that any published DNA or RNA or protein sequence must be deposited in a public database. The main resources
for storing and distributing sequence data are three large databases: the NCBI database (www.ncbi.nlm.nih.gov/),
the European Molecular Biology Laboratory (EMBL) database (www.ebi.ac.uk/embl/, and the DNA Database
of Japan (DDBJ) database (www.ddbj.nig.ac.jp/). These databases collect all publicly available DNA, RNA and
protein sequence data and make it available for free. They exchange data nightly, so contain essentially the same
data.

In this chapter we will discuss the NCBI database. Note however that it contains essentially the same data as in
the EMBL/DDBJ databases.

Sequences in the NCBI Sequence Database (or EMBL/DDBJ) are identified by an accession number. This is a
unique number that is only associated with one sequence. For example, the accession number NC_001477 is for
the DEN-1 Dengue virus genome sequence. The accession number is what identifies the sequence. It is reported
in scientific papers describing that sequence.

As well as the sequence itself, for each sequence the NCBI database (or EMBL/DDBJ databases) also stores some
additional annotation data, such as the name of the species it comes from, references to publications describing
that sequence, etc. Some of this annotation data was added by the person who sequenced a sequence and submitted
it to the NCBI database, while some may have been added later by a human curator working for NCBI.

The NCBI database contains several sub-databases, the most important of which are:

• the NCBI Nucleotide database: contains DNA and RNA sequences

• the NCBI Protein database: contains protein sequences

• EST: contains ESTs (expressed sequence tags), which are short sequences derived from mRNAs

• the NCBI Genome database: contains DNA sequences for whole genomes

• PubMed: contains data on scientific publications
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Searching for an accession number in the NCBI database

In the DNA Sequence Statistics chapter (1), you learnt how to obtain a FASTA file containing the DNA sequence
corresponding to a particular accession number, eg. accession number NC_001477 (the DEN-1 Dengue virus
genome sequence), either via the NCBI website or using the getncbiseq() function in R.

As explained in the DNA Sequence Statistics (1) chapter, the FASTA format is a file format commonly used to
store sequence information. The first line starts with the character ‘>’ followed by a name and/or description for
the sequence. Subsequent lines contain the sequence itself.

>mysequence1
ACATGAGACAGACAGACCCCCAGAGACAGACCCCTAGACACAGAGAGAG
TATGCAGGACAGGGTTTTTGCCCAGGGTGGCAGTATG

A FASTA file can contain more than one sequence. If a FASTA file contains many sequences, then for each
sequence it will have a header line starting with ‘>’ followed by the sequence itself.

>mysequence1
ACATGAGACAGACAGACCCCCAGAGACAGACCCCTAGACACAGAGAGAG
TATGCAGGACAGGGTTTTTGCCCAGGGTGGCAGTATG
>mysequence2
AGGATTGAGGTATGGGTATGTTCCCGATTGAGTAGCCAGTATGAGCCAG
AGTTTTTTACAAGTATTTTTCCCAGTAGCCAGAGAGAGAGTCACCCAGT
ACAGAGAGC

NCBI Sequence Format (NCBI Format)

As mentioned above, for each sequence the NCBI database stores some extra information such as the species that
it came from, publications describing the sequence, etc. This information is stored in the NCBI entry or NCBI
record for the sequence. The NCBI entry for a sequence can be viewed by searching the NCBI database for the
accession number for that sequence. The NCBI entries for sequences are stored in a particular format, known as
NCBI format.

To view the NCBI entry for the DEN-1 Dengue virus (which has accession NC_001477), follow these steps:

1. Go to the NCBI website (www.ncbi.nlm.nih.gov).

2. Search for the accession number.

3. On the results page, if your sequence corresponds to a nucleotide (DNA or RNA) sequence, you should see
a hit in the Nucleotide database, and you should click on the word ‘Nucleotide’ to view the NCBI entry for
the hit. Likewise, if your sequence corresponds to a protein sequence, you should see a hit in the Protein
database, and you should click on the word ‘Protein’ to view the NCBI entry for the hit.

4. After you click on ‘Nucleotide’ or ‘Protein’ in the previous step, the NCBI entry for the accession will
appear.

For example, the NCBI entry for the DEN-1 Dengue virus genome sequence (NCBI accession NC_001477) looks
like this:
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The NCBI entry for an accession contains a lot of information about the sequence, such as papers describing it,
features in the sequence, etc. The ‘DEFINITION’ field gives a short description for the sequence. The ‘ORGAN-
ISM’ field in the NCBI entry identifies the species that the sequence came from. The ‘REFERENCE’ field contains
scientific publications describing the sequence. The ‘FEATURES’ field contains information about the location
of features of interest inside the sequence, such as regulatory sequences or genes that lie inside the sequence. The
‘ORIGIN’ field gives the sequence itself.

RefSeq

When carrying out searches of the NCBI database, it is important to bear in mind that the database may contain
redundant sequences for the same gene that were sequenced by different laboratories (because many different labs
have sequenced the gene, and submitted their sequences to the NCBI database).

There are also many different types of nucleotide sequences and protein sequences in the NCBI database. With
respect to nucleotide sequences, some many be entire genomic DNA sequences, some may be mRNAs, and some
may be lower quality sequences such as expressed sequence tags (ESTs, which are derived from parts of mRNAs),
or DNA sequences of contigs from genome projects.

Furthermore, some sequences may be manually curated so that the associated entries contain extra information,
but the majority of sequences are uncurated.

As mentioned above, the NCBI database often contains redundant information for a gene, contains sequences of
varying quality, and contains both uncurated and curated data.

As a result, NCBI has made a special database called RefSeq (reference sequence database), which is a subset of
the NCBI database. The data in RefSeq is manually curated, is high quality sequence data, and is non-redundant;
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this means that each gene (or splice-form of a gene, in the case of eukaryotes), protein, or genome sequence is
only represented once.

The data in RefSeq is curated and is of much higher quality than the rest of the NCBI Sequence Database. How-
ever, unfortunately, because of the high level of manual curation required, RefSeq does not cover all species, and
is not comprehensive for the species that are covered so far.

You can easily tell that a sequence comes from RefSeq because its accession number starts with particular sequence
of letters. That is, accessions of RefSeq sequences corresponding to protein records usually start with ‘NP_’, and
accessions of RefSeq curated complete genome sequences usually start with ‘NC_’ or ‘NS_’.

Querying the NCBI Database

You may need to interrogate the NCBI Database to find particular sequences or a set of sequences matching given
criteria, such as:

• The sequence with accession NC_001477

• The sequences published in Nature 460:352-358

• All sequences from Chlamydia trachomatis

• Sequences submitted by Matthew Berriman

• Flagellin or fibrinogen sequences

• The glutamine synthetase gene from Mycobacteriuma leprae

• The upstream control region of the Mycobacterium leprae dnaA gene

• The sequence of the Mycobacterium leprae DnaA protein

• The genome sequence of Trypanosoma cruzi

• All human nucleotide sequences associated with malaria

There are two main ways that you can query the NCBI database to find these sets of sequences. The first possibility
is to carry out searches on the NCBI website. The second possiblity is to carry out searches from R.

Below, we will explain how to use both methods to carry out queries on the NCBI database. In general, the two
methods should give the same result, but in some cases they do not, for various reasons, as shall be explained
below.

Querying the NCBI Database via the NCBI Website

If you are carrying out searches on the NCBI website, to narrow down your searches to specific types of sequences
or to specific organisms, you will need to use “search tags”.

For example, the search tags “[PROP]” and “[ORGN]” let you restrict your search to a specific subset of the NCBI
Sequence Database, or to sequences from a particular taxon, respectively. Here is a list of useful search tags, which
we will explain how to use below:

Search
tag

Example Restricts your search to sequences:

[AC] NC_001477[AC] With a particular accession number
[ORGN] Fungi[ORGN] From a particular organism or taxon
[PROP] biomol_mRNA[PROP] Of a specific type (eg. mRNA) or from a specific database (eg.

RefSeq)
[JOUR] Nature[JOUR] Described in a paper published in a particular journal
[VOL] 531[VOL] Described in a paper published in a particular journal volume
[PAGE] 27[PAGE] Described in a paper with a particular start-page in a journal
[AU] “Smith J”[AU] Described in a paper, or submitted to NCBI, by a particular author
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To carry out searches of the NCBI database, you first need to go to the NCBI website, and type your search
query into the search box at the top. For example, to search for all sequences from Fungi, you would type
“Fungi[ORGN]” into the search box on the NCBI website.

You can combine the search tags above by using “AND”, to make more complex searches. For example, to find
all mRNA sequences from Fungi, you could type “Fungi[ORGN] AND biomol_mRNA[PROP]” in the search box
on the NCBI website.

Likewise, you can also combine search tags by using “OR”, for example, to search for all mRNA sequences from
Fungi or Bacteria, you would type “(Fungi[ORGN] OR Bacteria[ORGN]) AND biomol_mRNA[PROP]” in the
search box. Note that you need to put brackets around “Fungi[ORGN] OR Bacteria[ORGN]” to specify that the
word “OR” refers to these two search tags.

Here are some examples of searches, some of them made by combining search terms using “AND”:

Typed in the search box Searches for sequences:
NC_001477[AC] With accession number NC_001477
Nature[JOUR] AND 460[VOL] AND
352[PAGE]

Published in Nature 460:352-358

“Chlamydia trachomatis”[ORGN] From the bacterium Chlamydia trachomatis
“Berriman M”[AU] Published in a paper, or submitted to NCBI, by M. Berriman
flagellin OR fibrinogen Which contain the word ‘flagellin’ or ‘fibrinogen’ in their

NCBI record
“Mycobacterium leprae”[ORGN] AND
dnaA

Which are from M. leprae, and contain “dnaA” in their NCBI
record

“Homo sapiens”[ORGN] AND “colon
cancer”

Which are from human, and contain “colon cancer” in their
NCBI record

“Homo sapiens”[ORGN] AND malaria Which are from human, and contain “malaria” in their NCBI
record

“Homo sapiens”[ORGN] AND
biomol_mrna[PROP]

Which are mRNA sequences from human

“Bacteria”[ORGN] AND
srcdb_refseq[PROP]

Which are RefSeq sequences from Bacteria

“colon cancer” AND srcdb_refseq[PROP] From RefSeq, which contain “colon cancer” in their NCBI
record

Note that if you are searching for a phrase such as “colon cancer” or “Chlamydia trachomatis, you need to put the
phrase in inverted commas when typing it into the search box. This is because if you type the phrase in the search
box without using inverted commas, the search will be for NCBI records that contain either of the two words
‘colon’ or ‘cancer’ (or either of the two words ‘Chlamydia’ or ‘trachomatis’), not necessarily both words.

As mentioned above, the NCBI database contains several sub-databases, including the NCBI Nucleotide database
and the NCBI Protein database. If you go to the NCBI website, and type one of the search queries above in the
search box at the top of the page, the results page will tell you how many matching NCBI records were found in
each of the NCBI sub-databases.

For example, if you search for “Chlamydia trachomatis[ORGN]”, you will get matches to proteins from C.
trachomatis in the NCBI Protein database, matches to DNA and RNA sequences from C. trachomatis in the
NCBI Nucleotide database, matches to whole genome sequences for C. trachomatis strains in the NCBI Genome
database, and so on:
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Alternatively, if you know in advance that you want to search a particular sub-database, for example, the NCBI
Protein database, when you go to the NCBI website, you can select that sub-database from the drop-down list
above the search box, so that you will search that sub-database:

Example: finding the sequences published in Nature 460:352-358

For example, if you want to find sequences published in Nature 460:352-358, you can use the “[JOUR]”, “[VOL]”
and “[PAGE]” search terms. That is, you would go to the NCBI website and type in the search box on the top:
“Nature”[JOUR] AND 460[VOL] AND 352[PAGE], where [JOUR] specifies the journal name, [VOL] the volume
of the journal the paper is in, and [PAGE] the page number.
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This should bring up a results page with “50890” beside the word “Nucleotide”, and “1” beside the word
“Genome”, and “25701” beside the word “Protein”, indicating that there were 50890 hits to sequence records
in the Nucleotide database, which contains DNA and RNA sequences, and 1 hit to the Genome database, which
contains genome sequences, and 25701 hits to the Protein database, which contains protein sequences:

If you click on the word “Nucleotide”, it will bring up a webpage with a list of links to the NCBI sequence records
for those 50890 hits. The 50890 hits are all contigs from the schistosome worm Schistosoma mansoni.

Likewise, if you click on the word “Protein”, it will bring up a webpage with a list of links to the NCBI sequence
records for the 25701 hits, and you will see that the hits are all predicted proteins for Schistosoma mansoni.

If you click on the word “Genome”, it will bring you to the NCBI record for the Schistosoma mansoni genome
sequence, which has NCBI accession NS_00200. Note that the accession starts with “NS_”, which indicates that
it is a RefSeq accession.

Therefore, in Nature volume 460, page 352, the Schistosoma mansoni genome sequence was published, along
with all the DNA sequence contigs that were sequenced for the genome project, and all the predicted proteins for
the gene predictions made in the genome sequence. You can view the original paper on the Nature website at
http://www.nature.com/nature/journal/v460/n7253/abs/nature08160.html.

Note: Schistmosoma mansoni is a parasitic worm that is responsible for causing schistosomiasis, which is classi-
fied by the WHO as a neglected tropical disease.
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Querying the NCBI Database via R

Instead of carrying out searches of the NCBI database on the NCBI website, you can carry out searches directly
from R by using the SeqinR R package.

It is possible to use the SeqinR R package to retrieve sequences from these databases. The SeqinR package was
written by the group that created the ACNUC database in Lyon, France (http://pbil.univ-lyon1.fr/databases/acnuc/
acnuc.html). The ACNUC database is a database that contains most of the data from the NCBI Sequence Database,
as well as data from other sequence databases such as UniProt and Ensembl.

An advantage of the ACNUC database is that it brings together data from various different sources, and makes it
easy to search, for example, by using the SeqinR R package.

As will be explained below, the ACNUC database is organised into various different ACNUC (sub)-databases,
which contain different parts of the NCBI database, and when you want to search the NCBI database via R, you
will need to specify which ACNUC sub-database the NCBI data that you want to query is stored in.

To obtain a full list of the ACNUC sub-databases that you can access using SeqinR, you can use the “choosebank()”
function from SeqinR:

> library("seqinr") # Load the SeqinR R package
> choosebank() # List all the sub-databases in ACNUC

[1] "genbank" "embl" "emblwgs" "swissprot"
[5] "ensembl" "hogenom" "hogenomdna" "hovergendna"
[9] "hovergen" "hogenom4" "hogenom4dna" "homolens"
[13] "homolensdna" "hobacnucl" "hobacprot" "phever2"
[17] "phever2dna" "refseq" "nrsub" "greviews"
[21] "bacterial" "protozoan" "ensbacteria" "ensprotists"
[25] "ensfungi" "ensmetazoa" "ensplants" "mito"
[29] "polymorphix" "emglib" "taxobacgen" "refseqViruses"

Alas, the ACNUC sub-databases do not have a one-to-one correspondence with the NCBI sub-databases (the
NCBI Protein database, NCBI EST database, NCBI Genome database, etc.)!

Three of the most important sub-databases in ACNUC which can be searched from R are:

• “genbank”: this contains DNA and RNA sequences from the NCBI Sequence Database, except for certain
classes of sequences (eg. draft genome sequence data from genome sequencing projects)

• “refseq”: this contains DNA and RNA sequences from Refseq, the curated part of the NCBI Sequence
Database

• “refseqViruses”: this contains DNA, RNA and proteins sequences from viruses from RefSeq

You can find more information about what each of these ACNUC databases contains by looking at the ACNUC
website.

You can carry out complex queries using the “query()” function from the SeqinR package. If you look at the help
page for the query() function (by typing “help(query)”, you will see that it allows you to specify criteria that you
require the sequences to fulfill.

For example, to search for a sequence with a particular NCBI accession, you can use the “AC=” argument in
“query()”. The “query()” function will then search for sequences in the NCBI Sequence Database that match your
criteria.

Just as you can use “AC=” to specify an accession in a search, you can specify that you want to find sequences
whose NCBI records contain a certain keywords by using “K=” as an argument (input) to the “query()” function.
Likewise you can limit a search to either DNA or mRNA sequences by using the “M=” argument for the “query()”
function. Here are some more possible arguments you can use in the “query()” function:
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Argument Example Restricts your search to sequences:
“AC=” “AC=NC_001477” With a particular accession number
“SP=” “SP=Chlamydia” From a particular organism or taxon
“M=” “M=mRNA” Of a specific type (eg. mRNA)
“J=” “J=Nature” Described in a paper published in a particular journal
“R=” “R=Nature/460/352” Described in a paper in a particular journal, volume and start-page
“AU=” “AU=Smith” Described in a paper, or submitted to NCBI, by a particular author

The full list of possible arguments for the “query()” funtion are given on its help page. Here are some examples
using the query function:

Input to the query() function Searches for sequences:
“AC=NC_001477” With accession number NC_001477
“R=Nature/460/352” Published in Nature 460:352-358
“SP=Chlamydia trachomatis” From the bacterium Chlamydia trachomatis
“AU=Berriman” Published in a paper, or submitted to NCBI, by someone called

Berriman
“K=flagellin OR K=fibrinogen” Which have the keyword ‘flagellin’ or ‘fibrinogen’
“SP=Mycobacterium leprae AND
K=dnaA”

Which are from M. leprae, and have the keyword “dnaA”

“SP=Homo sapiens AND K=colon
cancer”

Which are from human, and have the keyword “colon cancer”

“SP=Homo sapiens AND K=malaria” Which are from human, and have the keyword “malaria”
“SP=Homo sapiens AND M=mrna” Which are mRNA sequences from human
“SP=Bacteria” Which are sequences from Bacteria

As explained above, the ACNUC database contains the NCBI sequence data organised into several sub-databases,
and you can view the list of those sub-databases by using the “choosebank()” function from the SeqinR package.
When you want to use “query()” to carry out a particular sub-database (eg. “genbank”, which contains DNA and
RNA sequences from the NCBI Sequence Database), you need to first specify the database that you want to search
by using the “choosebank()” function, for example:

> choosebank("genbank") # Specify that we want to search the 'genbank' ACNUC sub-
→˓database

Likewise, to specify that we want to search the ‘refseq’ ACNUC sub-database, which contains sequences from the
NCBI RefSeq database, we would type:

> choosebank("refseq") # Specify that we want to search the 'refseq' ACNUC sub-
→˓database

Once you have specified which ACNUC sub-database you want to search, you can carry out a search of that
sub-database by using the “query()” function. You need to pass the “query()” function both a name for your
query (which you can make up), and the query itself (which will be in the format of the examples in the table
above). For example, if we want to search for RefSeq sequences from Bacteria, we might decide to call our query
“RefSeqBact”, and we would call the “query()” function as follows:

> query("RefSeqBact", "SP=Bacteria")

As explained below, the results of the search are stored in a list variable called “RefSeqBact”, and can be retrieved
from that list variable. The last thing to do once you have completed your search is to close the connection to the
ACNUC sub-database that you were searching, by typing:

> closebank()

Thus, there are three steps involved in carrying out a query using SeqinR: first use “choosebank()” to select the
ACNUC sub-database to search, secondly use “query()” to query the database, and thirdly use “closebank()” to
close the connection to the ACNUC sub-database.

Another example could be to search for mRNA sequences from the parasitic worm Schistosoma mansoni in the
NCBI Nucleotide database. The appropriate ACNUC sub-database to search is the “genbank” ACNUC sub-
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database. We may decide to call our search “SchistosomamRNA”. Therefore, to carry out the search, we type in
R:

> choosebank("genbank")
> query("SchistosomamRNA", "SP=Schistosoma mansoni AND M=mrna")
> closebank()

Example: finding the sequence for the DEN-1 Dengue virus genome

Another example could be to search for the DEN-1 Dengue virus genome sequence, which has accession
NC_001477. This is a viral genome sequence, and so should be in the ACNUC sub-database “refSeqViruses”.
Thus to search for this sequence, calling our search “Dengue1”, we type in R:

> choosebank("refseqViruses")
> query("Dengue1", "AC=NC_001477")

The result of the search is now stored in the list variable Dengue1. Remember that a list is an R object that is
like a vector, but can contain elements that are numeric and/or contain characters. In this case, the list Dengue1
contains information on the NCBI records that match the query (ie. information on the NCBI record for accession
NC_001477).

If you look at the help page for “query()”, the details of the arguments are given under the heading “Arguments”,
and the details of the results (outputs) are given under the heading “Value”. If you read this now, you will see
that it tells us that the result of the “query()” function is a list with six different named elements, named “call”,
“name”, “nelem”, “typelist”, “req”, and “socket”. The content of each of these six named elements is explained,
for example, the “nelem” element contains the number of sequences that match the query, and the “req” element
contains their accession numbers.

In our example, the list object Dengue1 is an output of the “query()” function, and so has each of these six named
elements, as we can find out by using the “attributes()” function, and looking at the named elements listed under
the heading “$names”:

> attributes(Dengue1)
$names
[1] "call" "name" "nelem" "typelist" "req" "socket"
$class
[1] "qaw"

As explained in the brief introduction to R, we can retrieve the value for each of the named elements in the list
Dengue1 by using “$”, followed by the element’s name, for example, to get the value of the element named
“nelem” in the list Dengue1, we type:

> Dengue1$nelem
[1] 1

This tells us that there was one sequence in the ‘refseqViruses’ ACNUC database that matched the query. This is
what we would expect, as there should only be one sequence corresponding to accession NC_001477.

To obtain the accession numbers of the sequence found, we can type:

> Dengue1$req
[[1]]

name length frame ncbicg
"NC_001477" "10735" "0" "1"

As expected, the accession number of the matching sequence is NC_001477.

When you type “attributes(Dengue1)” you can see that there are two headings, “$names”, and “$class”. As
explained above, the named elements of the list variable Dengue1 are listed under the heading “$names”. In fact,
the headings “$names” and “$class” are two attributes of the list variable Dengue1. We can retrieve the values of
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the attributes of a variable using the “attr()” function. For example, to retrieve the value of the attribute “$names”
of Dengue1, we type:

> attr(Dengue1, "names")
[1] "call" "name" "nelem" "typelist" "req" "socket"

This gives us the value of the attribute “$names”, which contains the the names of the named elements of the list
variable Dengue1. Similarly, we can retrieve the value of the a attribute “$class” of Dengue1, we type:

> attr(Dengue1, "class")
[1] "qaw"

This tells us that the value of the attribute “$class” is “qaw”.

The final step in retrieving a genomic DNA sequence is to use the “getSequence()” function to tell R to retrieve the
sequence data. The command below uses “getSequence()” to retrieve the sequence data for the DEN-1 Dengue
virus genome, and puts the sequence into a variable dengueseq:

> dengueseq <- getSequence(Dengue1$req[[1]])

Note that the input to the getSequence() command is Dengue1$req[[1]], which contains the name of the NCBI
record that the list Dengue1 contains information about.

Once you have retrieved a sequence, you can then print it out. The variable dengueseq is a vector containing the
nucleotide sequence. Each element of the vector contains one nucleotide of the sequence. Therefore, we can print
out the first 50 nucleotides of the DEN-1 Dengue genome sequence by typing:

> dengueseq[1:50]
[1] "a" "g" "t" "t" "g" "t" "t" "a" "g" "t" "c" "t" "a" "c" "g" "t" "g" "g" "a"
[20] "c" "c" "g" "a" "c" "a" "a" "g" "a" "a" "c" "a" "g" "t" "t" "t" "c" "g" "a"
[39] "a" "t" "c" "g" "g" "a" "a" "g" "c" "t" "t" "g"

Note that dengueseq[1:50] refers to the elements of the vector dengueseq with indices from 1-50. These elements
contain the first 50 nucleotides of the DEN-1 Dengue virus genome sequence.

As well as retrieving the DNA (or RNA or protein) sequence itself, SeqinR can also retrieve all the annotations for
the sequence, for example, information on when the sequence was sequenced, who sequenced it, what organism
is it from, what paper was it described in, what genes were identified in the sequence, and so on.

Once you have retrieved a sequence using SeqinR, you can retrieved its annotations by using the “getAnnot()”
function. For example, to view the annotations for the DEN-1 Dengue virus genome sequence, we type:

> annots <- getAnnot(Dengue1$req[[1]])

This stores the annotations information from the NCBI record for the DEN-1 Dengue virus sequence in a vector
variable annots, with one line of the NCBI record in each element of the vector. Therefore, we can print out the
first 20 lines of the NCBI record by typing:

> annots[1:20]
[1] "LOCUS NC_001477 10735 bp ss-RNA linear VRL 08-DEC-

→˓2008"
[2] "DEFINITION Dengue virus type 1, complete genome."
[3] "ACCESSION NC_001477"
[4] "VERSION NC_001477.1 GI:9626685"
[5] "DBLINK Project: 15306"
[6] "KEYWORDS ."
[7] "SOURCE Dengue virus 1"
[8] " ORGANISM Dengue virus 1"
[9] " Viruses; ssRNA positive-strand viruses, no DNA stage;

→˓Flaviviridae;"
[10] " Flavivirus; Dengue virus group."
[11] "REFERENCE 1 (bases 1 to 10735)"
[12] " AUTHORS Puri,B., Nelson,W.M., Henchal,E.A., Hoke,C.H., Eckels,K.H.,"
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[13] " Dubois,D.R., Porter,K.R. and Hayes,C.G."
[14] " TITLE Molecular analysis of dengue virus attenuation after serial

→˓passage"
[15] " in primary dog kidney cells"
[16] " JOURNAL J. Gen. Virol. 78 (PT 9), 2287-2291 (1997)"
[17] " PUBMED 9292016"
[18] "REFERENCE 2 (bases 1 to 10735)"
[19] " AUTHORS McKee,K.T. Jr., Bancroft,W.H., Eckels,K.H., Redfield,R.R.,"
[20] " Summers,P.L. and Russell,P.K."

On the left of the annotations, you will see that there is a column containing the field name. For example, the line
of the with “ACCESSION” in the left column is the accession field, which contains the accession for the sequence
(NC_001477 for the DEN-1 Dengue virus).

The line with “ORGANISM” in the left column is the organism field, and usually contains the Latin name for the
organism (“Dengue virus 1” here). The line with “AUTHORS” in the left column is the authors field, and contain
the names of authors that wrote papers to describe the sequence and/or the names of the people who submitted the
sequence to the NCBI Database.

When you have finished your running your query and getting the corresponding sequences and annotations, close
the connection to the ACNUC sub-database:

> closebank()

Example: finding the sequences published in Nature 460:352-358

We described above how to search for the sequences published in Nature 460:352-358, using the NCBI website. A
second method is to use the SeqinR R package to search the ACNUC databases (which contain the NCBI sequence
data) from R.

If you look at the help page the “query()” function, you see that you can query for sequences published in a partic-
ular paper using R=refcode, specifying the reference as refcode such as in jcode/volume/page (e.g., JMB/13/5432
or R=Nature/396/133). For the paper Nature 460:352-358, we would need to use the refcode ‘R=Nature/460/352’.

First we need to specify which of the ACNUC databases we want to search. For example, to specify that we want
to search the “genbank” ACNUC database, which contains DNA and RNA sequences from the NCBI Nucleotide
database, we type:

> choosebank("genbank") # Specify that we want to search the 'genbank' ACNUC sub-
→˓database

We can then search the ‘genbank’ database for sequences that match a specific set of criteria by using the “query()”
function. For example, to search for sequences that were published in Nature 460:352-358, we type:

> query('naturepaper', 'R=Nature/460/352')

The line above tells R that we want to store the results of the query in an R list variable called naturepaper. To get
the value of the element named “nelem” in the list naturepaper, we type:

> naturepaper$nelem
[1] 19022

This tells us that there were 19022 sequences in the ‘genbank’ ACNUC database that matched the query. The
‘genbank’ ACNUC database contains DNA or RNA sequences from the NCBI Nucleotide database. Why don’t
we get the same number of sequences as found by carrying out the search on the NCBI website (where we found
50890 hits to the NCBI Nucleotide database)? The reason is that the ACNUC ‘genbank’ database does not contain
all the sequences in the NCBI Nucleotide database, for example, it does not contain sequences that are in RefSeq
or many short DNA sequences from sequencing projects.

To obtain the accession numbers of the first five of the 19022 sequences, we can type:
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> accessions <- naturepaper$req
> accessions[1:5]

[[1]]
name length frame ncbicg

"FN357292" "4179495" "0" "1"
[[2]]

name length frame ncbicg
"FN357293" "2211188" "0" "1"
[[3]]

name length frame ncbicg
"FN357294" "1818661" "0" "1"
[[4]]

name length frame ncbicg
"FN357295" "2218116" "0" "1"
[[5]]

name length frame ncbicg
"FN357296" "3831198" "0" "1"

This tells us that the NCBI accessions of the first five sequences (of the 19022 DNA or RNA sequences found that
were published in Nature 460:352-358) are FN357292, FN357293, FN357294, FN357295, and FN357296.

To retrieve these first five sequences, and print out the first 10 nucleotide bases of each sequence, we use the
getSequence() command, typing:

> for (i in 1:5)
{

seqi <- getSequence(naturepaper$req[[i]])
print(seqi[1:10])

}
[1] "t" "t" "g" "t" "c" "g" "a" "t" "t" "a"
[1] "g" "g" "t" "c" "c" "t" "t" "a" "a" "g"
[1] "g" "c" "c" "t" "g" "a" "c" "c" "a" "t"
[1] "t" "a" "t" "t" "t" "c" "c" "a" "a" "t"
[1] "c" "a" "a" "t" "c" "a" "c" "t" "c" "a"

Note that the input to the getSequence() command is Dengue1$req[[i]], which contains the name of i th NCBI
record that the list naturepaper contains information about.

Once we have carried out our queries and retrieved the sequences, the final step is to close the connection to the
ACNUC sub-database that we searched (“genbank” here):

> closebank()

Saving sequence data in a FASTA-format file

Once you have retrieved a sequence, or set of sequences from the NCBI Database, using SeqinR, it is conveninent
to save the sequences in a file in FASTA format. This can be done using the “write.fasta()” function in the SeqinR
package, which was introduced in Chapter 1.

If you look at the help page for the “write.fasta()” function, you will see that as input it takes a list of vectors,
where each vector contains one DNA, RNA or protein sequence.

For example, if you retrieve the sequences of human tRNAs from the NCBI Database by querying the ACNUC
“genbank” sub-database, you can save the sequences in a FASTA format file called “humantRNAs.fasta” by typ-
ing:

> choosebank("genbank") # select the ACNUC sub-
→˓database to be searched
> query("humtRNAs", "SP=homo sapiens AND M=TRNA") # specify the query
> myseqs <- getSequence(humtRNAs) # get the sequences
> mynames <- getName(humtRNAs) # get the names of the
→˓sequences
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> write.fasta(myseqs, mynames, file.out="humantRNAs.fasta")
> closebank()

In the above code, we get the sequences of the human tRNAs using the function “getSequence()” from the SeqinR
package. We also use a function “getName()” from the SeqinR package to get the sequences’ names. Then we use
the “write.fasta()” function to write the sequences to a FASTA file “humantRNAs.fasta”. The “write.fasta()” takes
as arguments: the list myseqs containing the sequences, the list mynames containing the names of the sequences,
and the name of the output file (“humantRNAs.fasta” here).

Finding the genome sequence for a particular species

Microbial genomes are generally smaller than eukaryotic genomes (Escherichia coli has about 5 million base
pair in its genome, while the human genome is about 3 billion base pairs). Because they are considerably less
expensive to sequence, many microbial genome sequencing projects have been completed.

If you don’t know the accession number for a genome sequence (eg. for Mycobacterium leprae, the bacterium
that causes leprosy), how can you find it out?

The easiest way to do this is to look at the NCBI Genome website, which lists all fully sequenced genomes and
gives the accession numbers for the corresponding DNA sequences.

If you didn’t know the accession number for the Mycobacterium leprae genome, you could find it on the NCBI
Genome website by following these steps:

1. Go to the NCBI Genome website (http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome)

2. On the homepage of the NCBI Genome website, it gives links to the major subdivisions of the Genome
database, which include Eukaryota, Prokaryota (Bacteria and Archaea), and Viruses. Click on ‘Prokary-
ota’, since Mycobacterium leprae is a bacterium. This will bring up a list of all fully sequenced bacterial
genomes, with the corresponding accession numbers. Note that more than one genome (from various strains)
may have been sequenced for a particular species.

3. Use ‘Find’ in the ‘Edit’ menu of your web browser to search for ‘Mycobacterium leprae’ on the webpage.
You should find that the genomes of several different M. leprae strains have been sequenced. One of these
is M. leprae TN, which has accession number NC_002677.

The list of sequenced genomes on the NCBI Genomes website is not a definitive list; that is, some sequenced
genomes may be missing from this list. If you want to find out whether a particular genome has been sequenced,
but you don’t find it NCBI Genomes website’s list, you should search for it by following these steps:

1. Go to the NCBI website (www.ncbi.nlm.nih.gov).

2. Select ‘Genome’ from the drop-down list above the search box.

3. Type the name of the species you are interested in in the search box (eg. “Mycobacterium lep-
rae”[ORGN]). Press ‘Search’.

Note that you could also have found the Mycobacterium leprae genome sequence by searching the NCBI Nu-
cleotide database, as the NCBI Genome database is just a subset of the NCBI Nucleotide database.

How many genomes have been sequenced, or are being sequenced now?

On the NCBI Genome website (http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome), the front page gives a link
to a list of all sequenced genomes in the groups Eukaryota, Prokaryota (Bacteria and Archaea) and Viruses. If you
click on one of these links (eg. Prokaryota), at the top of the page it will give the number of sequenced genomes in
that group (eg. number of sequenced prokaryotic genomes). For example, in this screenshot (from January 2011),
we see that there were 1409 complete prokaryotic genomes (94 archaeal, 1315 bacterial):
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Another useful website that lists genome sequencing projects is the Genomes OnLine Database (GOLD), which
lists genomes that have been completely sequenced, or are currently being sequenced. To find the number of
complete or ongoing bacterial sequencing projects, follow these steps:

1. Go to the GOLD website (http://genomesonline.org/).

2. Click on the yellow ‘Enter GOLD’ button in the centre of the webpage. On the subsequent page, it will give
the number of ongoing bacterial, archaeal and eukaryotic genome sequencing projects.

3. Click on the ‘Bacterial Ongoing’ link to see the list of ongoing bacterial genome sequencing projects. By
default, just the first 100 projects are listed, and the rest are listed on subsequent pages. In one of the
columns of the page, this gives the university or institute that the genome was sequenced in. Other columns
give the taxonomic information for the organism, and links to the sequence data.

4. Find the number of published genome sequencing projects. Go back one page, to the page with the ‘Bacterial
Ongoing’ link. You will see that this page also lists the number of complete published genomes. To see a
list of these genomes, click on ‘Complete Published’. This will bring up a page that gives the number of
published genomes at the top of the page. In one column of the page, this gives the university or institute
that the genome was sequenced in.

As explained above, it is possible to identify genome sequence data in the NCBI Genome database. The GOLD
database also gives some information about ongoing genome projects. Often, the GOLD database lists some
ongoing projects that are not yet present in the NCBI Genome Database, because the sequence data has not yet
been submitted to the NCBI Database. If you are interested in finding out how many genomes have been sequenced
or are currently being sequenced for a particular species (eg. Mycobacterium leprae), it is a good idea to look at
both the NCBI Genome database and at GOLD.

Summary

In this chapter, you have learnt how to retrieve sequences from the NCBI Sequence database, as well as to find out
how many genomes have been sequenced or are currently being sequenced for a particular species.
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Links and Further Reading

There is detailed information on how to search the NCBI database on the NCBI Help website at
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helpentrez?part=EntrezHelp.

There is more information about the GOLD database in the paper describing GOLD by Liolios et al, which is
available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808860/?tool=pubmed.

For more in-depth information and more examples on using the SeqinR package for sequence analysis, look at the
SeqinR documentation, http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

There is also a very nice chapter on “Analyzing Sequences”, which includes examples of using SeqinR for se-
quence analysis, in the book Applied statistics for bioinformatics using R by Krijnen (available online at cran.r-
project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf).
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Exercises

Answer the following questions. For each question, please record your answer, and what you did/typed to get this
answer.

Model answers to the exercises are given in Answers to the exercises on Sequence Databases.

Q1. What information about the rabies virus sequence (NCBI accession NC_001542) can you obtain from its annotations in the NCBI Sequence Database?
What does it say in the DEFINITION and ORGANISM fields of its NCBI record? Note: rabies virus is the
virus responsible for rabies, which is classified by the WHO as a neglected tropical disease.

Q2. How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the NCBI Sequence Database?
Note: the bacterium Chlamydia trachomatis is responsible for causing trachoma, which is classified by the
WHO as a neglected tropical disease.

Q3. How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the RefSeq part of
the NCBI Sequence Database?

Q4. How many nucleotide sequences were submitted to NCBI by Matthew Berriman?

Q5. How many nucleotide sequences from nematode worms are there in the RefSeq Database? Note that
several parasitic nematode worms cause neglected tropical diseases, including Brugia malayi and
Wucheria bancrofti, which cause lymphatic filariasis; Loa loa, which causes subcutaneous filariasis;
Onchocerca volvulus, which causes onchocerciasis; and Necator americanus, which causes soil-transmitted
helminthiasis.
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Q6. How many nucleotide sequences for collagen genes from nematode worms are there in the NCBI Database?

Q7. How many mRNA sequences for collagen genes from nematode worms are there in the NCBI Database?

Q8. How many protein sequences for collagen proteins from nematode worms are there in the NCBI database?

Q9. What is the accession number for the Trypanosoma cruzi genome in NCBI? Do you see genome se-
quences for more than one strain of Trypanosoma cruzi? Note that the Trypanosoma cruzi causes Chagas
disease, which is classified as a neglected tropical disease by the WHO.

Q10. How many fully sequenced nematode worm species are represented in the NCBI Genome database?

REVISION EXERCISES 1

These are some revision exercises on sequence statistics and sequence databases.

Exercises

Answer the following questions. For each question, please record your answer, and what you did/typed to get this
answer.

Model answers to the exercises are given in Answers to Revision Exercises 1.

Q1.

What is the length of (total number of base-pairs in) the Schistosoma mansoni mitochondrial genome (NCBI
accession NC_002545), and how many As, Cs, Gs and Ts does it contain?

You must search for this sequence via the NCBI website, as it is not present in the ACNUC database.
Note: Schistmosoma mansoni is a parasitic worm that is responsible for causing schistosomiasis,
which is classified by the WHO as a neglected tropical disease.

Q2.

What is the length of the Brugia malayi mitochondrial genome (NCBI accession NC_004298), and how many As,
Cs, Gs and Ts does it contain?

You must search for this sequence via the NCBI website, as it is not present in the ACNUC database.
Note: Brugia malayi is a parasitic worm responsible for causing lymphatic filariasis, which is classi-
fied by the WHO as a neglected tropical disease.

Q3.

What is the probability of the Brugia malayi mitochondrial genome sequence (NCBI accession NC_004298),
according to a multinomial model in which the probabilities of As, Cs, Gs and Ts (pA, pC, pG, and pT) are set
equal to the fraction of As, Cs, Gs and Ts in the Schistosoma mansoni mitochondrial genome?

Q4.

What are the top three most frequent 4-bp words (4-mers) in the genome of the bacterium Chlamydia trachomatis
strain D/UW-3/CX (NCBI accession NC_000117), and how many times do they occur in its sequence?

Note: Chlamydia trachomatis is a bacterium responsible for trachoma, which is classified by the
WHO as a neglected tropical disease.
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Q5.

Write an R function to generate a random DNA sequence that is n letters long (that is, n bases long) using a
multinomial model in which the probabilities pA, pC, pG, and pT are set equal to the fraction of As, Cs, Gs and Ts
in the Schistosoma mansoni mitochondrial genome (here pA stands for the probability of As, pC is the probability
of Cs, etc.)

Hint: look at the help page for the “sample()” function in R, as it might be useful to use within your
R function.

Q6.

Give an example of using your function from Q5 to calculate a random sequence that is 20 letters long, using a
multinomial model with pA =0.28, pC =0.21, pG =0.22, and pT =0.29.

Q7.

How many protein sequences from rabies virus are there in the NCBI Protein database? You must search
for these sequences via the NCBI website, as it’s not possible to do this search using SeqinR. Note: ra-
bies virus is the virus responsible for rabies, which is classified by the WHO as a neglected tropical disease.

Q8.

What is the NCBI accession for the Mokola virus genome? Note: Mokola virus and rabies virus are closely
related viruses that both belong to a group of viruses called the Lyssaviruses. Mokola virus causes a rabies-
like infection in mammals including humans.

Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email
address alc@sanger.ac.uk

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

Pairwise Sequence Alignment

UniProt

In the previous chapter you learnt how to retrieve DNA and protein sequences from the NCBI database. The NCBI
database is a key database in bioinformatics because it contains essentially all DNA sequences ever sequenced.

As mentioned in the previous chapter, a subsection of the NCBI database called RefSeq consists of high quality
DNA and protein sequence data. Furthermore, the NCBI entries for the RefSeq sequences have been manually
curated, which means that biologists employed by NCBI have added additional information to the NCBI entries
for those sequences, such as details of scientific papers that describe the sequences.

Another extremely important manually curated database is UniProt (www.uniprot.org), which focuses on protein
sequences. UniProt aims to contains manually curated information on all known protein sequences. While many
of the protein sequences in UniProt are also present in RefSeq, the amount and quality of manually curated
information in UniProt is much higher than that in RefSeq.
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For each protein in UniProt, the UniProt curators read all the scientific papers that they can find about that protein,
and add information from those papers to the protein’s UniProt entry. For example, for a human protein, the
UniProt entry for the protein usually includes information about the biological function of the protein, in what
human tissues it is expressed, whether it interacts with other human proteins, and much more. All this information
has been manually gathered by the UniProt curators from scientific papers, and the papers in which the found the
information are always listed in the UniProt entry for the protein.

Just like NCBI, UniProt also assigns an accession to each sequence in the UniProt database. Although the same
protein sequence may appear in both the NCBI database and the UniProt database, it will have different NCBI and
UniProt accessions. However, there is usually a link on the NCBI entry for the protein sequence to the UniProt
entry, and vice versa.

Viewing the UniProt webpage for a protein sequence

If you are given the UniProt accession for a protein, to find the UniProt entry for the protein, you first need to go
the UniProt website, www.uniprot.org. At the top of the UniProt website, you will see a search box, and you can
type the accession of the protein that you are looking for in this search box, and then click on the “Search” button
to search for it.

For example, if you want to find the sequence for the chorismate lyase protein from Mycobacterium leprae (the
bacterium which causes leprosy), which has UniProt accession Q9CD83, you would type just “Q9CD83” in the
search box and press “Search”:

The UniProt entry for UniProt accession Q9CD83 will then appear in your web browser. The picture below shows
the top part of the UniProt entry for accession Q9CD83. You can see there is a lot of information about the protein
in its UniProt entry.

Beside the heading “Organism” you can see the organism is given as Mycobacterium leprae. Beside the heading
“Taxonomic lineage”, you can see “Bacteria > Actinobacteria > Actinobacteridae > Actinomycetales > Corynebac-
terineae > Mycobacteriaceae > Mycobacterium”.

This tells us that Mycobacterium is a species of bacteria, which belongs to a group of related bacteria called the
Mycobacteriaceae, which itself belongs to a larger group of related bacteria called the Corynebacterineae, which
itself belongs to an even larger group of related bacteria called the Actinomycetales, which itself belongs to the
Actinobacteridae, which itself belongs to a huge group of bacteria called the Actinobacteria.

Beside the heading “Sequence length” we see that the sequence is 210 amino acids long (210 letters long). Further
down, beside the heading “Function”, it says that the function of this protein is that it “Removes the pyruvyl group
from chorismate to provide 4-hydroxybenzoate (4HB)”. This tells us this protein is an enzyme (a protein that
increases the rate of a specific biochemical reaction), and tells us what is the particular biochemical reaction that
this enzyme is involved in.

Further down the UniProt page for this protein, you will see a lot more information, as well as many links to
webpages in other biological databases, such as NCBI. The huge amount of information about proteins in UniProt
means that if you want to find out about a particular protein, the UniProt page for that protein is a great place to
start.
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Retrieving a UniProt protein sequence via the UniProt website

To retrieve a FASTA-format file containing the sequence for a particular protein, you need to look at the top right
of the UniProt entry for the protein on the UniProt website.

You will see a small orange button labelled “FASTA”, which you should click on:

The FASTA-format sequence for the accession will now appear in your web browser. To save it as a file, go to
the “File” menu of your web browser, choose “Save page as”, and save the file. Remember to give the file a
sensible name (eg. “Q9CD83.fasta” for accession Q9CD83), and in a place that you will remember (eg. in the
“My Documents” folder).

For example, you can retrieve the protein sequences for the chorismate lyase protein from Mycobacterium lep-
rae (which has UniProt accession Q9CD83) and for the chorismate lyase protein from Mycobacterium ulcerans
(UniProt accession A0PQ23), and save them as FASTA-format files (eg. “Q9CD83.fasta” and “A0PQ23.fasta”, as
described above.

Note that Mycobacterium leprae is the bacterium which causes leprosy, while Mycobacterium ulcerans is a related
bacterium which causes Buruli ulcer, both of which are classified by the WHO as neglected tropical diseases.
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Note that the M. leprae and M. ulcerans chorismate lyase proteins are an example of a pair of homologous (related)
proteins in two related species of bacteria.

Once you have downloaded the protein sequences for UniProt accessions Q9CD83 and A0PQ23 and saved them
as FASTA-format files (eg. “Q9CD83.fasta” and “A0PQ23.fasta”), you can read them into R using the read.fasta()
function in the SeqinR R package (as described in chapter 1).

Remember that the read.fasta() function expects that you have put your FASTA-format files in the “My Docu-
ments” folder on your computer.

For example, the following commands will read the FASTA-format files Q9CD83.fasta and A0PQ23.fasta into R,
and store the two protein sequences in two vectors lepraeseq and ulceransseq:

> library("seqinr")
> leprae <- read.fasta(file = "Q9CD83.fasta")
> ulcerans <- read.fasta(file = "A0PQ23.fasta")
> lepraeseq <- leprae[[1]]
> ulceransseq <- ulcerans[[1]]
> lepraeseq # Display the contents of the vector "lepraeseq"
[1] "m" "t" "n" "r" "t" "l" "s" "r" "e" "e" "i" "r" "k" "l" "d" "r" "d" "l"
[19] "r" "i" "l" "v" "a" "t" "n" "g" "t" "l" "t" "r" "v" "l" "n" "v" "v" "a"
[37] "n" "e" "e" "i" "v" "v" "d" "i" "i" "n" "q" "q" "l" "l" "d" "v" "a" "p"
[55] "k" "i" "p" "e" "l" "e" "n" "l" "k" "i" "g" "r" "i" "l" "q" "r" "d" "i"
[73] "l" "l" "k" "g" "q" "k" "s" "g" "i" "l" "f" "v" "a" "a" "e" "s" "l" "i"
[91] "v" "i" "d" "l" "l" "p" "t" "a" "i" "t" "t" "y" "l" "t" "k" "t" "h" "h"
[109] "p" "i" "g" "e" "i" "m" "a" "a" "s" "r" "i" "e" "t" "y" "k" "e" "d" "a"
[127] "q" "v" "w" "i" "g" "d" "l" "p" "c" "w" "l" "a" "d" "y" "g" "y" "w" "d"
[145] "l" "p" "k" "r" "a" "v" "g" "r" "r" "y" "r" "i" "i" "a" "g" "g" "q" "p"
[163] "v" "i" "i" "t" "t" "e" "y" "f" "l" "r" "s" "v" "f" "q" "d" "t" "p" "r"
[181] "e" "e" "l" "d" "r" "c" "q" "y" "s" "n" "d" "i" "d" "t" "r" "s" "g" "d"
[199] "r" "f" "v" "l" "h" "g" "r" "v" "f" "k" "n" "l"

Retrieving a UniProt protein sequence using SeqinR

An alternative method of retrieving a UniProt protein sequence is to use the SeqinR package to query the ACNUC
sub-database “swissprot”, which contains protein sequences from UniProt.

We use the query() function from SeqinR to query this database, as described in chapter3.

For example to retrieve the protein sequences for UniProt accessions Q9CD83 and A0PQ23, we type in R:

> library("seqinr")
> choosebank("swissprot")
> query("leprae", "AC=Q9CD83")
> lepraeseq <- getSequence(leprae$req[[1]])
> query("ulcerans", "AC=A0PQ23")
> ulceransseq <- getSequence(ulcerans$req[[1]])
> closebank()
> lepraeseq # Display the contents of "lepraeseq"
[1] "M" "T" "N" "R" "T" "L" "S" "R" "E" "E" "I" "R" "K" "L" "D" "R" "D" "L"
[19] "R" "I" "L" "V" "A" "T" "N" "G" "T" "L" "T" "R" "V" "L" "N" "V" "V" "A"
[37] "N" "E" "E" "I" "V" "V" "D" "I" "I" "N" "Q" "Q" "L" "L" "D" "V" "A" "P"
[55] "K" "I" "P" "E" "L" "E" "N" "L" "K" "I" "G" "R" "I" "L" "Q" "R" "D" "I"
[73] "L" "L" "K" "G" "Q" "K" "S" "G" "I" "L" "F" "V" "A" "A" "E" "S" "L" "I"
[91] "V" "I" "D" "L" "L" "P" "T" "A" "I" "T" "T" "Y" "L" "T" "K" "T" "H" "H"
[109] "P" "I" "G" "E" "I" "M" "A" "A" "S" "R" "I" "E" "T" "Y" "K" "E" "D" "A"
[127] "Q" "V" "W" "I" "G" "D" "L" "P" "C" "W" "L" "A" "D" "Y" "G" "Y" "W" "D"
[145] "L" "P" "K" "R" "A" "V" "G" "R" "R" "Y" "R" "I" "I" "A" "G" "G" "Q" "P"
[163] "V" "I" "I" "T" "T" "E" "Y" "F" "L" "R" "S" "V" "F" "Q" "D" "T" "P" "R"
[181] "E" "E" "L" "D" "R" "C" "Q" "Y" "S" "N" "D" "I" "D" "T" "R" "S" "G" "D"
[199] "R" "F" "V" "L" "H" "G" "R" "V" "F" "K" "N" "L"
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Comparing two sequences using a dotplot

As a first step in comparing two protein, RNA or DNA sequences, it is a good idea to make a dotplot. A dotplot
is a graphical method that allows the comparison of two protein or DNA sequences and identify regions of close
similarity between them. A dotplot is essentially a two-dimensional matrix (like a grid), which has the sequences
of the proteins being compared along the vertical and horizontal axes.

In order to make a simple dotplot to represent of the similarity between two sequences, individual cells in the
matrix can be shaded black if residues are identical, so that matching sequence segments appear as runs of diagonal
lines across the matrix. Identical proteins will have a line exactly on the main diagonal of the dotplot, that spans
across the whole matrix.

For proteins that are not identical, but share regions of similarity, the dotplot will have shorter lines that may be on
the main diagonal, or off the main diagonal of the matrix. In essence, a dotplot will reveal if there are any regions
that are clearly very similar in two protein (or DNA) sequences.

We can create a dotplot for two sequences using the “dotPlot()” function in the SeqinR R package.

For example, if we want to create a dotplot of the sequences for the chorismate lyase proteins from Mycobacterium
leprae and Mycobacterium ulcerans, we would type:

> dotPlot(lepraeseq, ulceransseq)

In the dotplot above, the M. leprae sequence is plotted along the x-axis (horizontal axis), and the M. ulcerans
sequence is plotted along the y-axis (vertical axis). The dotplot displays a dot at points where there is an identical
amino acid in the two sequences.

For example, if amino acid 53 in the M. leprae sequence is the same amino acid (eg. “W”) as amino acid 70 in the
M. ulcerans sequence, then the dotplot will show a dot the position in the plot where x =50 and y =53.

In this case you can see a lot of dots along a diagonal line, which indicates that the two protein sequences contain
many identical amino acids at the same (or very similar) positions along their lengths. This is what you would
expect, because we know that these two proteins are homologues (related proteins).

1.7. Pairwise Sequence Alignment 53



A Little Book of R For Bioinformatics, Release 0.1

Pairwise global alignment of DNA sequences using the Needleman-Wunsch al-
gorithm

If you are studying a particular pair of genes or proteins, an important question is to what extent the two sequences
are similar.

To quantify similarity, it is necessary to align the two sequences, and then you can calculate a similarity score
based on the alignment.

There are two types of alignment in general. A global alignment is an alignment of the full length of two se-
quences, for example, of two protein sequences or of two DNA sequences. A local alignment is an alignment of
part of one sequence to part of another sequence.

The first step in computing a alignment (global or local) is to decide on a scoring system. For example, we may
decide to give a score of +2 to a match and a penalty of -1 to a mismatch, and a penalty of -2 to a gap. Thus, for
the alignment:

G A A T T C
G A T T - A

we would compute a score of 2 + 2 -1 + 2 -2 - 1 = 2. Similarly, the score for the following alignment is 2 + 2 -2 +
2 + 2 -1 = 5:

G A A T T C
G A - T T A

The scoring system above can be represented by a scoring matrix (also known as a substitution matrix). The
scoring matrix has one row and one column for each possible letter in our alphabet of letters (eg. 4 rows and 4
columns for DNA sequences). The (i,j) element of the matrix has a value of +2 in case of a match and -1 in case
of a mismatch.

We can make a scoring matrix in R by using the nucleotideSubstitutionMatrix() function in the Biostrings() pack-
age. The Biostrings package is part of a set of R packages for bioinformatics analysis known as Bioconductor
(www.bioconductor.org/).

To use the Biostrings package, you will first need to install the package (see the instructions here).

The arguments (inputs) for the nucleotideSubstitutionMatrix() function are the score that we want to assign to a
match and the score that we want to assign to a mismatch. We can also specify that we want to use only the four
letters representing the four nucleotides (ie. A, C, G, T) by setting ‘baseOnly=TRUE’, or whether we also want to
use the letters that represent ambiguous cases where we are not sure what the nucleotide is (eg. ‘N’ = A/C/G/T).

To make a scoring matrix which assigns a score of +2 to a match and -1 to a mismatch, and store it in the variable
sigma, we type:

> library(Biostrings)
> sigma <- nucleotideSubstitutionMatrix(match = 2, mismatch = -1, baseOnly = TRUE)
> sigma # Print out the matrix

A C G T
A 2 -1 -1 -1
C -1 2 -1 -1
G -1 -1 2 -1
T -1 -1 -1 2

Instead of assigning the same penalty (eg. -8) to every gap position, it is common instead to assign a gap opening
penalty to the first position in a gap (eg. -8), and a smaller gap extension penalty to every subsequent position in
the same gap.

The reason for doing this is that it is likely that adjacent gap positions were created by the same insertion or deletion
event, rather than by several independent insertion or deletion events. Therefore, we don’t want to penalise a 3-
letter gap as much as we would penalise three separate 1-letter gaps, as the 3-letter gap may have arisen due to just
one insertion or deletion event, while the 3 separate 1-letter gaps probably arose due to three independent insertion
or deletion events.

54 Chapter 1. Chapters in this Book

http://www.bioconductor.org/


A Little Book of R For Bioinformatics, Release 0.1

For example, if we want to compute the score for a global alignment of two short DNA sequences ‘GAATTC’
and ‘GATTA’, we can use the Needleman-Wunsch algorithm to calculate the highest-scoring alignment using a
particular scoring function.

The “pairwiseAlignment()” function in the Biostrings R package finds the score for the optimal global alignment
between two sequences using the Needleman-Wunsch algorithm, given a particular scoring system.

As arguments (inputs), the pairwiseAlignment() function takes the two sequences that you want to align, the
scoring matrix, the gap opening penalty, and the gap extension penalty. You can also tell the function that you
want to just have the optimal global alignment’s score by setting “scoreOnly = TRUE”, or that you want to have
both the optimal global alignment and its score by setting “scoreOnly = FALSE”.

For example, to find the score for the optimal global alignment between the sequences ‘GAATTC’ and ‘GATTA’,
we type:

> s1 <- "GAATTC"
> s2 <- "GATTA"
> globalAligns1s2 <- pairwiseAlignment(s1, s2, substitutionMatrix = sigma,
→˓gapOpening = -2,
gapExtension = -8, scoreOnly = FALSE)
> globalAligns1s2 # Print out the optimal alignment and its score
Global Pairwise Alignment (1 of 1)
pattern: [1] GAATTC
subject: [1] GA-TTA
score: -3

The above commands print out the optimal global alignment for the two sequences and its score.

Note that we set “gapOpening” to be -2 and “gapExtension” to be -8, which means that the first position of a gap
is assigned a score of (-8-2=)-10, and every subsequent position in a gap is given a score of -8. Here the alignment
contains four matches, one mismatch, and one gap of length 1, so its score is (4*2)+(1*-1)+(1*-10) = -3.

Pairwise global alignment of protein sequences using the Needleman-Wunsch
algorithm

As well as DNA alignments, it is also possible to make alignments of protein sequences. In this case it is necessary
to use a scoring matrix for amino acids rather than for nucleotides.

There are several well known scoring matrices that come with R, such as the BLOSUM series of matrices. Dif-
ferent BLOSUM matrices exist, named with different numbers. BLOSUM with high numbers are designed for
comparing closely related sequences, while BLOSUM with low numbers are designed for comparing distantly
related sequences. For example, BLOSUM62 is used for less divergent alignments (alignments of sequences that
differ little), and BLOSUM30 is used for more divergent alignments (alignments of sequences that differ a lot).

Many R packages come with example data sets or data files. The “data()” function is used to load these data
files. You can use the data() function in R to load a data set of BLOSUM matrices that comes with R Biostrings()
package.

To load the BLOSUM50 matrix, we type:

> data(BLOSUM50)
> BLOSUM50 # Print out the data

A R N D C Q E G H I L K M F P S T W Y V B Z X *
A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0 -2 -1 -1 -5
R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 -1 0 -1 -5
N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3 4 0 -1 -5
D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 5 1 -1 -5
C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -3 -3 -2 -5
Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3 0 4 -1 -5
E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3 1 5 -1 -5
G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4 -1 -2 -2 -5
H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4 0 0 -1 -5
I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4 -4 -3 -1 -5
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L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1 -4 -3 -1 -5
K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3 0 1 -1 -5
M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1 -3 -1 -1 -5
F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1 -4 -4 -2 -5
P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 -2 -1 -2 -5
S 1 -1 1 0 -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2 0 0 -1 -5
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0 0 -1 0 -5
W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3 -5 -2 -3 -5
Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1 -3 -2 -1 -5
V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5 -4 -3 -1 -5
B -2 -1 4 5 -3 0 1 -1 0 -4 -4 0 -3 -4 -2 0 0 -5 -3 -4 5 2 -1 -5
Z -1 0 0 1 -3 4 5 -2 0 -3 -3 1 -1 -4 -1 0 -1 -2 -2 -3 2 5 -1 -5
X -1 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -1 0 -3 -1 -1 -1 -1 -1 -5

* -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

You can get a list of the available scoring matrices that come with the Biostrings package by using the data()
function, which takes as an argument the name of the package for which you want to know the data sets that come
with it:

> data(package="Biostrings")
Data sets in package 'Biostring':
BLOSUM100 Scoring matrices
BLOSUM45 Scoring matrices
BLOSUM50 Scoring matrices
BLOSUM62 Scoring matrices
BLOSUM80 Scoring matrices

To find the optimal global alignment between the protein sequences “PAWHEAE” and “HEAGAWGHEE” using
the Needleman-Wunsch algorithm using the BLOSUM50 matrix, we type:

> data(BLOSUM50)
> s3 <- "PAWHEAE"
> s4 <- "HEAGAWGHEE"
> globalAligns3s4 <- pairwiseAlignment(s3, s4, substitutionMatrix = "BLOSUM50",
→˓gapOpening = -2,
gapExtension = -8, scoreOnly = FALSE)
> globalAligns3s4 # Print out the optimal global alignment and its score
Global Pairwise Alignment (1 of 1)
pattern: [1] P---AWHEAE
subject: [1] HEAGAWGHEE
score: -5

We set “gapOpening” to be -2 and “gapExtension” to be -8, which means that the first position of a gap is assigned
a score of (-8-2=)-10, and every subsequent position in a gap is given a score of -8. This means that the gap will
be given a score of -10-8-8 = -26.

Aligning UniProt sequences

We discussed above how you can search for UniProt accessions and retrieve the corresponding protein sequences,
either via the UniProt website or using the SeqinR R package.

In the examples given above, you learnt how to retrieve the sequences for the chorismate lyase proteins from
Mycobacterium leprae (UniProt Q9CD83) and Mycobacterium ulcerans (UniProt A0PQ23), and read them into
R, and store them as vectors lepraeseq and ulceransseq.

You can align these sequences using pairwiseAlignment() from the Biostrings package.

As its input, the pairwiseAlignment() function requires that the sequences be in the form of a single string (eg.
“ACGTA”), rather than as a vector of characters (eg. a vector with the first element as “A”, the second element as
“C”, etc.). Therefore, to align the M. leprae and M. ulcerans chorismate lyase proteins, we first need to convert
the vectors lepraeeq and ulceransseq into strings. We can do this using the c2s() function in the SeqinR package:
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> lepraeseqstring <- c2s(lepraeseq) # Make a string that contains the sequence
→˓in "lepraeseq"
> ulceransseqstring <- c2s(ulceransseq) # Make a string that contains the sequence
→˓in "ulceransseq"

Furthermore, pairwiseAlignment() requires that the sequences be stored as uppercase characters. Therefore, if
they are not already in uppercase, we need to use the toupper() function to convert lepraeseqstring and ulcer-
ansseqstring to uppercase:

> lepraeseqstring <- toupper(lepraeseqstring)
> ulceransseqstring <- toupper(ulceransseqstring)
> lepraeseqstring # Print out the content of "lepraeseqstring"
[1]

→˓"MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVVANEEIVVDIINQQLLDVAPKIPELENLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHPIGEIMAASRIETYKEDAQVWIGDLPCWLADYGYWDLPKRAVGRRYRIIAGGQPVIITTEYFLRSVFQDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL
→˓"

We can now align the the M. leprae and M. ulcerans chorismate lyase protein sequences using the pairwiseAlign-
ment() function:

> globalAlignLepraeUlcerans <- pairwiseAlignment(lepraeseqstring,
→˓ulceransseqstring,
substitutionMatrix = BLOSUM50, gapOpening = -2, gapExtension = -8, scoreOnly =

→˓FALSE)
> globalAlignLepraeUlcerans # Print out the optimal global alignment and its score
Global PairwiseAlignedFixedSubject (1 of 1)
pattern: [1] MT-----NR--T---LSREEIRKLDRDLRILVATN...

→˓QDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKN
subject: [1] MLAVLPEKREMTECHLSDEEIRKLNRDLRILIATN...EDNSREEPIRHQRS--VGT-SA-R---

→˓SGRSICT
score: 627

As the alignment is very long, when you type globalAlignLepraeUlcerans, you only see the start and the end of
the alignment (see above). Therefore, we need to have a function to print out the whole alignment (see below).

Viewing a long pairwise alignment

If you want to view a long pairwise alignment such as that between the M. leprae and M. ulerans chorismate lyase
proteins, it is convenient to print out the alignment in blocks.

The R function “printPairwiseAlignment()” below will do this for you:

> printPairwiseAlignment <- function(alignment, chunksize=60, returnlist=FALSE)
{

require(Biostrings) # This function requires the Biostrings package
seq1aln <- pattern(alignment) # Get the alignment for the first sequence
seq2aln <- subject(alignment) # Get the alignment for the second sequence
alnlen <- nchar(seq1aln) # Find the number of columns in the alignment
starts <- seq(1, alnlen, by=chunksize)
n <- length(starts)
seq1alnresidues <- 0
seq2alnresidues <- 0
for (i in 1:n) {

chunkseq1aln <- substring(seq1aln, starts[i], starts[i]+chunksize-1)
chunkseq2aln <- substring(seq2aln, starts[i], starts[i]+chunksize-1)
# Find out how many gaps there are in chunkseq1aln:
gaps1 <- countPattern("-",chunkseq1aln) # countPattern() is from

→˓Biostrings package
# Find out how many gaps there are in chunkseq2aln:
gaps2 <- countPattern("-",chunkseq2aln) # countPattern() is from

→˓Biostrings package
# Calculate how many residues of the first sequence we have printed so far

→˓in the alignment:
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seq1alnresidues <- seq1alnresidues + chunksize - gaps1
# Calculate how many residues of the second sequence we have printed so

→˓far in the alignment:
seq2alnresidues <- seq2alnresidues + chunksize - gaps2
if (returnlist == 'FALSE')
{

print(paste(chunkseq1aln,seq1alnresidues))
print(paste(chunkseq2aln,seq2alnresidues))
print(paste(' '))

}
}
if (returnlist == 'TRUE')
{

vector1 <- s2c(substring(seq1aln, 1, nchar(seq1aln)))
vector2 <- s2c(substring(seq2aln, 1, nchar(seq2aln)))
mylist <- list(vector1, vector2)
return(mylist)

}
}

To use this function you first need to copy and paste this function into R. You can then use our function printPair-
wiseAlignment() to print out the alignment between the M. leprae and M. ulcerans chorismate lyase proteins (we
stored this alignment in the globalAlignLepraeUlcerans variable, see above), in blocks of 60 alignment columns:

> printPairwiseAlignment(globalAlignLepraeUlcerans, 60)
[1] "MT-----NR--T---LSREEIRKLDRDLRILVATNGTLTRVLNVVANEEIVVDIINQQLL 50"
[1] "MLAVLPEKREMTECHLSDEEIRKLNRDLRILIATNGTLTRILNVLANDEIVVEIVKQQIQ 60"
[1] " "
[1] "DVAPKIPELENLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHPI 110"
[1] "DAAPEMDGCDHSSIGRVLRRDIVLKGRRSGIPFVAAESFIAIDLLPPEIVASLLETHRPI 120"
[1] " "
[1] "GEIMAASRIETYKEDAQVWIGDLPCWLADYGYWDLPKRAVGRRYRIIAGGQPVIITTEYF 170"
[1] "GEVMAASCIETFKEEAKVWAGESPAWLELDRRRNLPPKVVGRQYRVIAEGRPVIIITEYF 180"
[1] " "
[1] "LRSVFQDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKN 230"
[1] "LRSVFEDNSREEPIRHQRS--VGT-SA-R---SGRSICT 233"
[1] " "

The position in the protein of the amino acid that is at the end of each line of the printed alignment is shown after
the end of the line. For example, the first line of the alignment above finishes at amino acid position 50 in the M.
leprae protein and also at amino acid position 60 in the M. ulcerans protein.

Since we are printing out an alignment that contained gaps in the first 60 alignment columns, the first 60 alignment
columns ends before the 60th amino acid in the M. leprae sequence.

Pairwise local alignment of protein sequences using the Smith-Waterman algo-
rithm

You can use the pairwiseAlignment() function to find the optimal local alignment of two sequences, that is the best
alignment of parts (subsequences) of those sequences, by using the “type=local” argument in pairwiseAlignment().
This uses the Smith-Waterman algorithm for local alignment, the classic bioinformatics algorithm for finding
optimal local alignments.

For example, to find the best local alignment between the M. leprae and M. ulcerans chorismate lyase proteins,
we can type:

> localAlignLepraeUlcerans <- pairwiseAlignment(lepraeseqstring, ulceransseqstring,
substitutionMatrix = BLOSUM50, gapOpening = -2, gapExtension = -8, scoreOnly =

→˓FALSE, type="local")
> localAlignLepraeUlcerans # Print out the optimal local alignment and its score

Local PairwiseAlignedFixedSubject (1 of 1)
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pattern: [1] MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVV...
→˓IITTEYFLRSVFQDTPREELDRCQYSNDIDTRSG
subject: [11] MTECHLSDEEIRKLNRDLRILIATNGTLTRILNVL...

→˓IIITEYFLRSVFEDNSREEPIRHQRSVGTSARSG
score: 761

> printPairwiseAlignment(localAlignLepraeUlcerans, 60)
[1] "MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVVANEEIVVDIINQQLLDVAPKIPELE 60"
[1] "MTECHLSDEEIRKLNRDLRILIATNGTLTRILNVLANDEIVVEIVKQQIQDAAPEMDGCD 60"
[1] " "
[1] "NLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHPIGEIMAASRIE 120"
[1] "HSSIGRVLRRDIVLKGRRSGIPFVAAESFIAIDLLPPEIVASLLETHRPIGEVMAASCIE 120"
[1] " "
[1] "TYKEDAQVWIGDLPCWLADYGYWDLPKRAVGRRYRIIAGGQPVIITTEYFLRSVFQDTPR 180"
[1] "TFKEEAKVWAGESPAWLELDRRRNLPPKVVGRQYRVIAEGRPVIIITEYFLRSVFEDNSR 180"
[1] " "
[1] "EELDRCQYSNDIDTRSG 240"
[1] "EEPIRHQRSVGTSARSG 240"
[1] " "

We see that the optimal local alignment is quite similar to the optimal global alignment in this case, except that it
excludes a short region of poorly aligned sequence at the start and at the ends of the two proteins.

Calculating the statistical significance of a pairwise global alignment

We have seen that when we align the ‘PAWHEAE’ and ‘HEAGAWGHEE’ protein sequences, they have some
similarity, and the score for their optimal global alignment is -5.

But is this alignment statistically significant? In other words, is this alignment better than we would expect
between any two random proteins?

The Needleman-Wunsch alignment algorithm will produce a global alignment even if we give it two unrelated
random protein sequences, although the alignment score would be low.

Therefore, we should ask: is the score for our alignment better than expected between two random sequences of
the same lengths and amino acid compositions?

It is reasonable to expect that if the alignment score is statistically significant, then it will be higher than the scores
obtained from aligning pairs of random protein sequences that have the same lengths and amino acid compositions
as our original two sequences.

Therefore, to assess if the score for our alignment between the ‘PAWHEAE’ and ‘HEAGAWGHEE’ protein
sequence is statistically significant, a first step is to make some random sequences that have the same amino acid
composition and length as one of our initial two sequences, for example, as the same amino acid composition and
length as the sequence ‘PAWHEAE’.

How can we obtain random sequences of the same amino acid composition and length as the sequence
‘PAWHEAE’? One way is to generate sequences using a multinomial model for protein sequences in which the
probabilities of the different amino acids set to be equal to their frequencies in the sequence ‘PAWHEAE’.

That is, we can generate sequences using a multinomial model for proteins, in which the probability of ‘P’ is set
to 0.1428571 (1/7); the probability of ‘A’ is set to 0.2857143 (2/7); the probability of ‘W’ is set to 0.1428571
(1/7); the probability of ‘H’ is set to 0.1428571 (1/7); and the probabilty of ‘E’ is set to 0.2857143 (2/7), and the
probabilities of the other 15 amino acids are set to 0.

To generate a sequence with this multinomial model, we choose the letter for each position in the sequence
according to those probabilities. This is as if we have made a roulette wheel in which 1/7*th* of the circle is taken
up by a pie labelled “P”, 2/7*ths* by a pie labelled “A”, 1/7*th* by a pie labelled “W”, 1/7*th* by a pie labelled
“H”, and 2/7*ths* by a pie labelled “E”:
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To generate a sequence using the multinomial model, we keep spinning the arrow in the centre of the roulette
wheel, and write down the letter that the arrow stops on after each spin. To generate a sequence that is 7 letters
long, we can spin the arrow 7 times. To generate 1000 sequences that are each 7 letters long, we can spin the
arrow 7000 times, where the letters chosen form 1000 7-letter amino acid sequences.

To generate a certain number (eg.1000) random amino acid sequences of a certain length using a multinomial
model, you can use the function generateSeqsWithMultinomialModel() below:

> generateSeqsWithMultinomialModel <- function(inputsequence, X)
{

# Change the input sequence into a vector of letters
require("seqinr") # This function requires the SeqinR package.
inputsequencevector <- s2c(inputsequence)
# Find the frequencies of the letters in the input sequence

→˓"inputsequencevector":
mylength <- length(inputsequencevector)
mytable <- table(inputsequencevector)
# Find the names of the letters in the sequence
letters <- rownames(mytable)
numletters <- length(letters)
probabilities <- numeric() # Make a vector to store the probabilities of

→˓letters
for (i in 1:numletters)
{

letter <- letters[i]
count <- mytable[[i]]
probabilities[i] <- count/mylength

}
# Make X random sequences using the multinomial model with probabilities

→˓"probabilities"
seqs <- numeric(X)
for (j in 1:X)
{

seq <- sample(letters, mylength, rep=TRUE, prob=probabilities) # Sample
→˓with replacement
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seq <- c2s(seq)
seqs[j] <- seq

}
# Return the vector of random sequences
return(seqs)

}

The function generateSeqsWithMultinomialModel() generates X random sequences with a multinomial model,
where the probabilities of the different letters are set equal to their frequencies in an input sequence, which is
passed to the function as a string of characters (eg. ‘PAWHEAE’).

The function returns X random sequences in the form of a vector which has X elements, the first element of the
vector contains the first sequence, the second element contains the second sequence, and so on.

You will need to copy and paste this function into R before you can use it.

We can use this function to generate 1000 7-letter amino acid sequences using a multinomial model in which the
probabilities of the letters are set equal to their frequencies in ‘PAWHEAE’ (ie. probabilities 1/7 for P, 2/7 for A,
1/7 for W, 1/7 for H and 2/7 for E), by typing:

> randomseqs <- generateSeqsWithMultinomialModel('PAWHEAE',1000)
> randomseqs[1:10] # Print out the first 10 random sequences

[1] "EHHEWEA" "EAEEEAH" "WAHAWEP" "PPAPAAW" "HEPWWAA" "APAAAAA" "EAHAPHP"
[8] "AAPEEWE" "HEAAAAP" "EWAAPEP"

The 1000 random sequences are stored in a vector randomseqs that has 1000 elements, each of which contains
one of the random sequences.

We can then use the Needleman-Wunsch algorithm to align the sequence ‘HEAGAWGHEE’ to one of the 1000
random sequences generated using the multinomial model with probabilities 1/7 for P, 2/7 for A, 1/7 for W, 1/7
for H and 2/7 for E.

For example, to align ‘HEAGAWGHEE’ to the first of the 1000 random sequences (‘EEHAAAE’), we type:

> s4 <- "HEAGAWGHEE"
> pairwiseAlignment(s4, randomseqs[1], substitutionMatrix = "BLOSUM50", gapOpening
→˓= -2,
gapExtension = -8, scoreOnly = FALSE)
Global PairwiseAlignedFixedSubject (1 of 1)
pattern: [2] EAGAWGHEE
subject: [1] EHHEW--EA
score: -7

If we use the pairwiseAlignment() function with the argument ‘scoreOnly=TRUE’, it will just give us the score
for the alignment:

> pairwiseAlignment(s4, randomseqs[1], substitutionMatrix = "BLOSUM50", gapOpening
→˓= -2,
gapExtension = -8, scoreOnly = TRUE)
[1] -7

If we repeat this 1000 times, that is, for each of the 1000 random sequences in vector randomseqs, we can get a
distribution of alignment scores expected for aligning ‘HEAGAWGHEE’ to random sequences of the same length
and (approximately the same) amino acid composition as ‘PAWHEAE’.

We can then compare the actual score for aligning ‘PAWHEAE’ to ‘HEAGAWGHEE’ (ie. -5) to the distribution
of scores for aligning ‘HEAGAWGHEE’ to the random sequences.

> randomscores <- double(1000) # Create a numeric vector with 1000 elements
> for (i in 1:1000)
{

score <- pairwiseAlignment(s4, randomseqs[i], substitutionMatrix = "BLOSUM50",
gapOpening = -2, gapExtension = -8, scoreOnly = TRUE)
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randomscores[i] <- score
}

The code above first uses the double() function to create a numeric vector randomscores for storing real numbers
(ie. not integers), with 1000 elements. This will be used to store the alignment scores for 1000 alignments between
‘HEAGAWGHEE’ and the 1000 different random sequences generated using the multinomial model.

The ‘for loop’ takes each of the 1000 different random sequences, aligns each one to ‘HEAGAWGHEE’, and
stores the 1000 alignment scores in the randomscores vector.

Once we have run the ‘for loop’, we can make a histogram plot of the 1000 scores in vector randomscores by
typing:

> hist(randomscores, col="red") # Draw a red histogram

We can see from the histogram that quite a lot of the random sequences seem to have higher alignment scores than
-5 when aligned to ‘HEAGAWGHEE’ (where -5 is the alignment score for ‘PAWHEAE’ and ‘HEAGAWGHEE’).

We can use the vector randomscores of scores for 1000 alignments of random sequences to ‘HEAGAWGHEE’
to calculate the probability of getting a score as large as the real alignment score for ‘PAWHEAE’ and ‘HEA-
GAWGHEE’ (ie. -5) by chance.

> sum(randomscores >= -5)
[1] 266
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We see that 266 of the 1000 alignments of random sequences to ‘HEAGAWGHEE’ had alignment scores that
were equal to or greater than -5. Thus, we can estimate that the probability of getting a score as large as the real
alignment score by chance is (266/1000 =) 0.266. In other words, we can calculate a P-value of 0.266. This
probability or P-value is quite high (almost 30%, or 1 in 3), so we can conclude that it is quite probable that we
could get an alignment score as high as -5 by chance alone. This indicates that the sequences ‘HEAGAWGHEE’
and ‘PAWHEAE’ are not more similar than any two random sequences, and so they are probably not related
sequences.

Another way of saying this is that the P-value that we calculated is high (0.266), and as a result we conclude
that the alignment score for the sequences ‘HEAGAWGHEE’ and ‘PAWHEAE’ is not statistically significant.
Generally, if the P-value that we calculate for an alignment of two sequences is >0.05, we conclude that the
alignment score is not statistically significant, and that the sequences are probably not related. On the other hand,
if the P-value is less than or equal to 0.05, we conclude that the alignment score is statistically significant, and the
sequences are very probably related (homologous).

Summary

In this practical, you will have learnt to use the following R functions:

1. data() for reading in data that comes with an R package

2. double() for creating a numeric vector for storing real (non-integer) numbers

3. toupper() for converting a string of characters from lowercase to uppercase

All of these functions belong to the standard installation of R.

You have also learnt the following R functions that belong to the bioinformatics packages:

1. nucleotideSubstitutionMatrix() in the Biostrings package for making a nucleotide scoring matrix

2. pairwiseAlignment() in the Biostrings package for making a global alignment between two sequences

3. c2s() in the SeqinR package for converting a sequence stored in a vector to a string of characters

Links and Further Reading

Some links are included here for further reading.

For background reading on sequence alignment, it is recommended to read Chapter 3 of Introduction to
Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/).

For more in-depth information and more examples on using the SeqinR package for sequence analysis, look at the
SeqinR documentation, http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

There is also a very nice chapter on “Analyzing Sequences”, which includes examples of using SeqinR and
Biostrings for sequence analysis, as well as details on how to implement algorithms such as Needleman-Wunsch
and Smith-Waterman in R yourself, in the book Applied statistics for bioinformatics using R by Krijnen (available
online at cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf).

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.

For more information on and examples using the Biostrings package, see the Biostrings documentation at http:
//www.bioconductor.org/packages/release/bioc/html/Biostrings.html.
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Exercises

Answer the following questions, using the R package. For each question, please record your answer, and what
you typed into R to get this answer.

Model answers to the exercises are given in Answers to the exercises on Sequence Alignment.

Q1. Download FASTA-format files of the Brugia malayi Vab-3 protein (UniProt accession A8PZ80) and the Loa loa Vab-3 protein (UniProt accession E1FTG0) sequences from UniProt.
Note: the vab-3 gene of Brugia malayi and the vab-3 gene of Loa loa are related genes that control eye
development in these two species. Brugia malayi and Loa loa are both parasitic nematode worms, which
both cause filariasis, which is classified by the WHO as a neglected tropical disease.

Q2. What is the alignment score for the optimal global alignment between the Brugia malayi Vab-3 protein and the Loa loa Vab-3 protein, when you use the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?
Note: to specify a gap opening penalty of -10 and a gap extension penalty of -0.5, set the “gapOpening”
argument to -9.5, and the “gapExtension” penalty to -0.5 in the pairwiseAlignment() function.

Q3. Use the printPairwiseAlignment() function to view the optimal global alignment between Brugia malayi Vab-3 protein and the Loa loa Vab-3 protein, using the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5.
Do you see any regions where the alignment is very good (lots of identities and few gaps)?

Q4. What global alignment score do you get for the two Vab-3 proteins, when you use the BLOSUM62 alignment matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?
Which scoring matrix do you think is more appropriate for using for this pair of proteins: BLOSUM50 or
BLOSUM62?

Q5. What is the statistical significance of the optimal global alignment for the Brugia malayi and Loa loa Vab-3 proteins made using the BLOSUM50 scoring matrix, with a gap opening penalty of -10 and a gap extension penalty of -0.5?
In other words, what is the probability of getting a score as large as the real alignment score for Vab-3 by
chance?

Q6. What is the optimal global alignment score between the Brugia malayi Vab-6 protein and the Mycobacterium leprae chorismate lyase protein?
Is the alignment score statistically significant (what is the P- value?)? Does this surprise you?
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Multiple Alignment and Phylogenetic trees

Retrieving a list of sequences from UniProt

In previous chapters, you learnt how to search for DNA or protein sequences in sequence databases such as the
NCBI database and UniProt, using the SeqinR package (see chapter3.html).

For example, in the previous chapter), you learnt how to retrieve a single sequence from UniProt.

Oftentimes, it is useful to retrieve several sequences from UniProt at once if you have a list of UniProt accessions.
The R function “retrieveseqs()” below is useful for this purpose:

> retrieveseqs <- function(seqnames,acnucdb)
{

myseqs <- list() # Make a list to store the sequences
require("seqinr") # This function requires the SeqinR R package
choosebank(acnucdb)
for (i in 1:length(seqnames))
{

seqname <- seqnames[i]
print(paste("Retrieving sequence",seqname,"..."))
queryname <- "query2"
query <- paste("AC=",seqname,sep="")
query(`queryname`,`query`)
seq <- getSequence(query2$req[[1]]) # Makes a vector "seq" containing the

→˓sequence
myseqs[[i]] <- seq

}
closebank()
return(myseqs)

}

You need to cut and paste this function into R to use it. As its input, you need to give it the function a vector
containing the accessions for the sequences you wish to retrieve, as well as the name of the ACNUC sub-database
that the sequences should be retrieved from. In this case, we want to retrieve sequences from UniProt, so the
sequences should be in the “swissprot” ACNUC sub-database.

The retrieveseqs() function returns a list variable, in which each element is a vector containing one of the se-
quences.

For example, to retrieve the protein sequences for UniProt accessions P06747, P0C569, O56773 and Q5VKP1
(the accessions for rabies virus phosphoprotein, Mokola virus phosphoprotein, Lagos bat virus phosphoprotein
and Western Caucasian bat virus phosphoprotein, respectively), you can type:

> seqnames <- c("P06747", "P0C569", "O56773", "Q5VKP1") # Make a vector
→˓containing the names of the sequences
> seqs <- retrieveseqs(seqnames,"swissprot") # Retrieve the sequences
→˓and store them in list variable "seqs"
> length(seqs) # Print out the number of sequences
→˓retrieved
[1] 4

> seq1 <- seqs[[1]] # Get the first sequence
> seq1[1:20] # Print out the first 20 letters of
→˓the first sequence
[1] "M" "S" "K" "I" "F" "V" "N" "P" "S" "A" "I" "R" "A" "G" "L" "A" "D" "L" "E"
[20] "M"

> seq2 <- seqs[[2]] # Get the second sequence
> seq2[1:20] # Print out the first 20 letters of
→˓the second sequence
[1] "M" "S" "K" "D" "L" "V" "H" "P" "S" "L" "I" "R" "A" "G" "I" "V" "E" "L" "E"
[20] "M"

1.8. Multiple Alignment and Phylogenetic trees 65



A Little Book of R For Bioinformatics, Release 0.1

The commands above use the function retrieveseqs() to retrieve two UniProt sequences. The sequences are re-
turned in a list variable seqs. To access the elements in an R list variable, you need to use double square brackets.
Therefore, the second element of the list variable is accessed by typing seqs[[2]]. Each element of the list variable
seqs contains a vector which stores one of the sequences.

Rabies virus is the virus responsible for rabies, which is classified by the WHO as a neglected tropical dis-
ease. Mokola virus and rabies virus are closely related viruses that both belong to a group of viruses called the
Lyssaviruses. Mokola virus causes a rabies-like infection in mammals including humans.

Once you have retrieved the sequences using retrieveseqs(), you can then use the function write.fasta() from the
SeqinR package to write the sequences to a FASTA-format file. As its arguments (inputs), the write.fasta() function
takes the list variable containing the sequences, and a vector containing the names of the sequences, and the name
that you want to give to the FASTA-format file. For example:

> write.fasta(seqs, seqnames, file="phosphoproteins.fasta")

The command above will write the sequences in list variable seqs to a FASTA-format file called “phosphopro-
teins.fasta” in the “My Documents” folder on your computer.

Installing the CLUSTAL multiple alignment software

A common task in bioinformatics is to download a set of related sequences from a database, and then to align
those sequences using multiple alignment software. This is the first step in most phylogenetic analyses.

One commonly used multiple alignment software package is CLUSTAL. In order to build an alignment using
CLUSTAL, you first need to install the CLUSTAL program on your computer.

To install CLUSTAL on your computer, you need to follow these steps:

• Go to the http://www.clustal.org/download/current/ website.

• Right-click on the link to file clustalx-Z.Z.Z-win.msi (where Z represents some number) and choose “Save
link as...” and then save the file in your “My Documents” folder.

• Once the file has downloaded, double-click on the icon for file clustalx-Z.Z.Z-win.msi (where Z is some
number).

• You will be asked “Are you sure you want to run this software?” Press “Run”.

• You will then see “Welcome to the ClustalX2 setup wizard”. Press “Next”.

• You will be asked where to install ClustalX2. Select your “My Documents” folder.

• Keep pressing ‘yes’ or ‘Next’ until the screen says “Completing the ClustalX2 setup wizard”. Then press
“Finish”.

CLUSTAL should now be installed on your computer.

Creating a multiple alignment of protein, DNA or mRNA sequences using
CLUSTAL

Once you have installed CLUSTAL, you can now align your sequences using CLUSTAL by following these steps:

• Go to the “Start” menu on the bottom left of your Windows screen. Select “All Programs” from the menu,
then select “ClustalX2” from the menu that appears. This will start up CLUSTAL.

• The CLUSTAL window should appear. To load the DNA or protein sequences that you want to align into
CLUSTAL, go to the CLUSTAL “File” menu, and choose “Load sequences”.

• Select the FASTA-format file containing your sequences (eg. phosphoproteins.fasta) to load it into
CLUSTAL.

• This should read the sequences into CLUSTAL. They have not been aligned yet, but will be displayed in the
CLUSTAL window.
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• You can use the scrollbar on the right to scroll down and look at all the sequences. You can use the scrollbar
on the bottom to scroll from left to right, and look along the length of the sequences.

• Before you align the sequences using CLUSTAL, you need to tell CLUSTAL to make the output alignment
file in PHYLIP alignment format, so that you can read it into R. To do this, go to the “Alignment” menu
in CLUSTAL, choose “Output Format Options”. A form will appear, and in this form you should select
“PHYLIP format” and deselect “CLUSTAL format”, and then press “OK”.

• To now align the sequences using CLUSTAL, go to the CLUSTAL “Alignment” menu, and choose “Do
Complete Alignment”.

• A menu box will pop up, asking you where to save the output guide-tree file (eg. “phosphoproteins.dnd”)
and the output alignment file (called “phosphoproteins.phy”). You should choose to save them in your “My
Documents” folder (so that you can easily read them into R from “My Documents” at a later stage).

• CLUSTAL will now align the sequences. This will take a couple of minutes (eg. 2-5 minutes). You will
see that at the bottom of the CLUSTAL window, it tells you which pair of sequences it is aligning at a
particular point in time. If the numbers keep changing, it means that CLUSTAL is still working away, and
the alignment is not finished yet. Be patient!

Once CLUSTAL has finished making the alignment, it will be displayed in the CLUSTAL window. For example,
here is the CLUSTAL alignment for rabies virus phosphoprotein, Mokola virus phosphoprotein, and Lagos bat
virus phosphoprotein:

The alignment displayed in CLUSTAL has a row for each of your sequences. CLUSTAL colours sets of chemically
similar amino acids in similar colours. For example, tyrosine (Y) is coloured blue-green, while the chemically
similar amino acid phenylalanine (F) is coloured blue. You can scroll to the right and left along the alignment
using the scrollbar at the bottom of the Jalview window.

Below the alignment, you can see a grey plot, showing the level of conservation at each point of the sequence. This
shows a high grey bar if the conservation in a region is high (there is high percent identity between the sequence),
and a low grey bar if it is low (there is low percent identity). This can give you an idea of which are the best
conserved regions of the alginment.

For example, for the alignment of the four virus phosphoproteins, we can see that the region in alignment columns
35 to 45 approximately is very well conserved, while the region in alignment columns 60 to 70 is poorly conserved.

The CLUSTAL alignment will have been saved in a file in your “My Documents” folder called “something.phy”
(eg. phosphoproteins.phy). This is a PHYLIP-format alignment file, which you can now read into R for further
analysis.

Reading a multiple alignment file into R

To read a sequence alignment into R from a file, you can use the read.alignment() function in the SeqinR package.
For example, to read in the multiple sequence alignment of the virus phosphoproteins into R, we type:

> virusaln <- read.alignment(file = "phosphoproteins.phy", format = "phylip")
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The virusaln variable is a list variable that stores the alignment.

An R list variable can have named elements, and you can access the named elements of a list variable by typing
the variable name, followed by “$”, followed by the name of the named element.

The list variable virusaln has named elements “nb”, “nam”, “seq”, and “com”.

In fact, the named element “seq” contains the alignment, which you can view by typing:

> virusaln$seq
[[1]]
[1] "mskdlvhpsliragivelemaeettdlinrtiesnqahlqgeplyvdslpedmsrlriedksrrtk...
[[2]]
[1] "mskglihpsairsglvdlemaeetvdlvhknladsqahlqgeplnvdslpedmrkmrltnapsere...
[[3]]
[1] "mskifvnpsairagladlemaeetvdlinrniednqahlqgepievdnlpedmgrlhlddgkspnp...
[[4]]
[1] "mskslihpsdlragladiemadetvdlvyknlsegqahlqgepfdikdlpegvsklqisdnvrsdt...

Only the first part of the alignment stored in virusaln$seq is shown here, as it is very long.

Viewing a long multiple alignment

If you want to view a long multiple alignment, it is convenient to view the multiple alignment in blocks.

The R function “printMultipleAlignment()” below will do this for you:

> printMultipleAlignment <- function(alignment, chunksize=60)
{

# this function requires the Biostrings package
require("Biostrings")
# find the number of sequences in the alignment
numseqs <- alignment$nb
# find the length of the alignment
alignmentlen <- nchar(alignment$seq[[1]])
starts <- seq(1, alignmentlen, by=chunksize)
n <- length(starts)
# get the alignment for each of the sequences:
aln <- vector()
lettersprinted <- vector()
for (j in 1:numseqs)
{

alignmentj <- alignment$seq[[j]]
aln[j] <- alignmentj
lettersprinted[j] <- 0

}
# print out the alignment in blocks of 'chunksize' columns:
for (i in 1:n) { # for each of n chunks

for (j in 1:numseqs)
{

alnj <- aln[j]
chunkseqjaln <- substring(alnj, starts[i], starts[i]+chunksize-1)
chunkseqjaln <- toupper(chunkseqjaln)
# Find out how many gaps there are in chunkseqjaln:
gapsj <- countPattern("-",chunkseqjaln) # countPattern() is from

→˓Biostrings package
# Calculate how many residues of the first sequence we have printed so

→˓far in the alignment:
lettersprinted[j] <- lettersprinted[j] + chunksize - gapsj
print(paste(chunkseqjaln,lettersprinted[j]))

}
print(paste(' '))
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}
}

As its inputs, the function “printMultipleAlignment()” takes the input alignment, and the number of columns to
print out in each block.

For example, to print out the multiple alignment of virus phosphoproteins (which we stored in variable virusaln,
see above) in blocks of 60 columns, we type:

> printMultipleAlignment(virusaln, 60)
[1] "MSKDLVHPSLIRAGIVELEMAEETTDLINRTIESNQAHLQGEPLYVDSLPEDMSRLRIED 60"
[1] "MSKGLIHPSAIRSGLVDLEMAEETVDLVHKNLADSQAHLQGEPLNVDSLPEDMRKMRLTN 60"
[1] "MSKIFVNPSAIRAGLADLEMAEETVDLINRNIEDNQAHLQGEPIEVDNLPEDMGRLHLDD 60"
[1] "MSKSLIHPSDLRAGLADIEMADETVDLVYKNLSEGQAHLQGEPFDIKDLPEGVSKLQISD 60"
[1] " "
[1] "KSRRTKTEEEERDEGSSEEDNYLSEGQDPLIPFQNFLDEIGARAVKRLKTGEGFFRVWSA 120"
[1] "APSEREIIEEDEEEYSSEDEYYLSQGQDPMVPFQNFLDELGTQIVRRMKSGDGFFKIWSA 120"
[1] "GKSPNPGEMAKVGEGKYREDFQMDEGEDPSLLFQSYLDNVGVQIVRQIRSGERFLKIWSQ 120"
[1] "NVRSDTSPNEYSDEDDEEGEDEYEEVYDPVSAFQDFLDETGSYLISKLKKGEKIKKTWSE 120"
[1] " "
[1] "LSDDIKGYVSTNIM-TSGERDTKSIQIQTEPTASVSSGNESRHDSESMHDPNDKKDHTPD 179"
[1] "ASEDIKGYVLSTFM-KPETQATVSKPTQTDSLSVPRPSQGYTSVPRDKPSNSESQGGGVK 179"
[1] "TVEEIISYVAVNFP-NPPGKSSEDKSTQTTGRELKKETTPTPSQRESQSSKARMAAQTAS 179"
[1] "VSRVIYSYVMSNFPPRPPKPTTKDIAVQADLKKPNEIQKISEHKSKSEPSPREPVVEMHK 180"
[1] " "
[1] "HDVVPDIESSTDKGEIRDIEGEVAHQVAESFSKKYKFPSRSSGIFLWNFEQLKMNLDDIV 239"
[1] "PKKVQKSEWTRDTDEISDIEGEVAHQVAESFSKKYKFPSRSSGIFLWNFEQLKMNLDDIV 239"
[1] "GPPALEWSATNEEDDLS-VEAEIAHQIAESFSKKYKFPSRSSGILLYNFEQLKMNLDDIV 238"
[1] "HATLE-----NPEDDEGALESEIAHQVAESYSKKYKFPSKSSGIFLWNFEQLKMNLDDIV 235"
[1] " "
[1] "KAAMNVPGVERIAEKGGKLPLRCILGFVALDSSKRFRLLADNDKVARLIQEDINSYMARL 299"
[1] "KTSMNVPGVDKIAEKGGKLPLRCILGFVSLDSSKRFRLLADTDKVARLMQDDIHNYMTRI 299"
[1] "KEAKNVPGVTRLARDGSKLPLRCVLGWVALANSKKFQLLVESNKLSKIMQDDLNRYTSC- 297"
[1] "QVARGVPGISQIVERGGKLPLRCMLGYVGLETSKRFRSLVNQDKLCKLMQEDLNAYSVSS 295"
[1] " "
[1] "EEAE-- 357"
[1] "EEIDHN 359"
[1] "------ 351"
[1] "NN---- 351"
[1] " "

Discarding very poorly conserved regions from an alignment

It is often a good idea to discard very poorly conserved regions from a mulitple alignment before building a
phylogenetic tree, as the very poorly conserved regions are likely to be regions that are either not homologous
between the sequences being considered (and so do not add any phylogenetic signal), or are homologous but are
so diverged that they are very difficult to align accurately (and so may add noise to the phylogenetic analysis, and
decrease the accuracy of the inferred tree).

To discard very poorly conserved regions from a multiple alignment, you can use the following R function,
“cleanAlignment()”:

> cleanAlignment <- function(alignment, minpcnongap, minpcid)
{

# make a copy of the alignment to store the new alignment in:
newalignment <- alignment
# find the number of sequences in the alignment
numseqs <- alignment$nb
# empty the alignment in "newalignment")
for (j in 1:numseqs) { newalignment$seq[[j]] <- "" }
# find the length of the alignment
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alignmentlen <- nchar(alignment$seq[[1]])
# look at each column of the alignment in turn:
for (i in 1:alignmentlen)
{

# see what percent of the letters in this column are non-gaps:
nongap <- 0
for (j in 1:numseqs)
{

seqj <- alignment$seq[[j]]
letterij <- substr(seqj,i,i)
if (letterij != "-") { nongap <- nongap + 1}

}
pcnongap <- (nongap*100)/numseqs
# Only consider this column if at least minpcnongap % of the letters are

→˓not gaps:
if (pcnongap >= minpcnongap)
{

# see what percent of the pairs of letters in this column are identical:
numpairs <- 0; numid <- 0
# find the letters in all of the sequences in this column:
for (j in 1:(numseqs-1))
{

seqj <- alignment$seq[[j]]
letterij <- substr(seqj,i,i)
for (k in (j+1):numseqs)
{

seqk <- alignment$seq[[k]]
letterkj <- substr(seqk,i,i)
if (letterij != "-" && letterkj != "-")
{

numpairs <- numpairs + 1
if (letterij == letterkj) { numid <- numid + 1}

}
}

}
pcid <- (numid*100)/(numpairs)
# Only consider this column if at least %minpcid of the pairs of

→˓letters are identical:
if (pcid >= minpcid)
{

for (j in 1:numseqs)
{

seqj <- alignment$seq[[j]]
letterij <- substr(seqj,i,i)
newalignmentj <- newalignment$seq[[j]]
newalignmentj <- paste(newalignmentj,letterij,sep="")
newalignment$seq[[j]] <- newalignmentj

}
}

}
}
return(newalignment)

}

The function cleanAlignment() takes three arguments (inputs): the input alignment; the minimum percent of letters
in an alignment column that must be non-gap characters for the column to be kept; and the minimum percent of
pairs of letters in an alignment column that must be identical for the column to be kept.

For example, if we have a column with letters “T”, “A”, “T”, “-” (in four sequences), then 75% of the letters
are non-gap characters; and the pairs of letters are “T,A”, “T,T”, and “A,T”, and 33% of the pairs of letters are
identical.

We can use the function cleanAlignment() to discard the very poorly aligned columns from a multiple alignment.
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For example, if you look at the multiple alignment for the virus phosphoprotein sequences (which we printed
out using function printMultipleAlignment(), see above), we can see that the last few columns are poorly aligned
(contain many gaps and mismatches), and probably add noise to the phylogenetic analysis.

Therefore, to filter out the well conserved columns of the alignment, and discard the very poorly conserved
columns, we can type:

> cleanedvirusaln <- cleanAlignment(virusaln, 30, 30)

In this case, we required that at least 30% of letters in a column are not gap characters for that column to be kept,
and that at least 30% of pairs of letters in an alignment column must be identical for the column to be kept.

We can print out the filtered alignment by typing:

> printMultipleAlignment(cleanedvirusaln)
[1] "MSKLVHPSIRAGIVELEMAEETTDLIRTIQAHLQGEPVDLPEDMRLIDREEEDEGDPFQF 60"
[1] "MSKLIHPSIRSGLVDLEMAEETVDLVKNLQAHLQGEPVDLPEDMKMLNSEEEEQGDPFQF 60"
[1] "MSKFVNPSIRAGLADLEMAEETVDLIRNIQAHLQGEPVDLPEDMRLLDSAERDEGDPFQY 60"
[1] "MSKLIHPSLRAGLADIEMADETVDLVKNLQAHLQGEPIKLPEGVKLIDREEEEEVDPFQF 60"
[1] " "
[1] "LDEGVKGEFRWSSIGYVNIMSTSIQTHSDESGEDEEVAHQVAESFSKKYKFPSRSSGIFL 120"
[1] "LDEGVKGDFKWSSIGYVTFMPTSKQTSDSETDEDEEVAHQVAESFSKKYKFPSRSSGIFL 120"
[1] "LDNGVRGEFKWSVISYVNFPPSDKQTSSSSTDD-EEIAHQIAESFSKKYKFPSRSSGILL 119"
[1] "LDEGIKGEIKWSSISYVNFPPTDIQAHSS--DDAEEIAHQVAESYSKKYKFPSKSSGIFL 118"
[1] " "
[1] "WNFEQLKMNLDDIVKANVPGVIAEGGKLPLRCLGVLSKRFRLLADKVRLIQEDINYEE 180"
[1] "WNFEQLKMNLDDIVKSNVPGVIAEGGKLPLRCLGVLSKRFRLLADKVRLMQDDIHYEE 180"
[1] "YNFEQLKMNLDDIVKANVPGVLARGSKLPLRCLGVLSKKFQLLVNKLKIMQDDLNY-- 177"
[1] "WNFEQLKMNLDDIVQAGVPGIIVEGGKLPLRCLGVLSKRFRSLVDKLKLMQEDLNYNN 178"
[1] " "

The filtered alignment is shorter, but is missing some of the poorly conserved regions of the original alignment.

Note that it is not a good idea to filter out too much of your alignment, as if you are left with few columns in your
filtered alignment, you will be basing your phylogenetic tree upon a very short alignment (little data), and so the
tree may be unreliable. Therefore, you need to achieve a balance between discarding the dodgy (poorly aligned)
parts of your alignment, and retaining enough columns of the alignment that you will have enough data to based
your tree upon.

Calculating genetic distances between protein sequences

A common first step in performing a phylogenetic analysis is to calculate the pairwise genetic distances between
sequences. The genetic distance is an estimate of the divergence between two sequences, and is usually measured
in quantity of evolutionary change (an estimate of the number of mutations that have occurred since the two
sequences shared a common ancestor).

We can calculate the genetic distances between protein sequences using the “dist.alignment()” function in the
SeqinR package. The dist.alignment() function takes a multiple alignment as input. Based on the multiple align-
ment that you give it, dist.alignment() calculates the genetic distance between each pair of proteins in the multiple
alignment. For example, to calculate genetic distances between the virus phosphoproteins based on the multiple
sequence alignment stored in virusaln, we type:

> virusdist <- dist.alignment(virusaln) # Calculate the
→˓genetic distances
> virusdist # Print out the
→˓genetic distance matrix

P0C569 O56773 P06747
O56773 0.4142670
P06747 0.4678196 0.4714045
Q5VKP1 0.4828127 0.5067117 0.5034130

The genetic distance matrix above shows the genetic distance between each pair of proteins.
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The sequences are referred to by their UniProt accessions. If you remember from above, P06747 is rabies
virus phosphoprotein, P0C569 is Mokola virus phosphoprotein, O56773 is Lagos bat virus phosphoprotein and
Q5VKP1 is Western Caucasian bat virus phosphoprotein.

Based on the genetic distance matrix above, we can see that the genetic distance between Lagos bat virus phos-
phoprotein (O56773) and Mokola virus phosphoprotein (P0C569) is smallest (about 0.414).

Similarly, the genetic distance between Western Caucasian bat virus phosphoprotein (Q5VKP1) and Lagos bat
virus phosphoprotein (O56773) is the biggest (about 0.507).

The larger the genetic distance between two sequences, the more amino acid changes or indels that have occurred
since they shared a common ancestor, and the longer ago their common ancestor probably lived.

Calculating genetic distances between DNA/mRNA sequences

Just like for protein sequences, you can calculate genetic distances between DNA (or mRNA) sequences based on
an alignment of the sequences.

For example, the NCBI accession AF049118 contains mRNA sequence for Mokola virus phosphoprotein, RefSeq
AF049114 contains mRNA sequence for Mokola virus phosphoprotein, and AF049119 contains the mRNA se-
quence for Lagos bat virus phosphoprotein, while AF049115 contains the mRNA sequence for Duvenhage virus
phosphoprotein.

To retrieve these sequences from the NCBI database, we can search the ACNUC “genbank” sub-database (since
these are nucleotide sequences), by typing:

> seqnames <- c("AF049118", "AF049114", "AF049119", "AF049115") # Make a vector
→˓containing the names of the sequences
> seqs <- retrieveseqs(seqnames,"genbank") # Retrieve the
→˓sequences and store them in list variable "seqs"

We can then write out the sequences to a FASTA-format file by typing:

> write.fasta(seqs, seqnames, file="virusmRNA.fasta")

We can then use CLUSTAL to create a PHYLIP-format alignment of the sequences, and store it in the alignment
file “virusmRNA.phy”. This picture shows part of the alignment:

We can then read the alignment into R:

> virusmRNAaln <- read.alignment(file = "virusmRNA.phy", format = "phylip")

We saw above that the function dist.alignment() can be used to calculate a genetic distance matrix based on a
protein sequence alignment.
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You can calculate a genetic distance for DNA or mRNA sequences using the dist.dna() function in the Ape R
package. dist.dna()</tt> takes a multiple alignment of DNA or mRNA sequences as its input, and calculates the
genetic distance between each pair of DNA sequences in the multiple alignment.

The dist.dna() function requires the input alignment to be in a special format known as “DNAbin” format, so
we must use the as.DNAbin() function to convert our DNA alignment into this format before using the dist.dna()
function.

For example, to calculate the genetic distance between each pair of mRNA sequences for the virus phosphopro-
teins, we type:

> virusmRNAalnbin <- as.DNAbin(virusmRNAaln) # Convert the alignment to "DNAbin"
→˓format
> virusmRNAdist <- dist.dna(virusmRNAalnbin) # Calculate the genetic distance
→˓matrix
> virusmRNAdist # Print out the genetic distance
→˓matrix

AF049114 AF049119 AF049118
AF049119 0.3400576
AF049118 0.5235850 0.5637372
AF049115 0.6854129 0.6852311 0.7656023

Building an unrooted phylogenetic tree for protein sequences

Once we have a distance matrix that gives the pairwise distances between all our protein sequences, we can build
a phylogenetic tree based on that distance matrix. One method for using this is the neighbour-joining algorithm.

You can build a phylogenetic tree using the neighbour-joining algorithm with the the Ape R package. First you
will need to install the “ape” package (see instructions on how to install R packages).

The following R function “unrootedNJtree()” builds a phylogenetic tree based on an alignment of sequences, using
the neighbour-joining algorithm, using functions from the “ape” package.

The “unrootedNJtree()” function takes an alignment of sequences its input, calculates pairwise distances between
the sequences based on the alignment, and then builds a phylogenetic tree based on the pairwise distances. It
returns the phylogenetic tree, and also makes a picture of that tree:

> unrootedNJtree <- function(alignment,type)
{

# this function requires the ape and seqinR packages:
require("ape")
require("seqinr")
# define a function for making a tree:
makemytree <- function(alignmentmat)
{

alignment <- ape::as.alignment(alignmentmat)
if (type == "protein")
{

mydist <- dist.alignment(alignment)
}
else if (type == "DNA")
{

alignmentbin <- as.DNAbin(alignment)
mydist <- dist.dna(alignmentbin)

}
mytree <- nj(mydist)
mytree <- makeLabel(mytree, space="") # get rid of spaces in tip names.
return(mytree)

}
# infer a tree
mymat <- as.matrix.alignment(alignment)
mytree <- makemytree(mymat)
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# bootstrap the tree
myboot <- boot.phylo(mytree, mymat, makemytree)
# plot the tree:
plot.phylo(mytree,type="u") # plot the unrooted phylogenetic tree
nodelabels(myboot,cex=0.7) # plot the bootstrap values
mytree$node.label <- myboot # make the bootstrap values be the node labels
return(mytree)

}

To use the function to make a phylogenetic tree, you must first copy and paste the function into R. You can then
use it to make a tree, for example of the virus phosphoproteins, based on the sequence alignment:

> virusalntree <- unrootedNJtree(virusaln,type="protein")

Note that you need to specify that the type of sequences that you are using are protein sequences when you use
unrootedNJtree(), by setting “type=protein”.

We can see that Q5VKP1 (Western Caucasian bat virus phosphoprotein) and P06747 (rabies virus phosphoprotein)
have been grouped together in the tree, and that O56773 (Lagos bat virus phosphoprotein) and P0C569 (Mokola
virus phosphoprotein) are grouped together in the tree.

This is consistent with what we saw above in the genetic distance matrix, which showed that the genetic distance
between Lagos bat virus phosphoprotein (O56773) and Mokola virus phosphoprotein (P0C569) is relatively small.

The numbers in blue boxes are bootstrap values for the nodes in the tree.

A bootstrap value for a particular node in the tree gives an idea of the confidence that we have in the clade (group)
defined by that node in the tree. If a node has a high bootstrap value (near 100%) then we are very confident
that the clade defined by the node is correct, while if it has a low bootstrap value (near 0%) then we are not so
confident.

Note that the fact that a bootstrap value for a node is high does not necessarily guarantee that the clade defined by
the node is correct, but just tells us that it is quite likely that it is correct.

The bootstrap values are calculated by making many (for example, 100) random “resamples” of the alignment
that the phylogenetic tree was based upon. Each “resample” of the alignment consists of a certain number x (eg.
200) of randomly sampled columns from the alignment. Each “resample” of the alignment (eg. 200 randomly
sampled columns) forms a sort of fake alignment of its own, and a phylogenetic tree can be based upon the
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“resample”. We can make 100 random resamples of the alignment, and build 100 phylogenetic trees based on the
100 resamples. These 100 trees are known as the “bootstrap trees”. For each clade (grouping) that we see in our
original phylogenetic tree, we can count in how many of the 100 bootstrap trees it appears. This is known as the
“bootstrap value” for the clade in our original phylogenetic tree.

For example, if we calculate 100 random resamples of the virus phosphoprotein alignment, and build 100 phylo-
genetic trees based on these resamples, we can calculate the bootstrap values for each clade in the virus phospho-
protein phylogenetic tree.

In this case, the bootstrap value for the node defining the clade containing Q5VKP1 (Western Caucasian bat virus
phosphoprotein) and P06747 (rabies virus phosphoprotein) is 25%, while the bootstrap value for node defining the
clade containg of Lagos bat virus phosphoprotein (O56773) and Mokola virus phosphoprotein (P0C569) is 100%.
The bootstrap values for each of these clades is the percent of 100 bootstrap trees that the clade appears in.

Therefore, we are very confident that Lagos bat virus and Mokola virus phosphoproteins should be grouped
together in the tree. However, we are not so confident that the Western Caucasian bat virus and rabies virus
phosphoproteins should be grouped together.

The lengths of the branches in the plot of the tree are proportional to the amount of evolutionary change (estimated
number of mutations) along the branches.

In this case, the branches leading to Lagos bat virus phosphoprotein (O56773) and Mokola virus phosphoprotein
(P0C569) from the node representing their common ancestor are slightly shorter than the branches leading to the
Western Caucasian bat virus (Q5VKP1) and rabies virus (P06747) phosphoproteins from the node representing
their common ancestor.

This suggests that there might have been more mutations in the Western Caucasian bat virus (Q5VKP1) and rabies
virus (P06747) phosphoproteins since they shared a common ancestor, than in the Lagos bat virus phosphoprotein
(O56773) and Mokola virus phosphoprotein (P0C569) since they shared a common ancestor.

The tree above of the virus phosphoproteins is an unrooted phylogenetic tree as it does not contain an outgroup
sequence, that is a sequence of a protein that is known to be more distantly related to the other proteins in the tree
than they are to each other.

As a result, we cannot tell which direction evolutionary time ran in along the internal branches of the tree. For
example, we cannot tell whether the node representing the common ancestor of (O56773, P0C569) was an ancestor
of the node representing the common ancestor of (Q5VKP1, P06747), or the other way around.

In order to build a rooted phylogenetic tree, we need to have an outgroup sequence in our tree. In the case of the
virus phosphoproteins, this is unfortunately not possible, as (as far as I know) there is not any protein known that
is more distantly related to the four proteins already in our tree than they are to each other.

However, in many other cases, an outgroup - a sequence known to be more distantly relatd to the other sequences
in the tree than they are to each other - is known, and so it is possible to build a rooted phylogenetic tree.

We discussed above that it is a good idea to investigate whether discarding the poorly conserved regions of a
multiple alignment has an effect on the phylogenetic analysis. In this case, we made a filtered copy of the multiple
alignment and stored it in the variable cleanedvirusaln (see above). We can make a phylogenetic tree based this
filtered alignment, and see if it agrees with the phylogenetic tree based on the original alignment:

> cleanedvirusalntree <- unrootedNJtree(cleanedvirusaln,type="protein")
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Here O56773 and P0C569 are grouped together, and Q5VKP1 and P06747 are grouped together, as in the phylo-
genetic tree based on the raw (unfiltered) multiple alignment (see above). Thus, filtering the multiple alignment
does not have an effect on the tree.

If we had found a difference in the trees made using the unfiltered and filtered multiple alignments, we would
have to examine the multiple alignments closely, to see if the unfiltered multiple alignment contains a lot of very
poorly aligned regions that might be adding noise to the phylogenetic analysis (if this is true, the tree based on the
filtered alignment is likely to be more reliable).

Building a rooted phylogenetic tree for protein sequences

In order to convert the unrooted tree into a rooted tree, we need to add an outgroup sequence. Normally, the
outgroup sequence is a sequence that we know from some prior knowledge to be more distantly related to the
other sequences under study than they are to each other.

For example, the protein Fox-1 is involved in determining the sex (gender) of an embryo in the nematode worm
Caenorhabditis elegans (UniProt accession Q10572). Related proteins are found in other nematodes, including
Caenorhabditis remanei (UniProt E3M2K8), Caenorhabditis briggsae (A8WS01), Loa loa (E1FUV2), and Bru-
gia malayi (UniProt A8NSK3).

Note that Caenorhabditis elegans is a model organism commonly studied in molecular biology. The nematodes
Loa loa, and Brugia malayi are parasitic nematodes that cause filariasis, which is classified by the WHO as a
neglected tropical disease.

The UniProt database contains a distantly related sequence from the fruitfly Drosophila melanogaster (UniProt
accession Q9VT99). If we were to build a phylogenetic tree of the nematode worm Fox-1 homologues, the
distantly related sequence from fruitfly would probably be a good choice of outgroup, since the protein is from
a different animal group (insects) than the nematode worms. Thus, it is likely that the fruitfly protein is more
distantly related to all the nematode proteins than they are to each other.

To retrieve the sequences from UniProt we can use the “retrieveseqs()” function (see above):
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> seqnames <- c("Q10572","E3M2K8","Q8WS01","E1FUV2","A8NSK3","Q9VT99")
> seqs <- retrieveseqs(seqnames,"swissprot")

We can then write out the sequences to a FASTA file:

> write.fasta(seqs, seqnames, file="fox1.fasta")

We can then use CLUSTAL to create a PHYLIP-format alignment of the sequences, and store it in the alignment
file “fox1.phy”. This picture shows part of the alignment (the alignment is quite long, so not all of it is shown):

We can then read the alignment into R:

> fox1aln <- read.alignment(file = "fox1.phy", format = "phylip")

The next step is to build a phylogenetic tree of the proteins, which again we can do using the neighbour-joining
algorithm.

This time we have an outgroup in our set of sequences, so we can build a rooted tree. The function “rootedNJtree()”
can be used to build a rooted tree. It returns the phylogenetic tree, and also makes a picture of the tree:

> rootedNJtree <- function(alignment, theoutgroup, type)
{

# load the ape and seqinR packages:
require("ape")
require("seqinr")
# define a function for making a tree:
makemytree <- function(alignmentmat, outgroup=`theoutgroup`)
{

alignment <- ape::as.alignment(alignmentmat)
if (type == "protein")
{

mydist <- dist.alignment(alignment)
}
else if (type == "DNA")
{

alignmentbin <- as.DNAbin(alignment)
mydist <- dist.dna(alignmentbin)

}
mytree <- nj(mydist)
mytree <- makeLabel(mytree, space="") # get rid of spaces in tip names.
myrootedtree <- root(mytree, outgroup, r=TRUE)
return(myrootedtree)

}
# infer a tree
mymat <- as.matrix.alignment(alignment)
myrootedtree <- makemytree(mymat, outgroup=theoutgroup)
# bootstrap the tree

1.8. Multiple Alignment and Phylogenetic trees 77



A Little Book of R For Bioinformatics, Release 0.1

myboot <- boot.phylo(myrootedtree, mymat, makemytree)
# plot the tree:
plot.phylo(myrootedtree, type="p") # plot the rooted phylogenetic tree
nodelabels(myboot,cex=0.7) # plot the bootstrap values
mytree$node.label <- myboot # make the bootstrap values be the node labels
return(mytree)

}

The function takes the alignment and the name of the outgroup as its inputs. For example, to use it to make a
phylogenetic tree of the C. elegans Fox-1 protein and its homologues, using the fruitfly protein (UniProt Q9VT99)
as the outgroup, we type:

> fox1alntree <- rootedNJtree(fox1aln, "Q9VT99",type="protein")

Here we can see that E3M2K8 (C. remanei Fox-1 homologue) and Q10572 (C. elegans Fox-1) have been grouped
together with bootstrap 100%, and A8NSK3 (Brugia malayi Fox-1 homologue) and E1FUV2 (Loa loa Fox-
1 homologue) have been grouped together with bootstrap 100%. These four proteins have also been grouped
together in a larger clade with bootstrap 100%.

Compared to these four proteins, the Q8WS01 (C. briggsae Fox-1 homologue) and Q9VT99 (fruitfly outgroup)
seem to be relatively distantly related.

As this is a rooted tree, we know the direction that evolutionary time ran. Say we call the ancestor of the four
sequences (E3M2K8, Q10572, A8NSK3, E1FUV2) ancestor1, the ancestor of the two sequences (E3M2K8,
Q10572) ancestor2, and the ancestor of the two sequences (A8NSK3, E1FUV2) ancestor3.

Because it is a rooted tree, we know that time ran from left to right along the branches of the tree, so that ancestor1
was the ancestor of ancestor2, and ancestor1 was also the ancestor of ancestor3. In other words, ancestor1 lived
before ancestor2 or ancestor3; ancestor2 and ancestor3 were descendants of ancestor1.

Another way of saying this is that E3M2K8 and Q10572 shared a common ancestor with each other more recently
than they did with A8NSK3 and E1FUV2.

The lengths of branches in this tree are proportional to the amount of evolutionary change (estimated number of
mutations) that occurred along the branches. The branches leading back from E3M2K8 and Q10572 to their last
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common ancestor are slightly longer than the branches leading back from A8NSK3 and E1FUV2 to their last
common ancestor.

This indicates that there has been more evolutionary change in E3M2K8 (C. remanei Fox-1 homologue) and
Q10572 (C. elegans Fox-1) proteins since they diverged, than there has been in A8NSK3 (Brugia malayi Fox-1
homologue) and E1FUV2 (Loa loa Fox-1 homologue) since they diverged.

Building a phylogenetic tree for DNA or mRNA sequences

In the example above, a phylogenetic tree was built for protein sequences. The genomes of distantly related
organisms such as vertebrates will have accumulated many mutations since they diverged. Sometimes, so many
mutations have occurred since the organisms diverged that their DNA sequences are hard to align correctly and it
is also hard to accurately estimate evolutionary distances from alignments of those DNA sequences.

In contrast, as many mutations at the DNA level are synonymous at the protein level, protein sequences diverge at
a slower rate than DNA sequences. This is why for reasonably distantly related organisms such as vertebrates, it
is usually preferable to use protein sequences for phylogenetic analyses.

If you are studying closely related organisms such as primates, few mutations will have occurred since they
diverged. As a result, if you use protein sequences for a phylogenetic analysis, there may be too few amino acid
substitutions to provide enough ‘signal’ to use for the phylogenetic analysis. Therefore, it is often preferable to
use DNA sequences for a phylogenetic analysis of closely related organisms such as primates.

We can use the functions unrootedNJtree() and rootedNJtree() described above to build unrooted or rooted
neighbour-joining phylogenetic trees based on an alignment of DNA or mRNA sequences. In this case, we need to
use “type=DNA” as an argument in these functions, to tell them that we are making a tree of nucleotide sequences,
not protein sequences.

For example, to build an unrooted phylogenetic tree based on the alignment of the virus phosphoprotein mRNA
sequences, we type in R:

> virusmRNAaln <- read.alignment(file = "virusmRNA.phy", format = "phylip")
> virusmRNAalntree <- unrootedNJtree(virusmRNAaln, type="DNA")

1.8. Multiple Alignment and Phylogenetic trees 79



A Little Book of R For Bioinformatics, Release 0.1

Saving a phylogenetic tree as a Newick-format tree file

A commonly used format for representing phylogenetic trees is the Newick format. Once you have built a phyloge-
netic tree using R, it is convenient to store it as a Newick-format tree file. This can be done using the “write.tree()”
function in the Ape R package.

For example, to save the unrooted phylogenetic tree of virus phosphoprotein mRNA sequences as a Newick-format
tree file called “virusmRNA.tre”, we type:

> write.tree(virusmRNAalntree, "virusmRNA.tre")

The Newick-format file “virusmRNA.tre” should now appear in your “My Documents” folder.

Summary

In this practical, you have learnt the following R functions that belong to the bioinformatics packages:

1. read.alignment() from the SeqinR package for reading in a multiple alignment

2. dist.alignment() from the SeqinR package for calculating genetic distances between protein sequences

3. dist.dna() from the Ape package for calculating genetic distances between DNA or mRNA sequences

Links and Further Reading

Some links are included here for further reading.

For background reading on phylogenetic trees, it is recommended to read Chapter 7 of Introduction to
Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/).

Another more in-depth (but very accesssible) book on phylogenetics is Molecular Evolution: A Phylogenetic
Approach by Roderic DM Page and Edward C Holmes.

For more in-depth information and more examples on using the SeqinR package for sequence analysis, look at the
SeqinR documentation, http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

For more in-depth information and more examples on the Ape package for phylogenetic analysis, look at the Ape
documentation, ape.mpl.ird.fr/.

If you are using the Ape package for a phylogenetic analysis project, it would be worthwhile to obtain a copy of
the book Analysis of Phylogenetics and Evolution with R by Emmanuel Paradis, published by Springer, which has
many nice examples of using R for phylogenetic analyses.

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.
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Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email
address alc@sanger.ac.uk

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

Exercises

Answer the following questions, using the R package. For each question, please record your answer, and what
you typed into R to get this answer.

Model answers to the exercises are given in Answers to the exercises on Multiple Alignment and Phylogenetic
Trees.

Q1. Calculate the genetic distances between the following NS1 proteins from different Dengue virus strains: Dengue virus 1 NS1 protein (Uniprot Q9YRR4), Dengue virus 2 NS1 protein (UniProt Q9YP96), Dengue virus 3 NS1 protein (UniProt B0LSS3), and Dengue virus 4 NS1 protein (UniProt Q6TFL5). Which are the most closely related proteins, and which are the least closely related, based on the genetic distances?
Note: Dengue virus causes Dengue fever, which is classified by the WHO as a neglected tropical disease.
There are four main types of Dengue virus, Dengue virus 1, Dengue virus 2, Dengue virus 3, and Dengue
virus 4.

Q2. Build an unrooted phylogenetic tree of the NS1 proteins from Dengue virus 1, Dengue virus 2, Dengue virus
3 and Dengue virus 4, using the neighbour-joining algorithm. Which are the most closely related proteins, based
on the tree? Based on the bootstrap values in the tree, how confident are you of this?

Q3. Build an unrooted phylogenetic tree of the NS1 proteins from Dengue viruses 1-4, based on a filtered align-
ment of the four proteins (keeping alignment columns in which at least 30% of letters are not gaps, and in which
at least 30% of pairs of letters are identical). Does this differ from the tree based on the unfiltered alignment (in
Q2)? Can you explain why?

Q4. The Zika virus is related to Dengue viruses, but is not a Dengue virus, and so therefore can be used as an
outgroup in phylogenetic trees of Dengue virus sequences. UniProt accession Q32ZE1 consists of a sequence with
similarity to the Dengue NS1 protein, so seems to be a related protein from Zika virus. Build a rooted phylogenetic
tree of the Dengue NS1 proteins based on a filtered alignment (keeping alignment columns in which at least 30%
of letters are not gaps, and in which at least 30% of pairs of letters are identical), using the Zika virus protein as the
outgroup. Which are the most closely related Dengue virus proteins, based on the tree? What extra information
does this tree tell you, compared to the unrooted tree in Q2?

REVISION EXERCISES 2

These are some revision exercises on sequence alignment and phylogenetic trees.

Exercises

Answer the following questions. For each question, please record your answer, and what you did/typed to get this
answer.

Model answers to the exercises are given in Answers to Revision Exercises 2.

Q1.

One of the key proteins produced by rabies virus is the rabies phosphoprotein (also known as rabies virus protein P). The UniProt accession for rabies virus phosphoprotein is P06747. The Mokola virus also produces a phosphoprotein, which has UniProt accession P0C569. Use the dotPlot() function in the SeqinR R package to make a dotplot of these two proteins, using a windowsize of 10 and threshold of 5. Are there any long regions of similarity between the two proteins (if so, where are they)?
Note: rabies virus is the virus responsible for rabies, which is classified by the WHO as a neglected tropical
disease. Mokola virus and rabies virus are closely related viruses that both belong to a group of viruses
called the Lyssaviruses. Mokola virus causes a rabies-like infection in mammals including humans.
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Q2.

The function “makeDotPlot1()” below is an R function that makes a dotplot of two sequences by plotting a dot at
every position where the two sequences share an identical letter. Use this function to make a dotplot of the rabies
virus phosphoprotein and the Mokola virus phosphoprotein, setting the argument “dotsize” to 0.1 (this determines
the radius of each dot plotted). Are there any long regions of similarity between the two proteins (if so, where are
they)? Do you find the same regions as found in Q1, and if not, can you explain why?

> makeDotPlot1 <- function(seq1,seq2,dotsize=1)
{

length1 <- length(seq1)
length2 <- length(seq2)
# make a plot:
x <- 1
y <- 1
plot(x,y,ylim=c(1,length2),xlim=c(1,length1),col="white") # make an empty plot
# now plot dots at every position where the two sequences have the same

→˓letter:
for (i in 1:length1)
{

letter1 <- seq1[i]
for (j in 1:length2)
{

letter2 <- seq2[j]
if (letter1 == letter2)
{

# add a point to the plot
points(x=i,y=j,cex=dotsize,col="blue",pch=7)

}
}

}
}

Q3.

Adapt the R code in Q2 to write a function that makes a dotplot using a window of size x letters, where a dot
is plotted in the first cell of the window if y or more letters compared in that window are identical in the two
sequences.

Q4.

Use the dotPlot() function in the SeqinR R package to make a dotplot of rabies virus phosphoprotein and Mokola
virus phosphoprotein, using a window size of 3 and a threshold of 3. Use your own R function from Q3 to make
a dotplot of rabies virus phosphoprotein and Mokola virus phosphoprotein, using a windowsize (x) of 3 and a
threshold (y) of 3. Are the two plots similar or different, and can you explain why?

Q5.

Write an R function to calculate an unrooted phylogenetic tree with bootstraps, using the minimum evolution
method (rather than the neighbour-joining method, which is used by the function unrootedNJtree).

Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email
address alc@sanger.ac.uk
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License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

Computational Gene-finding

The genetic code

A protein-coding gene starts with an “ATG”, which is followed by an integer (whole) number of codons (DNA
triplets) that code for amino acids, and ends with a “TGA”, “TAA”, or “TAG”. That is, the start codon of a gene is
always “ATG”, while the stop codon of a gene can be “TGA”, “TAA” or “TAG”.

In R, you can view the standard genetic code, the correspondence between codons and the amino acids that they
are translated into, by using the tablecode() function in the SeqinR package:

> library(seqinr)
> tablecode()

You can see from this table that “ATG” is translated to Met (the amino acid methionine), and that “TAA”, “TGA”
and “TAG” correspond to Stp (stop codons, which are not translated to any amino acid, but signal the end of
translation).
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Finding start and stop codons in a DNA sequence

To look for all the potential start and stop codons in a DNA sequence, we need to find all the “ATG”s, “TGA”s,
“TAA”s, and “TAG”s in the sequence.

To do this, we can use the “matchPattern()” function from the Biostrings R package, which identifies all occur-
rences of a particular motif (eg. “ATG”) in a sequence. As input, the matchPattern() function requires that the
sequences be in the form of a string of single characters.

For example, we can look for all “ATG”s in the sequence “AAAATGCAGTAACCCATGCCC” by typing:

> library("Biostrings")
> s1 <- "aaaatgcagtaacccatgccc"
> matchPattern("atg", s1) # Find all ATGs in the sequence s1
Views on a 21-letter BString subject

subject: aaaatgcagtaacccatgccc
views:

start end width
[1] 4 6 3 [atg]
[2] 16 18 3 [atg]

The output from matchPattern() tells us that there are two “ATG”s in the sequence, at nucleotides 4-6, and at
nucleotides 16-18. In fact, we can see these by looking at the sequence “AAAATGCAGTAACCCATGCCC”.

Similarly, if you use matchPattern() to find the positions of “TAA”s, “TGA”s, and “TAG”s in the sequence
“AAAATGCAGTAACCCATGCCC”, you will find that it has one “TAA” at nucleotides 10-12, but no “TAG”s
or “TGA”s.

The following R function “findPotentialStartsAndStops()” can be used to find all potential start and stop codons
in a DNA sequence:

> findPotentialStartsAndStops <- function(sequence)
{

# Define a vector with the sequences of potential start and stop codons
codons <- c("atg", "taa", "tag", "tga")
# Find the number of occurrences of each type of potential start or stop codon
for (i in 1:4)
{

codon <- codons[i]
# Find all occurrences of codon "codon" in sequence "sequence"
occurrences <- matchPattern(codon, sequence)
# Find the start positions of all occurrences of "codon" in sequence

→˓"sequence"
codonpositions <- attr(occurrences,"start")
# Find the total number of potential start and stop codons in sequence

→˓"sequence"
numoccurrences <- length(codonpositions)
if (i == 1)
{

# Make a copy of vector "codonpositions" called "positions"
positions <- codonpositions
# Make a vector "types" containing "numoccurrences" copies of "codon"
types <- rep(codon, numoccurrences)

}
else
{

# Add the vector "codonpositions" to the end of vector "positions":
positions <- append(positions, codonpositions,

→˓after=length(positions))
# Add the vector "rep(codon, numoccurrences)" to the end of vector

→˓"types":
types <- append(types, rep(codon, numoccurrences),

→˓after=length(types))
}

84 Chapter 1. Chapters in this Book



A Little Book of R For Bioinformatics, Release 0.1

}
# Sort the vectors "positions" and "types" in order of position along the

→˓input sequence:
indices <- order(positions)
positions <- positions[indices]
types <- types[indices]
# Return a list variable including vectors "positions" and "types":
mylist <- list(positions,types)
return(mylist)

}

To use the function, you will need to copy and paste it into R. For example, we can use this function to find
potential start and stop codons in sequence s1:

> s1 <- "aaaatgcagtaacccatgccc"
> findPotentialStartsAndStops(s1)
[[1]]
[1] 4 10 16

[[2]]
[1] "atg" "taa" "atg"

The result of the function is returned as a list variable that contains two elements: the first element of the list is a
vector containing the positions of potential start and stop codons in the input sequence, and the second element of
the list is a vector containing the type of those start/stop codons (“atg”, “taa”, “tag”, or “tga”).

The output for sequence s1 tells us that sequence s1 has an “ATG” starting at nucleotide 4, a “TAA” starting at
nucleotide 10, and another “ATG” starting at nucleotide 16.

We can use the function findPotentialStartsAndStops() to find all potential start and stop codons in longer se-
quences. For example, say we want to find all potential start and stop codons in the first 500 nucleotides of the
genome sequence of the DEN-1 Dengue virus (NCBI accession NC_001477).

In a previous chapter, you learnt that you can retrieve a sequence for an NCBI accession using the “getncbiseq()”
function. Thus, to retrieve the genome sequence of the DEN-1 Dengue virus (NCBI accession NC_001477), we
can type:

> dengueseq <- getncbiseq("NC_001477")

The variable dengueseq is a vector variable, and each letter in the DEN-1 Dengue virus DNA sequence is stored
in one element of this vector.

Dengue virus causes Dengue fever, which is classified as a neglected tropical disease by the WHO.

To cut out the first 500 nucleotides of the DEN-1 Dengue virus sequence, we can just take the first 500 elements
of this vector:

> dengueseqstart <- dengueseq[1:500] # Take the first 500 nucleotides of the DEN-1
→˓Dengue sequence
> length(dengueseqstart) # Find the length of the "dengueseqstart"
→˓start vector
[1] 500

Next we want to find potential start and stop codons in the first 500 nucleotides of the Dengue virus sequence.
We can do this using the findPotentialStartsAndStops() function described above. However, the findPotential-
StartsAndStops() function requires that the input sequence be in the format of a string of characters, rather than a
vector. Therefore, we first need to convert the vector dengueseqstart into a string of characters. We can do that
using the c2s() function in the SeqinR package:

> library("seqinr") # Load the SeqinR package
> dengueseqstart # Print out the vector dengueseqstart
[1] "a" "g" "t" "t" "g" "t" "t" "a" "g" "t" "c" "t" "a" "c" "g" "t" "g" "g" "a"
[20] "c" "c" "g" "a" "c" "a" "a" "g" "a" "a" "c" "a" "g" "t" "t" "t" "c" "g" "a"
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[39] "a" "t" "c" "g" "g" "a" "a" "g" "c" "t" "t" "g" "c" "t" "t" "a" "a" "c" "g"
[58] "t" "a" "g" "t" "t" "c" "t" "a" "a" "c" "a" "g" "t" "t" "t" "t" "t" "t" "a"
[77] "t" "t" "a" "g" "a" "g" "a" "g" "c" "a" "g" "a" "t" "c" "t" "c" "t" "g" "a"
[96] "t" "g" "a" "a" "c" "a" "a" "c" "c" "a" "a" "c" "g" "g" "a" "a" "a" "a" "a"
[115] "g" "a" "c" "g" "g" "g" "t" "c" "g" "a" "c" "c" "g" "t" "c" "t" "t" "t" "c"
[134] "a" "a" "t" "a" "t" "g" "c" "t" "g" "a" "a" "a" "c" "g" "c" "g" "c" "g" "a"
[153] "g" "a" "a" "a" "c" "c" "g" "c" "g" "t" "g" "t" "c" "a" "a" "c" "t" "g" "t"
[172] "t" "t" "c" "a" "c" "a" "g" "t" "t" "g" "g" "c" "g" "a" "a" "g" "a" "g" "a"
[191] "t" "t" "c" "t" "c" "a" "a" "a" "a" "g" "g" "a" "t" "t" "g" "c" "t" "t" "t"
[210] "c" "a" "g" "g" "c" "c" "a" "a" "g" "g" "a" "c" "c" "c" "a" "t" "g" "a" "a"
[229] "a" "t" "t" "g" "g" "t" "g" "a" "t" "g" "g" "c" "t" "t" "t" "t" "a" "t" "a"
[248] "g" "c" "a" "t" "t" "c" "c" "t" "a" "a" "g" "a" "t" "t" "t" "c" "t" "a" "g"
[267] "c" "c" "a" "t" "a" "c" "c" "t" "c" "c" "a" "a" "c" "a" "g" "c" "a" "g" "g"
[286] "a" "a" "t" "t" "t" "t" "g" "g" "c" "t" "a" "g" "a" "t" "g" "g" "g" "g" "c"
[305] "t" "c" "a" "t" "t" "c" "a" "a" "g" "a" "a" "g" "a" "a" "t" "g" "g" "a" "g"
[324] "c" "g" "a" "t" "c" "a" "a" "a" "g" "t" "g" "t" "t" "a" "c" "g" "g" "g" "g"
[343] "t" "t" "t" "c" "a" "a" "g" "a" "a" "a" "g" "a" "a" "a" "t" "c" "t" "c" "a"
[362] "a" "a" "c" "a" "t" "g" "t" "t" "g" "a" "a" "c" "a" "t" "a" "a" "t" "g" "a"
[381] "a" "c" "a" "g" "g" "a" "g" "g" "a" "a" "a" "a" "g" "a" "t" "c" "t" "g" "t"
[400] "g" "a" "c" "c" "a" "t" "g" "c" "t" "c" "c" "t" "c" "a" "t" "g" "c" "t" "g"
[419] "c" "t" "g" "c" "c" "c" "a" "c" "a" "g" "c" "c" "c" "t" "g" "g" "c" "g" "t"
[438] "t" "c" "c" "a" "t" "c" "t" "g" "a" "c" "c" "a" "c" "c" "c" "g" "a" "g" "g"
[457] "g" "g" "g" "a" "g" "a" "g" "c" "c" "g" "c" "a" "c" "a" "t" "g" "a" "t" "a"
[476] "g" "t" "t" "a" "g" "c" "a" "a" "g" "c" "a" "g" "g" "a" "a" "a" "g" "a" "g"
[495] "g" "a" "a" "a" "a" "t"

> dengueseqstartstring <- c2s(dengueseqstart) # Convert the vector "dengueseqstart
→˓" to a string of characters
> dengueseqstartstring # Print out the variable string of
→˓characters "dengueseqstartstring"
[1]

→˓"agttgttagtctacgtggaccgacaagaacagtttcgaatcggaagcttgcttaacgtagttctaacagttttttattagagagcagatctctgatgaacaaccaacggaaaaagacgggtcgaccgtctttcaatatgctgaaacgcgcgagaaaccgcgtgtcaactgtttcacagttggcgaagagattctcaaaaggattgctttcaggccaaggacccatgaaattggtgatggcttttatagcattcctaagatttctagccatacctccaacagcaggaattttggctagatggggctcattcaagaagaatggagcgatcaaagtgttacggggtttcaagaaagaaatctcaaacatgttgaacataatgaacaggaggaaaagatctgtgaccatgctcctcatgctgctgcccacagccctggcgttccatctgaccacccgagggggagagccgcacatgatagttagcaagcaggaaagaggaaaat
→˓"

We can then find potential start and stop codons in the first 500 nucleotides of the DEN-1 Dengue virus sequence
by typing:

> findPotentialStartsAndStops(dengueseqstartstring)
[[1]]
[1] 7 53 58 64 78 93 95 96 137 141 224 225 234 236 246 255 264 295 298

→˓318
[21] 365 369 375 377 378 399 404 413 444 470 471 474 478
[[2]]
[1] "tag" "taa" "tag" "taa" "tag" "tga" "atg" "tga" "atg" "tga" "atg" "tga" "tga"
[14] "atg" "tag" "taa" "tag" "tag" "atg" "atg" "atg" "tga" "taa" "atg" "tga" "tga

→˓"
[27] "atg" "atg" "tga" "atg" "tga" "tag" "tag"

We see that the lambda sequence has many different potential start and stop codons, for example, a potential stop
codon (TAG) at nucleotide 7, a potential stop codon (TAA) at nucleotide 53, a potential stop codon (TAG) at
nucleotide 58, and so on.

Reading frames

Potential start and stop codons in a DNA sequence can be in three different possible reading frames. A potential
start/stop codon is said to be in the +1 reading frame if there is an integer number of triplets x between the first
nucleotide of the sequence and the start of the start/stop codon. Thus, a potential start/stop codon that begins at
nucleotides 1 (0 triplets), 4 (1 triplet), 7 (2 triplets)... will be in the +1 reading frame.

If there is an integer number of triplets x, plus one nucleotide (ie. x.3 triplets), between the first nucleotide of the
sequence and the start of the start/stop codon, then the start/stop codon is said to be in the +2 reading frame. A
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potential start/stop codon that begins at nucleotides 2 (0.3 triplets), 5 (1.3 triplets), 8 (2.3 triplets) ... is in the +2
reading frame.

Similarly, if there is an integer number of triplets x, plus two nucleotides (ie. x.6 triplets), between the first
nucleotides of the sequence and the start of the start/stop codon, the start/stop codon is in the +3 reading frame.
So a potential start/stop codon that begins at nucleotides 3 (0.6 triplets), 6 (1.6 triplets), 9 (2.6 triplets)... is in the
+3 reading frame.

For a potential start and stop codon to be part of the same gene, they must be in the same reading frame.

From the output of findPotentialStartsAndStops() for the first 500 nucleotides of the genome of DEN-1 Dengue
virus (see above), you can see that there is a potential start codon (ATG) that starts at nucleotide 137, and a
potential stop codon (TGA) that starts at nucleotide 141. That is, the potential start codon is from nucleotides
137-139 and the potential stop codon is from nucleotides 141-143. Could the region from nucleotides 137 to 143
possibly be a gene?

We can cut out the region from nucleotides 137 to 143 of the sequence dengueseqstartstring to have a look, by
using the substring() function. If you look at the help page for the substring() function, you will see that its
arguments (inputs) are the name of the variable containing the string of characters (ie., the DNA sequence), and
the coordinates of the substring that you want:

> substring(dengueseqstartstring,137,143)
[1] "atgctga"

If we look at the sequence from nucleotides 137-143, “ATGCTGA”, we see that it starts with a potential start
codon (ATG) and ends with a potential stop codon (TGA).

However, the ribosome reads the sequence by scanning the codons (triplets) one-by-one from left to right, and
when we break up the sequence into codons (triplets) we see that it does not contain an integer (whole) number of
triplets: “ATG CTG A”.

This means that even if the ribosome will not recognise the region from 137-143 as a potential gene, as the ATG
at nucleotide 137 is not separated from the TGA at nucleotide 141 by an integer number of codons. That is, this
ATG and TGA are not in the same reading frame, and so cannot be the start and stop codon of the same gene.

The potential start codon at nucleotide 137 of the lambdaseqstartstring sequence is in the +2 reading frame, as
there is an integer number of triplets, plus one nucleotide, between the start of the sequence and the start of the
start codon (ie. triplets 1-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21, 22-24, 25-27, 28-30, ..., 133-135, and a single
nucleotide 136).

However, the potential stop codon at nucleotide 141 is the +3 reading frame, as there are two nucleotides plus an
integer number of triplets between the start of the sequence and the start of the stop codon (ie. triplets 1-3, 4-6,
7-9, 10-12, 13-15, 16-18, 19-21, 22-24, 25-27, 28-30, 31-33, 34-36, 37-39, 40-42, 43-45, ..., 133-135, 136-138,
and two nucleotides 139, 140).

As the potential start codon at nucleotide 137 and the potential stop codon at nucleotide 141 are in different reading
frames, they are not separated by an integer number of codons, and therefore cannot be part of the same gene.

Finding open reading frames on the forward strand of a DNA sequence

To find potential genes, we need to look for a potential start codon, followed by an integer number of codons,
followed by a potential stop codon. This is eqivalent to looking for a potential start codon followed by a potential
stop codon that is in the same reading frame. Such a stretch of DNA is known as an open reading frame (ORF),
and is a good candidate for a potential gene.

The following function plotPotentialStartsAndStops() plots the potential start and stop codons in the three different
reading frames of a DNA sequence:

> plotPotentialStartsAndStops <- function(sequence)
{

# Define a vector with the sequences of potential start and stop codons
codons <- c("atg", "taa", "tag", "tga")
# Find the number of occurrences of each type of potential start or stop codon
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for (i in 1:4)
{

codon <- codons[i]
# Find all occurrences of codon "codon" in sequence "sequence"
occurrences <- matchPattern(codon, sequence)
# Find the start positions of all occurrences of "codon" in sequence

→˓"sequence"
codonpositions <- attr(occurrences,"start")
# Find the total number of potential start and stop codons in sequence

→˓"sequence"
numoccurrences <- length(codonpositions)
if (i == 1)
{

# Make a copy of vector "codonpositions" called "positions"
positions <- codonpositions
# Make a vector "types" containing "numoccurrences" copies of "codon"
types <- rep(codon, numoccurrences)

}
else
{

# Add the vector "codonpositions" to the end of vector "positions":
positions <- append(positions, codonpositions,

→˓after=length(positions))
# Add the vector "rep(codon, numoccurrences)" to the end of vector

→˓"types":
types <- append(types, rep(codon, numoccurrences),

→˓after=length(types))
}

}
# Sort the vectors "positions" and "types" in order of position along the

→˓input sequence:
indices <- order(positions)
positions <- positions[indices]
types <- types[indices]
# Make a plot showing the positions of the start and stop codons in the input

→˓sequence:
# Draw a line at y=0 from 1 to the length of the sequence:
x <- c(1,nchar(sequence))
y <- c(0,0)
plot(x, y, ylim=c(0,3), type="l", axes=FALSE, xlab="Nucleotide", ylab=

→˓"Reading frame",
main="Predicted start (red) and stop (blue) codons")

segments(1,1,nchar(sequence),1)
segments(1,2,nchar(sequence),2)
# Add the x-axis at y=0:
axis(1, pos=0)
# Add the y-axis labels:
text(0.9,0.5,"+1")
text(0.9,1.5,"+2")
text(0.9,2.5,"+3")
# Draw in each predicted start/stop codon:
numcodons <- length(positions)
for (i in 1:numcodons)
{

position <- positions[i]
type <- types[i]
remainder <- (position-1) %% 3
if (remainder == 0) # +1 reading frame
{

if (type == "atg") { segments(position,0,position,1,lwd=1,col="red") }
else { segments(position,0,position,1,lwd=1,col="blue")}

}
else if (remainder == 1)
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{
if (type == "atg") { segments(position,1,position,2,lwd=1,col="red") }
else { segments(position,1,position,2,lwd=1,col="blue")}

}
else if (remainder == 2)
{

if (type == "atg") { segments(position,2,position,3,lwd=1,col="red") }
else { segments(position,2,position,3,lwd=1,col="blue")}

}
}

}

To use this function, you will first need to copy and paste it into R.

For example, to plot the potential start and stop codons in the first 500 nucleotides of the DEN-1 Dengue virus
genome, we type:

> plotPotentialStartsAndStops(dengueseqstartstring)

In the picture produced by plotPotentialStartsAndStops(), the x-axis represents the input sequence (dengueseqs-
tartstring here). The potential start codons are represented by vertical red lines, and potential stop codons are
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represented by vertical blue lines.

Three different layers in the picture show potential start/stop codons in the +1 reading frame (bottom layer), +2
reading frame (middle layer), and +3 reading frame (top layer).

We can see that the start codon at nucleotide 137 is represented by a vertical red line in the layer corresponding
to the +2 reading frame (middle layer). There are no potential stop codons in the +2 reading frame to the right of
that start codon. Thus, the start codon at nucleotide 137 does not seem to be part of an open reading frame.

We can see however that in the +3 reading frame (top layer) there is a predicted start codon (red line) at position 318
and that this is followed by a predicted stop codon (blue line) at position 371. Thus, the region from nucleotides
318 to 371 could be a potential gene in the +3 reading frame. In other words, the region from nucleotides 318 to
371 is an open reading frame, or ORF.

The following function findORFsinSeq() finds ORFs in an input sequence:

> findORFsinSeq <- function(sequence)
{

require(Biostrings)
# Make vectors "positions" and "types" containing information on the

→˓positions of ATGs in the sequence:
mylist <- findPotentialStartsAndStops(sequence)
positions <- mylist[[1]]
types <- mylist[[2]]
# Make vectors "orfstarts" and "orfstops" to store the predicted start and

→˓stop codons of ORFs
orfstarts <- numeric()
orfstops <- numeric()
# Make a vector "orflengths" to store the lengths of the ORFs
orflengths <- numeric()
# Print out the positions of ORFs in the sequence:
# Find the length of vector "positions"
numpositions <- length(positions)
# There must be at least one start codon and one stop codon to have an ORF.
if (numpositions >= 2)
{

for (i in 1:(numpositions-1))
{

posi <- positions[i]
typei <- types[i]
found <- 0
while (found == 0)
{

for (j in (i+1):numpositions)
{

posj <- positions[j]
typej <- types[j]
posdiff <- posj - posi
posdiffmod3 <- posdiff %% 3
# Add in the length of the stop codon
orflength <- posj - posi + 3
if (typei == "atg" && (typej == "taa" || typej == "tag" || typej

→˓== "tga") && posdiffmod3 == 0)
{

# Check if we have already used the stop codon at posj+2 in an
→˓ORF

numorfs <- length(orfstops)
usedstop <- -1
if (numorfs > 0)
{
for (k in 1:numorfs)
{

orfstopk <- orfstops[k]
if (orfstopk == (posj + 2)) { usedstop <- 1 }
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}
}
if (usedstop == -1)
{

orfstarts <- append(orfstarts, posi,
→˓after=length(orfstarts))

orfstops <- append(orfstops, posj+2,
→˓after=length(orfstops)) # Including the stop codon.

orflengths <- append(orflengths, orflength,
→˓after=length(orflengths))

}
found <- 1
break

}
if (j == numpositions) { found <- 1 }

}
}

}
}
# Sort the final ORFs by start position:
indices <- order(orfstarts)
orfstarts <- orfstarts[indices]
orfstops <- orfstops[indices]
# Find the lengths of the ORFs that we have
orflengths <- numeric()
numorfs <- length(orfstarts)
for (i in 1:numorfs)
{

orfstart <- orfstarts[i]
orfstop <- orfstops[i]
orflength <- orfstop - orfstart + 1
orflengths <- append(orflengths,orflength,after=length(orflengths))

}
mylist <- list(orfstarts, orfstops, orflengths)
return(mylist)

}

You will need to copy and paste this function into R before you can use it. For example, we can use it to find all
ORFs in the sequence s1:

> s1 <- "aaaatgcagtaacccatgccc"
> findORFsinSeq(s1)
[[1]]
[1] 4

[[2]]
[1] 12

[[3]]
[1] 9

The function findORFsinSeq() returns a list variable, where the first element of the list is a vector of the start
positions of ORFs, the second element of the list is a vector of the end positions of those ORFs, and the third
element is a vector containing the lengths of the ORFs.

The output for the findORFsinSeq() function for s1 tells us that there is one ORF in the sequence s1, and that the
predicted start codon starts at nucleotide 4 in the sequence, and that the predicted stop codon ends at nucleotide
12 in the sequence.

We can use the function findORFsinSeq() to find the ORFs in the first 500 nucleotides of the DEN-1 Dengue virus
genome sequence by typing:
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> findORFsinSeq(dengueseqstartstring)
[[1]]
[1] 298 318
[[2]]
[1] 480 371
[[3]]
[1] 183 54

The result from findORFsinSeq() indicates that there are two ORFs in the first 500 nucleotides of the DEN-1
Dengue virus genome, at nucleotides 298-480 (start codon at 298-300, stop codon at 478-480), and 318-371 (start
codon at 318-320, stop codon at 369-371).

The following function “plotORFsinSeq()” plots the positions of ORFs in a sequence:

> plotORFsinSeq <- function(sequence)
{

# Make vectors "positions" and "types" containing information on the
→˓positions of ATGs in the sequence:

mylist <- findPotentialStartsAndStops(sequence)
positions <- mylist[[1]]
types <- mylist[[2]]
# Make vectors "orfstarts" and "orfstops" to store the predicted start and

→˓stop codons of ORFs
orfstarts <- numeric()
orfstops <- numeric()
# Make a vector "orflengths" to store the lengths of the ORFs
orflengths <- numeric()
# Print out the positions of ORFs in the sequence:
numpositions <- length(positions) # Find the length of vector "positions"
# There must be at least one start codon and one stop codon to have an ORF.
if (numpositions >= 2)
{

for (i in 1:(numpositions-1))
{

posi <- positions[i]
typei <- types[i]
found <- 0
while (found == 0)
{

for (j in (i+1):numpositions)
{

posj <- positions[j]
typej <- types[j]
posdiff <- posj - posi
posdiffmod3 <- posdiff %% 3
orflength <- posj - posi + 3 # Add in the length of the stop codon
if (typei == "atg" && (typej == "taa" || typej == "tag" || typej

→˓== "tga") && posdiffmod3 == 0)
{

# Check if we have already used the stop codon at posj+2 in an
→˓ORF

numorfs <- length(orfstops)
usedstop <- -1
if (numorfs > 0)
{

for (k in 1:numorfs)
{

orfstopk <- orfstops[k]
if (orfstopk == (posj + 2)) { usedstop <- 1 }

}
}
if (usedstop == -1)
{
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orfstarts <- append(orfstarts, posi,
→˓after=length(orfstarts))

orfstops <- append(orfstops, posj+2,
→˓after=length(orfstops)) # Including the stop codon.

orflengths <- append(orflengths, orflength,
→˓after=length(orflengths))

}
found <- 1
break

}
if (j == numpositions) { found <- 1 }

}
}

}
}
# Sort the final ORFs by start position:
indices <- order(orfstarts)
orfstarts <- orfstarts[indices]
orfstops <- orfstops[indices]
# Make a plot showing the positions of ORFs in the input sequence:
# Draw a line at y=0 from 1 to the length of the sequence:
x <- c(1,nchar(sequence))
y <- c(0,0)
plot(x, y, ylim=c(0,3), type="l", axes=FALSE, xlab="Nucleotide", ylab=

→˓"Reading frame", main="Predicted ORFs")
segments(1,1,nchar(sequence),1)
segments(1,2,nchar(sequence),2)
# Add the x-axis at y=0:
axis(1, pos=0)
# Add the y-axis labels:
text(0.9,0.5,"+1")
text(0.9,1.5,"+2")
text(0.9,2.5,"+3")
# Make a plot of the ORFs in the sequence:
numorfs <- length(orfstarts)
for (i in 1:numorfs)
{

orfstart <- orfstarts[i]
orfstop <- orfstops[i]
remainder <- (orfstart-1) %% 3
if (remainder == 0) # +1 reading frame
{

rect(orfstart,0,orfstop,1,col="cyan",border="black")
}
else if (remainder == 1)
{

rect(orfstart,1,orfstop,2,col="cyan",border="black")
}
else if (remainder == 2)
{

rect(orfstart,2,orfstop,3,col="cyan",border="black")
}

}
}

To use this function, you will first need to copy and paste it into R. You can then use this function to plot the
positions of the ORFs in dengueseqstartstring by typing:

> plotORFsinSeq(dengueseqstartstring)
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The picture produced by plotORFsinSeq() represents the two ORFs in the first 500 nucleotides of the lambda
genome as blue rectangles.

One of the ORFs is in the +3 reading frame, and one is in the +1 reading frame. There are no ORFs in the +2
reading frame, as there are no potential stop codons to the right (3’) of the potential start codons in the +2 reading
frame, as we can see from the picture produced by plotPotentialStartsAndStops() above.

Predicting the protein sequence for an ORF

If you find an ORF in a DNA sequence, it is interesting to find the DNA sequence of the ORF. For example, the
function findORFsinSeq() indicates that there is an ORF from nucleotides 4-12 of the sequence s1 (aaaatgcagtaac-
ccatgccc). To look at the DNA sequence for just the ORF, we can use the substring() function to cut out that piece
of DNA. For example, to cut out the substring of sequence s1 that corresponds to the ORF from nucleotides 4-12,
we type:

> s1 <- "aaaatgcagtaacccatgccc"
> myorf <- substring(s1, 4, 12)
> myorf # Print out the sequence of "myorf"

[1] "atgcagtaa"
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As you can see, the ORF starts with a predicted start codon (ATG), is followed by an integer number of codons
(just one codon, CAG, in this case), and ends with a predicted stop codon (TAA).

If you have the DNA sequence of an ORF, you can predict the protein sequence for the ORF by using the translate()
function from the SeqinR package. Note that as there is a function called translate() in both the Biostrings and
SeqinR packages, we need to type seqinr::translate() to specify that we want to use the SeqinR translate() function.

The translate() function requires that the input sequence be in the form of a vector of characters. If your sequence
is in the form of a string of characters, you can convert it to a vector of characters using the s2c() function from
the SeqinR package. For example, to predict the protein sequence of the ORF myorf, you would type:

> myorfvector <- s2c(myorf) # Convert the sequence of characters to a vector
> myorfvector # Print out the value of "myorfvector"
[1] "a" "t" "g" "c" "a" "g" "t" "a" "a"
> seqinr::translate(myorfvector)
[1] "M" "Q" "*"

From the output of the seqinr::translate() function, we see that the predicted start codon (ATG) is translated as a
Methionine (M), and that this is followed by a Glutamine (Q). The predicted stop codon is represented as “*” as it
is not translated into any amino acid.

Finding open reading frames on the reverse strand of a DNA sequence

Genes in a genome sequence can occur either on the forward (plus) strand of the DNA, or on the reverse (minus)
strand. To find ORFs on the reverse strand of a sequence, we must first infer the reverse strand sequence, and then
use our findORFsinSeq() function to find ORFs on the reverse strand.

The reverse strand sequence easily can be inferred from the forward strand sequence, as it is always the reverse
complement sequence of the forward strand sequence. We can use the comp() function from the SeqinR package
to calculate the complement of a sequence, and the rev() function to reverse that sequence in order to give us the
reverse complement sequence.

The comp() and rev() functions require that the input sequence is in the form of a vector of characters. The s2c()
function can be used to convert a sequence in the form of a string of characters to a vector, while the c2s() function
is useful for convering a vector back to a string of characters.

For example, if our forward strand sequence is “AAAATGCTTAAACCATTGCCC”, and we want to find the
reverse strand sequence, we type:

> forward <- "AAAATGCTTAAACCATTGCCC"
> forwardvector <- s2c(forward) # Convert the string of characters
→˓to a vector
> forwardvector # Print out the vector containing
→˓the forward strand sequence
[1] "A" "A" "A" "A" "T" "G" "C" "T" "T" "A" "A" "A" "C" "C" "A" "T" "T" "G" "C" "C
→˓" "C"
> reversevector <- rev(comp(forwardvector)) # Find the reverse strand sequence,
→˓by finding the reverse complement
> reversevector # Print out the vector containing
→˓the reverse strand sequence
[1] "g" "g" "g" "c" "a" "a" "t" "g" "g" "t" "t" "t" "a" "a" "g" "c" "a" "t" "t" "t
→˓" "t"
> reverse <- c2s(reversevector) # Convert the vector to a string of
→˓characters
> reverse # Print out the string of
→˓characters containing the reverse strand sequence
[1] "gggcaatggtttaagcatttt"

In the command reversevector <- rev(comp(forwardvector)) above, we are first using the comp() function to find
the complement of the forward strand sequence. We are then using the rev() function to take the output sequence
given by comp() and reverse the order of the letters in that sequence. An equivalent way of doing the same thing
would be to type:
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> complement <- comp(forwardvector) # Find the complement of the
→˓forward strand sequence
> reversevector <- rev(complement) # Reverse the order of the letters
→˓in sequence "complement", to

# find the reverse strand
→˓sequence (the reverse complement sequence)

Once we have inferred the reverse strand sequence, we can then use the findORFsinSeq() function to find ORFs
in the reverse strand sequence:

> findORFsinSeq(reverse)
[[1]]
[1] 6

[[2]]
[1] 14

[[3]]
[1] 9

This indicates that there is one ORF of length 9 bp in the reverse strand of sequence “AAAATGCTTAAAC-
CATTGCCC”, that has a predicted start codon that starts at nucleotide 6 in the reverse strand sequence and a
predicted stop codon that ends at nucleotide 14 in the reverse strand sequence.

Lengths of open reading frames

As you can see from the picture displaying the genetic code made using tablecode() (above), three of the 64
different codons are stop codons. This means that in a random DNA sequence the probability that any codon is a
potential stop codon is 3/64, or about 1/21 (about 5%).

Therefore, you might expect that sometimes potential start and stop codons can occur in a DNA sequence just due
to chance alone, not because they are actually part of any real gene that is transcribed and translated into a protein.

As a result, many of the ORFs in a DNA sequence may not correspond to real genes, but just be stretches of DNA
between potential start and stop codons that happened by chance to be found in the sequence.

In other words, an open reading frame (ORF) is just a gene prediction, or a potential gene. It may correspond to a
real gene (may be a true positive gene prediction), but it may not (may be a false positive gene prediction).

How can we tell whether the potential start and stop codons of an ORF are probably real start and stop codons,
that is, whether an ORF probably corresponds to a real gene that is transcribed and translated into a protein?

In fact, we cannot tell using bioinformatics methods alone (we actually need to do some lab experiments to know),
but we can make a fairly confident prediction. We can make our prediction based on the length of the ORF.

y definition, an ORF is a stretch of DNA that starts with a potential start codon, and ends with a potential stop
codon in the same reading frame, and so has no internal stop codons in that reading frame. Because about 1/21
of codons (~5%) in a random DNA sequence are expected to be potential stop codons just by chance alone, if we
see a very long ORF of hundreds of codons, it would be surprising that there would be no internal stop codons in
such a long stretch of DNA if the ORF were not a real gene.

In other words, long ORFs that are hundreds of codons long are unlikely to occur due to chance alone, and
therefore we can be fairly confident that such long ORFs probably correspond to real genes.

Identifying significant open reading frames

How long does an ORF need to be in order for us to be confident that it probably corresponds to a real gene? This
is a difficult question.

One approach to answer this is to ask: what is the longest ORF found in a random sequence of the same length
and nucleotide composition as our original sequence?
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The ORFs in a random sequence do not correspond to real genes, but are just due to potential start and stop codons
that have occurred by chance in those sequences (since, by definition, a random sequence is one that was generated
randomly, rather than by evolution as in a real organism).

Thus, by looking at the lengths of ORFs in the random sequence, we can see what is the longest ORF that is likely
to occur by chance alone.

But where can we get random sequences from? In a previous chapter, you learnt that you can generate random
sequences using a multinomial model with a particular probability of each letter (a particular probability of A, C,
G, and T in the case of random DNA sequences).

In that previous chapter, we used the function generateSeqsWithMultinomialModel() to generate random se-
quences using a multinomial model in which the probability of each letter is set equal to the fraction of an input
sequence that consists of that letter. This function takes two arguments, the input sequence, and the number of the
random sequences that you want to generate.

For example, to create a random sequence of the same length as ‘AAAATGCTTAAACCATTGCCC’, using a
multinomial model in which the probabilities of A, C, G and T are set equal to their fractions in this sequence, we
copy and paste the generateSeqsWithMultinomialModel() into R, then type:

> myseq <- "AAAATGCTTAAACCATTGCCC"
> generateSeqsWithMultinomialModel(myseq, 1) # Generate one random sequence using
→˓the multinomial model
[1] "AACAATTCTACCCTATTCTTC"

We can then use the findORFsinSeq() function to find ORFs in this random sequence. If we repeat this 10 times,
we can find the lengths of the ORFs found in the 10 random sequences. We can then compare the lengths of the
ORFs found in the original sequence, to the lengths of the ORFs found in the random sequences.

For example, to compare the lengths of ORFs found in the DEN-1 Dengue virus genome sequence dengueseq to
the lengths of ORFs found in 10 random sequences generated using a multinomial model in which the probabilities
of the four bases are set equal to their fractions in the DEN-1 Dengue virus sequence, we type:

> dengueseqstring <- c2s(dengueseq) # Convert the Dengue sequence to a
→˓string of characters
> mylist <- findORFsinSeq(dengueseqstring) # Find ORFs in "dengueseqstring"
> orflengths <- mylist[[3]] # Find the lengths of ORFs in
→˓"dengueseqstring"
> randseqs <- generateSeqsWithMultinomialModel(dengueseqstring, 10) # Generate 10
→˓random sequences using the multinomial model
> randseqorflengths <- numeric() # Tell R that we want to make a new
→˓vector of numbers
> for (i in 1:10)
{

print(i)
randseq <- randseqs[i] # Get the ith random sequence
mylist <- findORFsinSeq(randseq) # Find ORFs in "randseq"
lengths <- mylist[[3]] # Find the lengths of ORFs in

→˓"randseq"
randseqorflengths <- append(randseqorflengths, lengths,

→˓after=length(randseqorflengths))
}

This may take a little time to run, however, the for loop above prints out the value of i each time that it starts the
loop, so you can see how far it has got.

In the code above, we retrieve the lengths of the ORFs found by function findORFsinSeq() by taking the third
element of the list returned by this function. As mentioned above, the third element of the list returned by this
function is a vector containing the lengths of all the ORFs found in the input sequence.

We can then plot a histogram of the lengths of the ORFs in the real DEN-1 Dengue genome sequence (orflengths)
beside a histogram of the lengths of the ORFs in the 10 random sequences (randseqorflengths):
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> par(mfrow = c(1,2)) # Make a picture with two plots side-by-
→˓side (one row, two columns)
> bins <- seq(0,11000,50) # Set the bins for the histogram
> hist(randseqorflengths, breaks=bins, col="red", xlim=c(0,1000))
> hist(orflengths, breaks=bins, col="red", xlim=c(0,1000))

In other words, the histogram of the lengths of the ORFs in the 10 random sequences gives us an idea of the
length distribution of ORFs that you would expect by chance alone in a random DNA sequence (generated by a
multinomial model in which the probabilities of the four bases are set equal to their frequencies in the DEN-1
Dengue virus genome sequence).

We can calculate the longest of the ORFs that occurs in the random sequences, using the max() function, which
can be used to find the largest element in a vector of numbers:

> max(randseqorflengths)
[1] 342

This indicates that the longest ORF that occurs in the random sequences is 342 nucleotides long. Thus, it is
possible for an ORF of up to 342 nucleotides to occur by chance alone in a random sequence of the same length
and roughly the same composition as the DEN-1 Dengue virus genome.

Therefore, we could use 342 nucleotides as a threshold, and discard all ORFs found in the DEN-1 Dengue virus
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genome that are shorter than this, under the assumption that they probably arose by chance and probably do not
correspond to real genes. How many ORFs would be left in the DEN-1 Dengue virus genome sequence if we used
342 nucleotides as a threshold?

> summary(orflengths > 342)
Mode FALSE TRUE NA's

logical 115 1 0

If we did use 342 nucleotides as a threshold, there would only be 1 ORF left in the DEN-1 Dengue virus genome.
Some of the 115 shorter ORFs that we discarded may correspond to real genes.

Generally, we don’t want to miss many real genes, we may want to use a more tolerant threshold. For example,
instead of discarding all Dengue ORFs that are shorter than the longest ORF found in the 10 random sequences,
we could discard all Dengue ORFs that are shorter than the longest 99% of ORFs in the random sequences.

We can use the quantile() function to find quantiles of a set of numbers. The 99th quantile for a set of numbers is
the value x such that 99% of the numbers in the set have values less than x.

For example, to find the 99th quantile of randomseqorflengths, we type:

> quantile(randseqorflengths, probs=c(0.99))
99%
248.07

This means that 99% of the ORFs in the random sequences have lengths less than 248 nucleotides long. In other
words, the longest of the longest 99% of ORFs in the random sequences is 248 nucleotides.

Thus, if we were using this as a threshold, we would discard all ORFs from the DEN-1 Dengue genome that are
248 nucleotides or shorter. This will result in fewer ORFs being discarded than if we used the more stringent
threshold of 342 nucleotides (ie. discarding all ORFs of <342 nucleotides), so we will probably have discarded
fewer ORFs that correspond to real genes. Unfortunately, it probably means that we will also have kept more false
positives at the same time, that is, ORFs that do not correspond to real genes.

Summary

In this practical, you will have learnt to use the following R functions:

1. substring() for cutting out a substring of a string of characters (eg. a subsequence of a DNA sequence)

2. rev() for reversing the order of the elements in a vector

3. hist() to make a histogram plot

4. max() to find the largest element in a vector of numbers

5. quantile() to find quantiles of a set of numbers that correspond to particular probabilities

All of these functions belong to the standard installation of R.

You have also learnt the following R functions that belong to the bioinformatics packages:

1. tablecode() in the SeqinR package for viewing the genetic code

2. MatchPattern() in the Biostrings package for finding all occurrences of a motif in a sequence

3. translate() in the SeqinR package to get the predicted protein sequence for an ORF

4. s2c() in the SeqinR package to convert a sequence stored as a string of characters into a vector

5. c2s() in the SeqinR package to convert a sequence stored in a vector into a string of characters

6. comp() in the SeqinR package to find the complement of a DNA sequence
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Links and Further Reading

Some links are included here for further reading.

For background reading on computational gene-finding, it is recommended to read Chapter 2 of Introduction
to Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/).

For more in-depth information and more examples on using the SeqinR package for sequence analysis, look at the
SeqinR documentation, http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

For more information on and examples using the Biostrings package, see the Biostrings documentation at http:
//www.bioconductor.org/packages/release/bioc/html/Biostrings.html.

There is also a very nice chapter on “Analyzing Sequences”, which includes examples of using the SeqinR and
Biostrings packages for sequence analysis, in the book Applied statistics for bioinformatics using R by Krijnen
(available online at cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf).

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.
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Exercises

Answer the following questions, using the R package. For each question, please record your answer, and what
you typed into R to get this answer.

Model answers to the exercises are given in Answers to the exercises on Computational Gene-finding.

Q1. How many ORFs are there on the forward strand of the DEN-1 Dengue virus genome (NCBI accession
NC_001477)?

Q2. What are the coordinates of the rightmost (most 3’, or last) ORF in the forward strand of the DEN-1 Dengue
virus genome?

Q3. What is the predicted protein sequence for the rightmost (most 3’, or last) ORF in the forward strand of the
DEN-1 Dengue virus genome?

Q4. How many ORFs are there of 30 nucleotides or longer in the forward strand of the DEN-1 Dengue virus
genome sequence?

Q5. How many ORFs longer than 248 nucleotides are there in the forward strand of the DEN-1 Dengue genome
sequence?

Q6. If an ORF is 248 nucleotides long, what length in amino acids will its predicted protein sequence be?

Q7. How many ORFs are there on the forward strand of the rabies virus genome (NCBI accession NC_001542)?
Note: rabies virus is the virus responsible for rabies, which is classified by the WHO as a neglected tropical
disease.

Q8. What is the length of the longest ORF among the 99% of longest ORFs in 10 random sequences of the same
lengths and composition as the rabies virus genome sequence?
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Q9. How many ORFs are there in the rabies virus genome that are longer than the threshold length that you found
in Q8?

Comparative Genomics

Introduction

Comparative genomics is the field of bioinformatics that involves comparing the genomes of two different species,
or of two different strains of the same species.

One of the first questions to ask when comparing the genomes of two species is: do the two species have the same
number of genes (ie. the same gene content)? Since all life on earth shared a common ancestor at some point, any
two species, for example, human and a fruitfly, must have descended from a common ancestor species.

Since the time of the common ancestor of two species (eg. of human and mouse), some of the genes that were
present in the common ancestor species may have been lost from either of the two descendant lineages. Further-
more, the two descendant lineages may have gained genes that were not present in the common ancestor species.

Using the biomaRt R Library to Query the Ensembl Database

To carry out comparative genomic analyses of two animal species whose genomes have been fully sequenced (eg.
human and mouse), it is useful to analyse the data in the Ensembl database (www.ensembl.org).

The main Ensembl database which you can browse on the main Ensembl webpage contains genes from fully se-
quenced vertebrates, as well as Saccharomyces cerevisiae (yeast) and a small number of additional model organism
animals (eg. the nematode worm Caenorhabditis elegans and the fruit-fly Drosophila melanogaster).

There are also Ensembl databases for other groups of organisms, for example Ensembl Protists for Protists, En-
sembl Metazoa for Metazoans, Ensembl Bacteria for Bacteria, Ensembl Plants for Plants, and Ensembl Fungi for
Fungi.

It is possible to carry out analyses of the Ensembl database using R, with the “biomaRt” R package. The “biomaRt”
package can connect to the Ensembl database, and perform queries on the data.

The “biomaRt” R package is part of the Bioconductor set of R packages, and so can be installed as explained here.

Once you have installed the “biomaRt” package, you can get a list of databases that can be queried using this
package by typing:

> library("biomaRt") # Load the biomaRt package in R
> listMarts() # List all databases that can be queried

biomart
1 ensembl
2 snp
3 functional_genomics
4 vega
5 bacterial_mart_9
6 fungal_mart_9
7 fungal_variations_9
8 metazoa_mart_9
9 metazoa_variations_9
10 plant_mart_9
11 plant_variations_9
12 protist_mart_9
13 protist_variations_9
14 msd
15 htgt
16 REACTOME
17 WS220-testing
...

version
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1 ENSEMBL GENES 62 (SANGER UK)
2 ENSEMBL VARIATION 62 (SANGER UK)
3 ENSEMBL FUNCTIONAL GENOMICS 62 (SANGER UK)
4 VEGA 42 (SANGER UK)
5 ENSEMBL BACTERIA 9 (EBI UK)
6 ENSEMBL FUNGI 9 (EBI UK)
7 ENSEMBL FUNGI VARIATION 9 (EBI UK)
8 ENSEMBL METAZOA 9 (EBI UK)
9 ENSEMBL METAZOA VARIATION 9 (EBI UK)
10 ENSEMBL PLANTS 9 (EBI UK)
11 ENSEMBL PLANTS VARIATION 9 (EBI UK)
12 ENSEMBL PROTISTS 9 (EBI UK)
13 ENSEMBL PROTISTS VARIATION 9 (EBI UK)
14 MSD (EBI UK)
15 WTSI MOUSE GENETICS PROJECT (SANGER UK)
16 REACTOME (CSHL US)
17 WORMBASE 220 (CSHL US)
...

The names of the databases are listed, and then an explanation of what each database is, and what is the version
of the database.

You will see that the “biomaRt” R package can actually be used to query many different databases including
WormBase, UniProt, Ensembl, etc.

Here, we will discuss using the “biomaRt” package to query the Ensembl database, but it is worth remembering
that it also be used to perform queries on other databases such as UniProt.

You can see above that “biomaRt” tells you which version of each database can be searched, for example, the
version of the main Ensembl database that can be searched is Ensembl 62 (the current release), while the version
of the Ensembl Protists database that can be searched is Ensembl Protists 9.

If you want to perform a query on the Ensembl database using “biomaRt”, you first need to specify that this is the
database that you want to query. You can do this using the useMart() function from the “biomaRt” package:

> ensemblprotists <- useMart("protist_mart_9") # Specify that we want to query the
→˓Ensembl Protists database

This tells “biomaRt” that you want to query the Ensembl Protists database. The Ensembl Protists database contains
data sets of genomic information for different protist species whose genomes have been fully sequenced.

To see which data sets you can query in the database that you have selected (using useMart()), you can type:

> listDatasets(ensemblprotists) # List the data sets in the Ensembl
→˓Protists database

dataset description
1 pramorum_eg_gene Phytophthora ramorum genes (Phyra1_1)
2 pvivax_eg_gene Plasmodium vivax genes (EPr 2)
3 pfalciparum_eg_gene Plasmodium falciparum genes (2.1.4)
4 ptricornutum_eg_gene Phaeodactylum tricornutum genes (Phatr2)
5 pchabaudi_eg_gene Plasmodium chabaudi genes (May_2010)
6 ddiscoideum_eg_gene Dictyostelium discoideum genes (dictybase.01)
7 lmajor_eg_gene Leishmania major strain Friedlin genes (1)
...
version

1 Phyra1_1
2 EPr 2
3 2.1.4
4 Phatr2
5 May_2010
6 dictybase.01
7 1
...
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You will see a long list of the organisms for which the Ensembl Protists database has genome data, including
Plasmodium vivax and Plasmodium falciparium (which cause malaria), and Leishmania major, which causes
leishmaniasis, which is classified by the WHO as a neglected tropical disease.

To perform a query on the Ensembl database using the “biomaRt” R package, you first need to specify which
Ensembl data set your query relates to. You can do this using the useDataset() function from the “biomaRt”
package. For example, to specify that you want to perform a query on the Ensembl Leishmania major data set,
you would type:

> ensemblleishmania <- useDataset("lmajor_eg_gene",mart=ensemblprotists)

Note that the name of the Leishmania major Ensembl data set is “lmajor_eg_gene”; this is the data set listed for
Leishmania major genomic information when we typed listDatasets(ensemblprotists) above.

Once you have specified the particular Ensembl data set that you want to perform a query on, you can perform the
query using the getBM() function from the “biomaRt” package.

Usually, you will want to perform a query to a particular set of features from the Leishmania major Ensembl data
set. What types of features can you search for? You can find this out by using the listAttributes() function from
the “biomaRt” package:

> leishmaniaattributes <- listAttributes(ensemblleishmania)

The listAttributes() function returns a list object, the first element of which is a vector of all possible features that
you can select, and the second element of which is a vector containing explanations of all those features:

> attributenames <- leishmaniaattributes[[1]]
> attributedescriptions <- leishmaniaattributes[[2]]
> length(attributenames) # Find the length of vector
→˓"attributenames"
[1] 292

> attributenames[1:10] # Print out the first 10 entries in
→˓vector "attributenames"
[1] "ensembl_gene_id" "ensembl_transcript_id"
[3] "ensembl_peptide_id" "canonical_transcript_stable_id"
[5] "description" "chromosome_name"
[7] "start_position" "end_position"
[9] "strand" "band"

> attributedescriptions[1:10] # Print out the first 10 entries in
→˓vector "attributedescriptions"
> attributedescriptions[1:10]
[1] "Ensembl Gene ID" "Ensembl Transcript ID"
[3] "Ensembl Protein ID" "Canonical transcript stable ID(s)"
[5] "Description" "Chromosome Name"
[7] "Gene Start (bp)" "Gene End (bp)"
[9] "Strand" "Band"

This gives us a very long list of 292 features in the Leishmania major Ensembl data set that we can search for
by querying the database, such as genes, transcripts (mRNAs), peptides (proteins), chromosomes, GO (Gene
Ontology) terms, and so on.

When you are performing a query on the Ensembl Leishmania major data set using getBM(), you have to specify
which of these features you want to retrieve. For example, you can see from the output of listAttributes() (see
above) that one possible type of feature we can search for are Leishmania major genes. To retrieve a list of all
Leishmania major genes from the Leishmania major Ensembl data set, we just need to type:

> leishmaniagenes <- getBM(attributes = c("ensembl_gene_id"),
→˓mart=ensemblleishmania)

This returns a list variable leishmaniagenes, the first element of which is a vector containing the names of all
Leishmania major genes. Thus, to find the number of genes, and print out the names of the first ten genes stored
in the vector, we can type:
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> leishmaniagenenames <- leishmaniagenes[[1]] # Get the vector of the names of all
→˓L. major genes
> length(leishmaniagenenames)
[1] 9379
> leishmaniagenenames[1:10]
[1] "LmjF.01.0010" "LmjF.01.0020" "LmjF.01.0030" "LmjF.01.0040" "LmjF.01.0050"
[6] "LmjF.01.0060" "LmjF.01.0070" "LmjF.01.0080" "LmjF.01.0090" "LmjF.01.0100"

This tells us that there are 9379 different Leishmania major genes in the L. major Ensembl data set. Note that
this includes various types of genes including protein-coding genes (both “known” and “novel” genes, where the
“novel” genes are gene predictions that don’t have sequence similarity to any sequences in sequence databases),
RNA genes, and pseudogenes.

What if we are only interested in protein-coding genes? If you look at the output of listAt-
tributes(ensemblleishmania), you will see that one of the features is “gene_biotype”, which is tells us what sort of
gene each gene is (eg. protein-coding, pseudogene, etc.):

> leishmaniagenes2 <- getBM(attributes = c("ensembl_gene_id", "gene_biotype"),
→˓mart=ensemblleishmania)

In this case, the getBM() function will return a list variable leishmaniagenes2, the first element of which is a vector
containing the names of all Leishmania major genes, and the second of which is a vector containing the types of
those genes:

> leishmaniagenenames2 <- leishmaniagenes2[[1]] # Get the vector of the names of
→˓all L. major genes
> leishmaniagenebiotypes2 <- leishmaniagenes2[[2]] # Get the vector of the
→˓biotypes of all genes

We can make a table of all the different types of genes using the table() function:

> table(leishmaniagenebiotypes2)
leishmaniagenebiotypes2

ncRNA nontranslating_cds protein_coding pseudogene
84 2 8310 90

rRNA snoRNA snRNA tRNA
63 741 6 83

This tells us that there are 8310 protein-coding genes, 90 pseudogenes, and various types of RNA genes (tRNA
genes, rRNA genes, snRNA genes, etc.). Thus, there are 8310 human protein-coding genes.

Comparing the number of genes in two species

Ensembl is a very useful resource for comparing the gene content of different species. For example, one simple
question that we can ask by analysing the Ensembl data is: how many protein-coding genes are there in Leishmania
major, and how many in Plasmodium falciparum?

We know how many protein-coding genes are in Leishmania major (8310; see above), but what about Plasmodium
falciparum? To answer this question, we first need to tell the “biomaRt” package that we want to make a query on
the Ensembl Plasmodium falciparum data set.

We can do this using the useDataset() function to select the Plasmodium falciparum Ensembl data set.

> ensemblpfalciparum <- useDataset("pfalciparum_eg_gene",mart=ensemblprotists)

Note that the name of the Plasmodium falciparum Ensembl data set is “pfalciparum_eg_gene”; this is the data set
listed for Plasmodium falciparum genomic information when we typed listDatasets(ensemblprotists) above.

We can then use getBM() as above to retrieve the names of all Plasmodium falciparum protein-coding genes. This
time we have to set the “mart” option in the getBM() function to “ensemblpfalciparum”, to specify that we want
to query the Plasmodium falciparum Ensembl data set rather than the Leishmania major Ensembl data set:
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> pfalciparumgenes <- getBM(attributes = c("ensembl_gene_id", "gene_biotype"),
→˓mart=ensemblpfalciparum)
> pfalciparumgenenames <- pfalciparumgenes[[1]] # Get the names of the P.
→˓falciparum genes
> length(pfalciparumgenenames) # Get the number of P. falciparum
→˓genes
[1] 6213
> pfalciparumgenebiotypes <- pfalciparumgenes[[2]] # Get the types of the P.
→˓falciparum genes
> table(pfalciparumgenebiotypes)

pfalciparumgenebiotypes
ncRNA non_translating_cds protein_coding rRNA
712 1 5428 24

snRNA tRNA
3 45

This tells us that there are 5428 Plasmodium falciparum protein-coding genes in Ensembl. That is, Plasmod-
ium falciparum seems to have less protein-coding genes than Leishmania major (8310 protein-coding genes; see
above).

It is interesting to ask: why does Plasmodium falciparum have less protein-coding genes than Leishmania ma-
jor? There are several possible explanations: (i) that there have been gene duplications in the Leishmania major
lineage since Leishmania and Plasmodium shared a common ancestor, which gave rise to new Leishmania major
genes; (ii) that completely new genes (that are not related to any other Leishmania major gene) have arisen in the
Leishmania major lineage since Leishmania and Plasmodium shared a common ancestor; or (iii) that there have
been genes lost from the Plasmodium falciparum genome since Leishmania and Plasmodium shared a common
ancestor.

To investigate which of these explanations is most likely to be correct, we need to figure out how the Leishmania
major protein-coding genes are related to Plasmodium falciparum protein-coding genes.

Identifying homologous genes between two species

The Ensembl database groups homologous (related) genes together into gene families. If a gene from Leishmania
major and a gene from Plasmodium falciparum are related, they should be placed together into the same Ensembl
gene family in the Ensembl Protists database. In fact, if a Leishmania major gene has any homologues (related
genes) in other protists, it should be placed into some Ensembl gene family in the Ensembl Protists database.

For all Leishmania major and Plasmodium falciparum genes that are placed together in a gene family, Ensembl
classifies the relationship between each pair of Leishmania major and Plasmodium falciparum genes as ortho-
logues (related genes that shared a common ancestor in the ancestor of Leishmania and Plasmodium, and arose
due to the Leishmania - Plasmodium speciation event) or paralogues (related genes that arose due to a duplication
event within a species, for example, due to a duplication event in Leishmania major, or a duplication event in the
Leishmania - Plasmodium ancestor).

If you type listAttributes(ensemblleishmania) again, you will see that one possible feature that you can search for
is “pfalciparum_eg_gene”, which is the Plasmodium falciparum orthologue of a Leishmania major gene.

Another possible feature that you can search for is “pfalciparum_eg_orthology_type”, which describes the type
of orthology relationship between a particular Leishmania major gene and its Plasmodium falciparum ortho-
logue. For example, if a particular Leishmania major gene has two Plasmodium falciparum orthologues, the
relationship between the Leishmania major gene and each of the Plasmodium falciparum orthologues will be
“ortholog_one2many” (one-to-many orthology).

This can arise in the case where there was a duplication in the Plasmodium falciparum lineage after Plasmodium
and Leishmania diverged, which means that two different Plasmodium falciparum genes (which are paralogues of
each other) are both orthologues of the same Leishmania major gene.

Therefore, we can retrive the Ensembl identifiers of the Plasmodium falciparum orthologues of all Leishmania
major genes by typing:
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> leishmaniagenes <- getBM(attributes = c("ensembl_gene_id", "pfalciparum_eg_gene",
"pfalciparum_eg_orthology_type"), mart=ensemblleishmania)

This will return an R list variable leishmaniagenes, the first element of which is a vector of Ensembl identifiers for
all Leishmania major coding genes, and the second element of which is a vector of Ensembl identifiers for their
Plasmodium falciparum orthologues, and the third element of which is a vector with information on the orthology
types.

We can print out the names of the first 10 Leishmania major genes and their Plasmodium falciparum orthologues,
and their orthology types, by typing:

> leishmaniagenenames <- leishmaniagenes[[1]] # Get the names of all
→˓Leishmania major genes
> leishmaniaPforthologues <- leishmaniagenes[[2]] # Get the P. falciparum
→˓orthologues of all L. major genes
> leishmaniaPforthologuetypes <- leishmaniagenes[[3]] # Get the orthology
→˓relationship type
> leishmaniagenenames[1:10]

[1] "LmjF.34.2510" "LmjF.14.0650" "LmjF.14.0650" "LmjF.14.0670" "LmjF.14.0670"
[6] "LmjF.14.0680" "LmjF.14.0680" "LmjF.14.0710" "LmjF.14.0710" "LmjF.36.2350"

> leishmaniaPforthologues[1:10]
[1] "" "PFA0455c" "PFI0980w" "PFA0455c" "PFI0980w" "PFA0455c"
[7] "PFI0980w" "PFA0455c" "PFI0980w" ""

> leishmaniaPforthologuetypes[1:10]
[1] "" "ortholog_many2many" "ortholog_many2many"
[4] "ortholog_many2many" "ortholog_many2many" "ortholog_many2many"
[7] "ortholog_many2many" "ortholog_many2many" "ortholog_many2many"
[10] ""

Not all Leishmania major genes have Plasmodium falciparum orthologues; this is why when we print out the first
10 elements of the vector leishmaniaPforthologues, some of the elements are empty.

To find out how many Leishmania major genes have orthologues in Plasmodium falciparum, we can first find the
indices of the elements of the vector leishmaniaPforthologues that are empty:

> myindex <- leishmaniaPforthologues==""

We can then find out the names of the Leishmania gene genes corresponding to those indices:

> leishmaniagenenames2 <- leishmaniagenenames[myindex]
> length(leishmaniagenenames2)
[1] 7723

This tells us that 7723 Leishmania major genes do not have Plasmodium falciparum orthologues.

How many of the 7723 Leishmania major genes that do not have Plasmodium falaciparum orthologues are protein-
coding genes? To answer this question, we can merge together the information in the R list variable leishmania-
genes2 (which contains information on the name of each Leishmania major gene and its type; see above), and the R
list variable leishmaniagenes (which contains information on the name of each L. major gene and its Plasmodium
falciparum orthologues).

Remember that leishmaniagenes2 was created by typing:

> leishmaniagenes2 <- getBM(attributes = c("ensembl_gene_id", "gene_biotype"),
→˓mart=ensemblleishmania)

To combine leishmaniagenes and leishmaniagenes2, we can use the merge() function in R, which can merge
together two list variables that contain some named elements in common (in this case, both list variables contain
a vector that has the names of Leishmania major genes):

> leishmaniagenes3 <- merge(leishmaniagenes2, leishmaniagenes)
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The first element of the merged list variable leishmaniagenes3 contains a vector of the Leishmania major gene
names, the second has a vector of the types of those genes (eg. protein-coding, pseudogene etc.), and the third
element has a vector of the Plasmodium falciparum orthologues’ names. We can therefore find out how many
protein-coding Leishmania major genes lack Plasmodium falciparum orthologues by typing:

> leishmaniagenenames <- leishmaniagenes3[[1]]
> leishmaniagenebiotypes <- leishmaniagenes3[[2]]
> leishmaniaPforthologues <- leishmaniagenes3[[3]]
> myindex <- leishmaniaPforthologues=="" & leishmaniagenebiotypes=="protein_coding"
> leishmaniagenenames2 <- leishmaniagenenames[myindex]
> length(leishmaniagenenames2)
[1] 6654

This tells us that there are 6654 Leishmania major protein-coding genes that lack Plasmodium falciparum ortho-
logues.

Summary

In this practical, you will have learnt to use the following R functions:

1. useMart() to select a database to query (in the biomaRt package)

2. useDataset() to select a data set in a database to query (in the biomaRt package)

3. listDatasets() to get a list of all data sets in a database (in the biomaRt package)

4. listAttributes() to get a list of all features of a data set (in the biomaRt package)

5. getBM() to make a query on a database (in the biomaRt package)

6. merge() to merge R list objects that contain some named elements in common

Links and Further Reading

Some links are included here for further reading.

For background reading on comparative genomics, it is recommended to read Chapter 8 of Introduction to
Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/).

For more information and examples on using the biomaRt R package, see the biomaRt package website.

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.
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License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

Exercises

Answer the following questions, using the R package. For each question, please record your answer, and what
you typed into R to get this answer.

Model answers to the exercises are given in Answers to the exercises on Comparative Genomics.

Q1. How many Mycobacterium ulcerans genes are there in the current version of the Ensembl Bacteria database?
Note: the bacterium Mycobacterium ulcerans causes Buruli ulcer, which is classified by the WHO as a
neglected tropical disease.

Q2. How many of the Mycobacterium ulcerans Ensembl genes are protein-coding genes?

Q3. How many Mycobacterium ulcerans protein-coding genes have Mycobacterium leprae orthologues?
Note: Mycobacterium leprae is the bacterium that causes leprosy, which is classified by the WHO as a
neglected tropical disease.

Q4. How many of the*Mycobacterium ulcerans* protein-coding genes have one-to-one orthologues in Mycobac-
terium leprae?

Q5. How many Mycobacterium ulcerans genes have Pfam domains?

Q6. What are the top 5 most common Pfam domains in Mycobacterium ulcerans genes?

Q7. How many copies of each of the top 5 domains found in Q6 are there in the Mycobacterium ulcerans protein
set?

Q8. How many of copies are there in the Mycobacterium lepraae protein set, of each of the top 5 Mycobacterium
ulcerans Pfam protein domains?

Q9. Are the numbers of copies of some domains different in the two species?

Q10. Of the differences found in Q9, are any of the differencess statistically significant?

Hidden Markov Models

A little more about R

In previous practicals, you learnt how to create different types of variables in R such as scalars, vectors and lists.
Sometimes it is useful to create a variable before you actually need to store any data in the variable. To create a
vector without actually storing any data in it, you can use the numeric() command to create a vector for storing
numbers, or the character() command to create a vector for storing characters (eg. “A”, “hello”, etc.) For example,
you may want to create a vector variable for storing the square of a number, and then store numbers in its elements
afterwards:

> myvector <- numeric() # Create a vector "myvector" for storing
→˓numbers
> for (i in 1:10) { myvector[i] <- i*i } # Fill in the values in the vector
→˓"myvector"
> myvector # Print out the vector "myvector"
[1] 1 4 9 16 25 36 49 64 81 100

Note that if you try to store numbers in the elements of a vector that you have not yet created, you will get an error
message, for example:

> for (i in 1:10) { avector[i] <- i*i } # Try to store values in the vector
→˓"avector"
Error in avector[i] <- i * i : object 'avector' not found
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Another very useful type of variable is a matrix. You can create a matrix in R using the matrix() command. If you
look at the help page for the matrix() command, you will see that its arguments (inputs) are the data to store in the
matrix, the number of rows to store it in, the number of columns to store it in, and whether to fill the matrix with
data column-by-column or row-by-row. For example, say you have the heights and weights of eight patients in a
hospital in two different vectors:

> heights <- c(180, 170, 175, 160, 183, 177, 179, 182)
> weights <- c(90, 88, 100, 68, 95, 120, 88, 93)

To store this data in a matrix that has one column per person, and one row for heights and one row for weights, we
type:

> mymatrix <- matrix(c(heights,weights), 2, 8, byrow=TRUE)
> mymatrix # Print out the matrix
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 180 170 175 160 183 177 179 182
[2,] 90 88 100 68 95 120 88 93

We needed to use the argument “byrow=TRUE” to tell the matrix() command to fill the matrix row-by-row (ie. to
put the values from the vector heights into the first row of the matrix, and the values from the vector weights into
the second row of the matrix).

You can assign names to the rows and columns of a matrix using the rownames() and colnames() commands,
respectively. For example, to assign names to the rows and columns of matrix mymatrix, you could type:

> rownames(mymatrix) <- c("height", "weight")
> colnames(mymatrix) <- c("patient1", "patient2", "patient3", "patient4", "patient5
→˓", "patient6", "patient7", "patient8")
> mymatrix # Print out the matrix now
patient1 patient2 patient3 patient4 patient5 patient6 patient7 patient8
height 180 170 175 160 183 177 179 182
weight 90 88 100 68 95 120 88 93

Once you have created a matrix, you can access the values in the elements of the matrix by using square brackets
containing the indices of the row and column of the element. For example, if you want to access the value in the
second row and fourth column of matrix mymatrix, you can type:

> mymatrix[2,4]
[1] 68

If you want to access all the values in a particular row of the matrix, you can just type the index for the row, and
leave out the index for the column. For example, if you want to get the values in the second row of the matrix
mymatrix, type:

> mymatrix[2,]
patient1 patient2 patient3 patient4 patient5 patient6 patient7 patient8
90 88 100 68 95 120 88 93

Likewise, if you want to get the values in a particular column of a matrix, leave out the index for the row, and just
type the column index. For example, if you want to get the values in the fourth row of the mymatrix, type:

> mymatrix[,4]
height weight
160 68

A multinomial model of DNA sequence evolution

The simplest model of DNA sequence evolution assumes that the sequence has been produced by a random process
that randomly chose any of the four nucleotides at each position in the sequence, where the probability of choosing
any one of the four nucleotides depends on a predetermined probability distribution. That is, the four nucleotides
are chosen with pA, pC, pG, and pT respectively. This is known as the multinomial sequence model.
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A multinomial model for DNA sequence evolution has four parameters: the probabilities of the four nucleotides
pA, pC, pG, and pT. For example, say we may create a multinomial model where pA=0.2, pC=0.3, pG=0.3, and
pT=0.2. This means that the probability of choosing a A at any particular sequence position is set to be 0.2, the
probability of choosing a C is 0.3, of choosing a G is 0.3, and of choosing a T is 0.2. Note that pA + pC + pG + pT
= 1, as the sum of the probabilities of the four different types of nucleotides must be equal to 1, as there are only
four possible types of nucleotide.

The multinomial sequence model is like having a roulette wheel that is divided into four different slices labelled
“A”, “T”, “G” and “C”, where the pA, pT, pGand pC are the fractions of the wheel taken up by the slices with these
four labels. If you spin the arrow attached to the centre of the roulette wheel, the probability that it will stop in the
slice with a particular label (eg. the slice labelled “A”) only depends on the fraction of the wheel taken up by that
slice (pA here; see the picture below).

Generating a DNA sequence using a multinomial model

We can use R to generate a DNA sequence using a particular multinomial model. First we need to set the values of
the four parameters of the multinomial model, the probabilities pA, pC, pG, and pT of choosing the nucleotides A,
C, G and T, respectively, at a particular position in the DNA sequence. For example, say we decide to set pA=0.2,
pC=0.3, pG=0.3, and pT=0.2. We can use the function sample() in R to generate a DNA sequence of a certain
length, by selecting a nucleotide at each position according to this probability distribution:

> nucleotides <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
> probabilities1 <- c(0.2, 0.3, 0.3, 0.2) # Set the values of the probabilities
> seqlength <- 30 # Set the length of the sequence
> sample(nucleotides, seqlength, rep=TRUE, prob=probabilities1) # Generate a
→˓sequence
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[1] "A" "C" "T" "G" "T" "T" "T" "T" "A" "G" "T" "C" "A" "G" "G" "G" "G" "C" "G"
[20] "C" "G" "T" "C" "C" "G" "G" "C" "A" "G" "C"

If you look at the help page for the function(), you will find that its inputs are the vector to sample from (nucleotides
here), the size of the sample (seqlength here), and a vector of probabilities for obtaining the elements of the vector
being sampled (probabilities1 here). If we use the sample() function to generate a sequence again, it will create a
different sequence using the same multinomial model:

> sample(nucleotides, seqlength, rep=TRUE, prob=probabilities1) # Generate another
→˓sequence
[1] "T" "G" "C" "T" "A" "T" "G" "G" "T" "C" "G" "A" "A" "T" "G" "G" "G" "G" "C"
[20] "T" "A" "A" "C" "C" "G" "A" "G" "G" "C" "G"

In the same way, we can generate a sequence using a different multinomial model, where pA=0.1, pC=0.41,
pG=0.39, and pT=0.1:

> probabilities2 <- c(0.1, 0.41, 0.39, 0.1) # Set the values of the probabilities
→˓for the new model
> sample(nucleotides, seqlength, rep=TRUE, prob=probabilities2) # Generate a
→˓sequence
[1] "G" "C" "C" "T" "C" "C" "C" "C" "G" "G" "G" "G" "G" "A" "C" "C" "C" "A" "G"
[20] "A" "G" "C" "T" "C" "G" "G" "C" "G" "G" "C"

As you would expect, the sequences generated using this second multinomial model have a higher fraction of Cs
and Gs compared to the sequences generated using the first multinomial model above. This is because pC and
GT are higher for this second model than for the first model (pC=0.41 and GT=0.39 in the second model, versus
pC=0.3 and GT=0.3 in the first model). That is, in the second multinomial model we are using a roulette wheel
that has large slices labelled “C” and “G”, while in the first multinomial model we were using a roulette wheel
with relatively smaller slices labelled “C” and “G” (see the picture below).

A Markov model of DNA sequence evolution

A multinomial model of DNA sequence evolution is a good model of the evolution of many DNA sequences.
However, for some DNA sequences, a multinomial model is not an accurate representation of how the sequences
have evolved. One reason is that a multinomial model assumes that each part of the sequence (eg. the first 100
nucleotides of the sequence, the second 100 nucleotides, the third 100 nucleotides, etc.) have the same frequency
of each type of nucleotide (the same pA, pC, pG, and pT), and this may not be true for a particular DNA sequence
if there are considerable differences in nucleotide frequencies in different parts of the sequence.

Another assumption of a multinomial model of DNA sequence evolution is that the probability of choosing a par-
ticular nucleotide (eg. “A”) at a particular position in the sequence only depends on the predetermined frequency
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of that nucleotide (pA here), and does not depend at all on the nucleotides found at adjacent positions in the se-
quence. This assumption holds true for many DNA sequences. However, for some DNA sequences, it is not true,
because the probability of finding a particular nucleotide at a particular position in the sequence does depend on
what nucleotides are found at adjacent positions in the sequence. In this case, a different type of DNA sequence
model called a Markov sequence model is a more accurate representation of the evolution of the sequence.

A Markov sequence model assumes that the sequence has been produced by a process that chose any of the four
nucleotides in the sequence, where the probability of choosing any one of the four nucleotides at a particular
position depends on the nucleotide chosen for the previous position. That is, if “A” was chosen at the previous
position, then the probability of choosing any one of the four nucleotides at the current position depends on
a predetermined probability distribution. That is, given that “A” was chosen at the previous position, the four
nucleotides are chosen at the current position with probabilities of pA, pC, pG, and pT of choosing “A”, “C”, “G”,
or “T”, respectively (eg. pA=0.2, pC=0.3, pG=0.3, and pT=0.2). In contrast, if “C” was chosen at the previous
position, then the probability of choosing any one of the four nucleotides at the current position depends on a
different predetermined probability distribution, that is, the probabilities of choosing “A”, “C”, “G”, or “T” at the
current position are now different (eg. pA=0.1, pC=0.41, pG=0.39, and pT=0.1).

A Markov sequence model is like having four different roulette wheels, labelled “afterA”, “afterT”, “afterG”,
and “afterC”, for the cases when “A”, “T”, “G”, or “C” were chosen at the previous position in a sequence,
respectively. Each of the four roulette wheels has four slices labelled “A”, “T”, “G”, and “C”, but in each roulette
wheel a different fraction of the wheel is taken up by the four slices. That is, each roulette wheel has a different
pA, pT, pG and pC. If we are generating a new DNA sequence using a Markov sequence model, to decide what
nucleotide to choose at a particular position in the sequence, you spin the arrow at the centre of a roulette wheel,
and see in which slice the arrow stops. There are four roulette wheels, and the particular roulette wheel we use at a
particular position in the sequence depends on the nucleotide chosen for the previous position in the sequence. For
example, if “T” was chosen at the previous position, we use the “afterT” roulette wheel to choose the nucleotide
for the current position. The probability of choosing a particular nucleotide at the current position (eg. “A”) then
depends on the fraction of the “afterT” roulette wheel taken up by the the slice labelled with that nucleotide (pA
here; see the picture below).
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The transition matrix for a Markov model

A multinomial model of DNA sequence evolution just has four parameters: the probabilities pA, pC, pG, and pT.
In contrast, a Markov model has many more parameters: four sets of probabilities pA, pC, pG, and pT, that differ
according to whether the previous nucleotide was “A”, “G”, “T” or “C”. The symbols pAA, pAC, pAG, and pAT are
usually used to represent the four probabilities for the case where the previous nucleotide was “A”, the symbols
pCA, pCC, pCG, and pCT for the case when the previous nucleotide was “C”, and so on.

It is common to store the probability parameters for a Markov model of a DNA sequence in a square matrix, which
is known as a Markov transition matrix. The rows of the transition matrix represent the nucleotide found at the
previous position in the sequence, while the columns represent the nucleotides that could be found at the current
position in the sequence. In R, you can create a matrix using the matrix() command, and the rownames() and
colnames() functions can be used to label the rows and columns of the matrix. For example, to create a transition
matrix, we type:

> nucleotides <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
> afterAprobs <- c(0.2, 0.3, 0.3, 0.2) # Set the values of the
→˓probabilities, where the previous nucleotide was "A"
> afterCprobs <- c(0.1, 0.41, 0.39, 0.1) # Set the values of the
→˓probabilities, where the previous nucleotide was "C"
> afterGprobs <- c(0.25, 0.25, 0.25, 0.25) # Set the values of the
→˓probabilities, where the previous nucleotide was "G"
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> afterTprobs <- c(0.5, 0.17, 0.17, 0.17) # Set the values of the
→˓probabilities, where the previous nucleotide was "T"
> mytransitionmatrix <- matrix(c(afterAprobs, afterCprobs, afterGprobs,
→˓afterTprobs), 4, 4, byrow = TRUE) # Create a 4 x 4 matrix
> rownames(mytransitionmatrix) <- nucleotides
> colnames(mytransitionmatrix) <- nucleotides
> mytransitionmatrix # Print out the transition matrix
A C G T
A 0.20 0.30 0.30 0.20
C 0.10 0.41 0.39 0.10
G 0.25 0.25 0.25 0.25
T 0.50 0.17 0.17 0.17

Rows 1, 2, 3 and 4 of the transition matrix give the probabilities pA, pC, pG, and pT for the cases where the
previous nucleotide was “A”, “C”, “G”, or “T”, respectively. That is, the element in a particular row and column
of the transition matrix (eg. the row for “A”, column for “C”) holds the probability (pAC) of choosing a particular
nucleotide (“C”) at the current position in the sequence, given that was a particular nucleotide (“A”) at the previous
position in the sequence.

Generating a DNA sequence using a Markov model

Just as you can generate a DNA sequence using a particular multinomial model, you can generate a DNA sequence
using a particular Markov model. When you are generating a DNA sequence using a Markov model, the nucleotide
chosen at each position at the sequence depends on the nucleotide chosen at the previous position. As there is no
previous nucleotide at the first position in the new sequence, we need to define the probabilities of choosing “A”,
“C”, “G” or “T” for the first position. The symbols ΠA, ΠC, ΠG, and ΠT are used to represent the probabilities of
choosing “A”, “C”, “G”, or “T” at the first position.

We can define an R function generatemarkovseq() to generate a DNA sequence using a particular Markov model:

> generatemarkovseq <- function(transitionmatrix, initialprobs, seqlength)
{
nucleotides <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
mysequence <- character() # Create a vector for storing the new
→˓sequence
# Choose the nucleotide for the first position in the sequence:
firstnucleotide <- sample(nucleotides, 1, rep=TRUE, prob=initialprobs)
mysequence[1] <- firstnucleotide # Store the nucleotide for the first
→˓position of the sequence
for (i in 2:seqlength)
{
prevnucleotide <- mysequence[i-1] # Get the previous nucleotide in the new
→˓sequence
# Get the probabilities of the current nucleotide, given previous nucleotide
→˓"prevnucleotide":
probabilities <- transitionmatrix[prevnucleotide,]
# Choose the nucleotide at the current position of the sequence:
nucleotide <- sample(nucleotides, 1, rep=TRUE, prob=probabilities)
mysequence[i] <- nucleotide # Store the nucleotide for the current
→˓position of the sequence
}
return(mysequence)
}

The function generatemarkovseq() takes as its arguments (inputs) the transition matrix for the particular Markov
model; a vector containing the values of ΠA, ΠC, ΠG, and ΠT; and the length of the DNA sequence to be generated.

The probabilities of choosing each of the four nucleotides at the first position in the sequence are ΠA, ΠC, ΠG, and
ΠT. The probabilities of choosing each of the four nucleotides at the second position in the sequence depend on
the particular nucleotide that was chosen at the first position in the sequence. The probabilities of choosing each
of the four nucleotides at the third position depend on the nucleotide chosen at the second position, and so on.
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We can use the generatemarkovseq() function to generate a sequence using a particular Markov model. For
example, to create a sequence of 30 nucleotides using the Markov model described in the transition matrix my-
transitionmatrix, using uniform starting probabilities (ie. ΠA = 0.25, ΠC = 0.25, ΠG = 0.25, and ΠT = 0.25) , we
type:

> myinitialprobs <- c(0.25, 0.25, 0.25, 0.25)
> generatemarkovseq(mytransitionmatrix, myinitialprobs, 30)
[1] "A" "T" "C" "G" "G" "G" "G" "A" "T" "A" "T" "A" "T" "A" "G" "C" "G" "C" "T" "C
→˓" "C" "C" "G"
[24] "A" "C" "A" "A" "A" "T" "C"

As you can see, there are many “A”s after “T”s in the sequence. This is because pTA has a high value (0.5) in the
Markov transition matrix mytransitionmatrix. Similarly, there are few “A”s or “T”s after “C”s, which is because
pCA and pCT have low values (0.1) in this transition matrix.

A Hidden Markov Model of DNA sequence evolution

In a Markov model, the nucleotide at a particular position in a sequence depends on the nucleotide found at the
previous position. In contrast, in a Hidden Markov model (HMM), the nucleotide found at a particular position
in a sequence depends on the state at the previous nucleotide position in the sequence. The state at a sequence
position is a property of that position of the sequence, for example, a particular HMM may model the positions
along a sequence as belonging to either one of two states, “GC-rich” or “AT-rich”. A more complex HMM may
model the positions along a sequence as belonging to many different possible states, such as “promoter”, “exon”,
“intron”, and “intergenic DNA”.

A HMM is like having several different roulette wheels, one roulette wheel for each state in the HMM, for example,
a “GC-rich” and an “AT-rich” roulette wheel. Each of the roulette wheels has four slices labelled “A”, “T”, “G”,
and “C”, and in each roulette wheel a different fraction of the wheel is taken up by the four slices. That is, the
“GC-rich” and “AT-rich” roulette wheels have different pA, pT, pG and pC values. If we are generating a new DNA
sequence using a HMM, to decide what nucleotide to choose at a particular sequence position, we spin the arrow
of a particular roulette wheel, and see in which slice it stops.

How do we decide which roulette wheel to use? Well, if there are two roulette wheels, we tend to use the same
roulette wheel that we used to choose the previous nucleotide in the sequence, but there is also a certain small
probability of switching to the other roulette wheel. For example, if we used the “GC-rich” roulette wheel to
choose the previous nucleotide in the sequence, there may be a 90% chance that we will use the “GC-rich”
roulette wheel again to choose the nucleotide at the current position, but a 10% chance that we will switch to using
the “AT-rich” roulette wheel to choose the nucleotide at the current position. Likewise, if we used the “AT-rich”
roulette wheel to choose the nucleotide at the previous position, there may be 70% chance that we will use the
“AT-rich” wheel again at this position, but a 30% chance that we will switch to using the “GC-rich” roulette wheel
to choose the nucleotide at this position.
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The transition matrix and emission matrix for a HMM

A HMM has two important matrices that hold its parameters. The first is the HMM transition matrix, which
contains the probabilities of switching from one state to another. For example, in a HMM with two states, an AT-
rich state and a GC-rich state, the transition matrix will hold the probabilities of switching from the AT-rich state
to the GC-rich state, and of switching from the GC-rich state to the AT-rich state. For example, if the previous
nucleotide was in the AT-rich state there may be a probability of 0.3 that the current nucleotide will be in the
GC-rich state, and if the previous nucleotide was in the GC-rich state there may be a probability of 0.1 that the
current nucleotide will be in the AT-rich state:

> states <- c("AT-rich", "GC-rich") # Define the names of the states
> ATrichprobs <- c(0.7, 0.3) # Set the probabilities of
→˓switching states, where the previous state was "AT-rich"
> GCrichprobs <- c(0.1, 0.9) # Set the probabilities of
→˓switching states, where the previous state was "GC-rich"
> thetransitionmatrix <- matrix(c(ATrichprobs, GCrichprobs), 2, 2, byrow = TRUE) #
→˓Create a 2 x 2 matrix
> rownames(thetransitionmatrix) <- states
> colnames(thetransitionmatrix) <- states
> thetransitionmatrix # Print out the transition matrix
AT-rich GC-rich
AT-rich 0.7 0.3
GC-rich 0.1 0.9

There is a row in the transition matrix for each of the possible states at the previous position in the nucleotide
sequence. For example, in this transition matrix, the first row corresponds to the case where the previous position
was in the “AT-rich” state, and the second row corresponds to the case where the previous position was in the
“GC-rich” state. The columns give the probabilities of switching to different states at the current position. For
example, the value in the second row and first column of the transition matrix above is 0.1, which is the probability
of switching to the AT-rich state, if the previous position of the sequence was in the GC-rich state.

The second important matrix is the HMM emission matrix, which holds the probabilities of choosing the four
nucleotides “A”, “C”, “G”, and “T”, in each of the states. In a HMM with an AT-rich state and a GC-rich state, the
emission matrix will hold the probabilities of choosing each of the four nucleotides “A”, “C”, “G” and “T” in the
AT-rich state (for example, pA=0.39, pC=0.1, pG=0.1, and pT=0.41 for the AT-rich state), and the probabilities of
choosing “A”, “C”, “G”, and “T” in the GC-rich state (for example, pA=0.1, pC=0.41, pG=0.39, and pT=0.1 for the
GC-rich state).

> nucleotides <- c("A", "C", "G", "T") # Define the alphabet of
→˓nucleotides
> ATrichstateprobs <- c(0.39, 0.1, 0.1, 0.41) # Set the values of the
→˓probabilities, for the AT-rich state
> GCrichstateprobs <- c(0.1, 0.41, 0.39, 0.1) # Set the values of the
→˓probabilities, for the GC-rich state
> theemissionmatrix <- matrix(c(ATrichstateprobs, GCrichstateprobs), 2, 4, byrow =
→˓TRUE) # Create a 2 x 4 matrix
> rownames(theemissionmatrix) <- states
> colnames(theemissionmatrix) <- nucleotides
> theemissionmatrix # Print out the emission matrix

A C G T
AT-rich 0.39 0.10 0.10 0.41
GC-rich 0.10 0.41 0.39 0.10

There is a row in the emission matrix for each possible state, and the columns give the probabilities of choosing
each of the four possible nucleotides when in a particular state. For example, the value in the second row and third
column of the emission matrix above is 0.39, which is the probability of choosing a “G” when in the “GC-rich
state” (ie. when using the “GC-rich” roulette wheel).
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Generating a DNA sequence using a HMM

The following function generatehmmseq() can be used to generate a DNA sequence using a particular HMM. As
its arguments (inputs), it requires the parameters of the HMM: the HMM transmission matrix and HMM emission
matrix.

> # Function to generate a DNA sequence, given a HMM and the length of the
→˓sequence to be generated.
generatehmmseq <- function(transitionmatrix, emissionmatrix, initialprobs,

→˓seqlength)
{

nucleotides <- c("A", "C", "G", "T") # Define the alphabet of
→˓nucleotides

states <- c("AT-rich", "GC-rich") # Define the names of the states
mysequence <- character() # Create a vector for storing the

→˓new sequence
mystates <- character() # Create a vector for storing the

→˓state that each position in the new sequence
# was generated by

# Choose the state for the first position in the sequence:
firststate <- sample(states, 1, rep=TRUE, prob=initialprobs)
# Get the probabilities of the current nucleotide, given that we are in the

→˓state "firststate":
probabilities <- emissionmatrix[firststate,]
# Choose the nucleotide for the first position in the sequence:
firstnucleotide <- sample(nucleotides, 1, rep=TRUE, prob=probabilities)
mysequence[1] <- firstnucleotide # Store the nucleotide for the

→˓first position of the sequence
mystates[1] <- firststate # Store the state that the first

→˓position in the sequence was generated by

for (i in 2:seqlength)
{

prevstate <- mystates[i-1] # Get the state that the previous
→˓nucleotide in the sequence was generated by

# Get the probabilities of the current state, given that the previous
→˓nucleotide was generated by state "prevstate"

stateprobs <- transitionmatrix[prevstate,]
# Choose the state for the ith position in the sequence:
state <- sample(states, 1, rep=TRUE, prob=stateprobs)
# Get the probabilities of the current nucleotide, given that we are in

→˓the state "state":
probabilities <- emissionmatrix[state,]
# Choose the nucleotide for the ith position in the sequence:
nucleotide <- sample(nucleotides, 1, rep=TRUE, prob=probabilities)
mysequence[i] <- nucleotide # Store the nucleotide for the

→˓current position of the sequence
mystates[i] <- state # Store the state that the current

→˓position in the sequence was generated by
}

for (i in 1:length(mysequence))
{

nucleotide <- mysequence[i]
state <- mystates[i]
print(paste("Position", i, ", State", state, ", Nucleotide = ",

→˓nucleotide))
}

}

When you are generating a DNA sequence using a HMM, the nucleotide is chosen at each position depending on
the state at the previous position in the sequence. As there is no previous nucleotide at the first position in the
sequence, the function generatehmmseq() also requires the probabilities of the choosing each of the states at the
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first position (eg. ΠAT-rich and ΠGC-rich being the probability of the choosing the “AT-rich” or “GC-rich” states at
the first position for a HMM with these two states).

We can use the generatehmmseq() function to generate a sequence using a particular HMM. For example, to create
a sequence of 30 nucleotides using the HMM with “AT-rich” and “GC-rich” states described in the transition matrix
thetransitionmatrix, the emission matrix theemissionmatrix, and uniform starting probabilities (ie. ΠAT-rich = 0.5,
ΠGC-rich = 0.5), we type:

> theinitialprobs <- c(0.5, 0.5)
> generatehmmseq(thetransitionmatrix, theemissionmatrix, theinitialprobs, 30)
[1] "Position 1 , State AT-rich , Nucleotide = A"
[1] "Position 2 , State AT-rich , Nucleotide = A"
[1] "Position 3 , State AT-rich , Nucleotide = G"
[1] "Position 4 , State AT-rich , Nucleotide = C"
[1] "Position 5 , State AT-rich , Nucleotide = G"
[1] "Position 6 , State AT-rich , Nucleotide = T"
[1] "Position 7 , State GC-rich , Nucleotide = G"
[1] "Position 8 , State GC-rich , Nucleotide = G"
[1] "Position 9 , State GC-rich , Nucleotide = G"
[1] "Position 10 , State GC-rich , Nucleotide = G"
[1] "Position 11 , State GC-rich , Nucleotide = C"
[1] "Position 12 , State GC-rich , Nucleotide = C"
[1] "Position 13 , State GC-rich , Nucleotide = C"
[1] "Position 14 , State GC-rich , Nucleotide = C"
[1] "Position 15 , State GC-rich , Nucleotide = G"
[1] "Position 16 , State GC-rich , Nucleotide = G"
[1] "Position 17 , State GC-rich , Nucleotide = C"
[1] "Position 18 , State GC-rich , Nucleotide = G"
[1] "Position 19 , State GC-rich , Nucleotide = A"
[1] "Position 20 , State GC-rich , Nucleotide = C"
[1] "Position 21 , State GC-rich , Nucleotide = A"
[1] "Position 22 , State AT-rich , Nucleotide = T"
[1] "Position 23 , State GC-rich , Nucleotide = G"
[1] "Position 24 , State GC-rich , Nucleotide = G"
[1] "Position 25 , State GC-rich , Nucleotide = G"
[1] "Position 26 , State GC-rich , Nucleotide = G"
[1] "Position 27 , State GC-rich , Nucleotide = T"
[1] "Position 28 , State GC-rich , Nucleotide = G"
[1] "Position 29 , State GC-rich , Nucleotide = T"
[1] "Position 30 , State GC-rich , Nucleotide = C"

As you can see, the nucleotides generated by the GC-rich state are mostly but not all “G”s and “C”s (because of
the high values of pG and pC for the GC-rich state in the HMM emission matrix), while the nucleotides generated
by the AT-rich state are mostly but not all “A”s and “T”s (because of the high values of pT and pA for the AT-rics
state in the HMM emission matrix).

Furthermore, there tends to be runs of nucleotides that are either all in the GC-rich state or all in the AT-rich state,
as the transition matrix specifies that the probabilities of switching from the AT-rich to GC-rich state (probability
0.3), or GC-rich to AT-rich state (probability 0.1) are relatively low.

Inferring the states of a HMM that generated a DNA sequence

If we have a HMM with two states, “GC-rich” and “AT-rich”, and we know the transmission and emission matrices
of the HMM, can we take some new DNA sequence, and figure out which state (GC-rich or AT-rich) is the
most likely to have generated each nucleotide position in that DNA sequence? This is a common problem in
bioinformatics. It is called the problem of finding the most probable state path, as it essentially consists of
assigning the most likely state to each position in the DNA sequence. The problem of finding the most probable
state path is also sometimes called segmentation. For example, give a DNA sequence of 1000 nucleotides, you
may wish to use your HMM to segment the sequence into blocks that were probably generated by the “GC-rich”
state or by the “AT-rich” state.
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The problem of finding the most probable state path given a HMM and a sequence (ie. the problem of segmenting
a sequence using a HMM), can be solved by an algorithm called the Viterbi algorithm. As its output, the Viterbi
algorithm gives for each nucleotide position in a DNA sequence, the state of your HMM that most probably
generated the nucleotide in that position. For example, if you segmented a particular DNA sequence of 1000
nucleotides using a HMM with “AT-rich” and “GC-rich” states, the Viterbi algorithm may tell you that nucleotides
1-343 were most probably generated by the AT-rich state, nucleotides 344-900 were most probably generated by
the GC-rich state, and 901-1000 were most probably generated by the AT-rich state.

The following function viterbi() is a function for the Viterbi algorithm:

> viterbi <- function(sequence, transitionmatrix, emissionmatrix)
# This carries out the Viterbi algorithm.
# Adapted from "Applied Statistics for Bioinformatics using R" by Wim P. Krijnen,

→˓ page 209
# ( cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf )
{

# Get the names of the states in the HMM:
states <- rownames(theemissionmatrix)

# Make the Viterbi matrix v:
v <- makeViterbimat(sequence, transitionmatrix, emissionmatrix)

# Go through each of the rows of the matrix v (where each row represents
# a position in the DNA sequence), and find out which column has the
# maximum value for that row (where each column represents one state of
# the HMM):
mostprobablestatepath <- apply(v, 1, function(x) which.max(x))

# Print out the most probable state path:
prevnucleotide <- sequence[1]
prevmostprobablestate <- mostprobablestatepath[1]
prevmostprobablestatename <- states[prevmostprobablestate]
startpos <- 1
for (i in 2:length(sequence))
{

nucleotide <- sequence[i]
mostprobablestate <- mostprobablestatepath[i]
mostprobablestatename <- states[mostprobablestate]
if (mostprobablestatename != prevmostprobablestatename)
{

print(paste("Positions",startpos,"-",(i-1), "Most probable state = ",
→˓prevmostprobablestatename))

startpos <- i
}
prevnucleotide <- nucleotide
prevmostprobablestatename <- mostprobablestatename

}
print(paste("Positions",startpos,"-",i, "Most probable state = ",

→˓prevmostprobablestatename))
}

The viterbi() function requires a second function makeViterbimat():

> makeViterbimat <- function(sequence, transitionmatrix, emissionmatrix)
# This makes the matrix v using the Viterbi algorithm.
# Adapted from "Applied Statistics for Bioinformatics using R" by Wim P. Krijnen,

→˓ page 209
# ( cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf )
{

# Change the sequence to uppercase
sequence <- toupper(sequence)
# Find out how many states are in the HMM
numstates <- dim(transitionmatrix)[1]

1.12. Hidden Markov Models 119



A Little Book of R For Bioinformatics, Release 0.1

# Make a matrix with as many rows as positions in the sequence, and as many
# columns as states in the HMM
v <- matrix(NA, nrow = length(sequence), ncol = dim(transitionmatrix)[1])
# Set the values in the first row of matrix v (representing the first

→˓position of the sequence) to 0
v[1, ] <- 0
# Set the value in the first row of matrix v, first column to 1
v[1,1] <- 1
# Fill in the matrix v:
for (i in 2:length(sequence)) # For each position in the DNA sequence:
{

for (l in 1:numstates) # For each of the states of in the HMM:
{

# Find the probabilility, if we are in state l, of choosing the
→˓nucleotide at position in the sequence

statelprobnucleotidei <- emissionmatrix[l,sequence[i]]

# v[(i-1),] gives the values of v for the (i-1)th row of v, ie. the (i-
→˓1)th position in the sequence.

# In v[(i-1),] there are values of v at the (i-1)th row of the sequence
→˓for each possible state k.

# v[(i-1),k] gives the value of v at the (i-1)th row of the sequence
→˓for a particular state k.

# transitionmatrix[l,] gives the values in the lth row of the
→˓transition matrix, xx should not be transitionmatrix[,l]?

# probabilities of changing from a previous state k to a current state
→˓l.

# max(v[(i-1),] * transitionmatrix[l,]) is the maximum probability for
→˓the nucleotide observed

# at the previous position in the sequence in state k, followed by a
→˓transition from previous

# state k to current state l at the current nucleotide position.

# Set the value in matrix v for row i (nucleotide position i), column l
→˓(state l) to be:

v[i,l] <- statelprobnucleotidei * max(v[(i-1),] * transitionmatrix[,l])
}

}
return(v)

}

Given a HMM, and a particular DNA sequence, you can use the Viterbi function to find the state of that HMM
that was most likely to have generated the nucleotide at each position in the DNA sequence:

> myseq <- c("A", "A", "G", "C", "G", "T", "G", "G", "G", "G", "C", "C", "C", "C",
→˓"G", "G", "C", "G", "A", "C", "A", "T", "G", "G", "G", "G", "T", "G", "T", "C")
> viterbi(myseq, thetransitionmatrix, theemissionmatrix)
[1] "Positions 1 - 2 Most probable state = AT-rich"
[1] "Positions 3 - 21 Most probable state = GC-rich"
[1] "Positions 22 - 22 Most probable state = AT-rich"
[1] "Positions 23 - 23 Most probable state = GC-rich"

A Hidden Markov Model of protein sequence evolution

We have so far talked about using HMMs to model DNA sequence evolution. However, it is of course possible
to use HMMs to model protein sequence evolution. When using a HMM to model DNA sequence evolution,
we may have states such as “AT-rich” and “GC-rich”. Similarly, when using a HMM to model protein sequence
evolution, we may have states such as “hydrophobic” and “hydrophilic”. In a protein HMM with “hydrophilic”
and “hydrophilic” states, the “hydrophilic” HMM will have probabilities pA, pR, pC... of choosing each of the 20
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amino acids alanine (A), arginine (R), cysteine (C), etc. when in that state. Similarly, the “hydrophilic” state will
have different probabilities pA, pR, pC... of choosing each of the 20 amino acids. The probability of choosing a
hydrophobic amino acid such as alanine will be higher in the “hydrophobic” state than in the “hydrophilic” state
(ie. pA of the “hydrophobic” state will be higher than the pA of of the “hydrophilic” state, where A represents
alanine here). A HMM of protein sequence evolution also defines a certain probability of switching from the
“hydrophilic” state to the “hydrophobic” state, and a certain probability of switching from the “hydrophobic”
state to the “hydrophilic” state.

Summary

In this practical, you will have learnt to use the following R functions:

1. numeric() for making a vector for storing numbers

2. character() for making a vector for storing characters

3. matrix() for making a matrix variable

4. rownames() for assigning names to the rows of a matrix variable

5. colnames() for assigning names to the columns of a matrix variable

6. sample() for making a random sample of numbers from a vector of numbers

All of these functions belong to the standard installation of R.

Links and Further Reading

Some links are included here for further reading, which will be especially useful if you need to use the R package
for your project or assignments.

For background reading on multinomial models, Markov models, and HMMs, it is recommended to read Chapters
1 and 4 of Introduction to Computational Genomics: a case studies approach by Cristianini and Hahn (Cambridge
University Press; www.computational-genomics.net/book/).

There is also a very nice chapter on “Markov Models” in the book Applied statistics for bioinformatics using R by
Krijnen (available online at cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf).
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Exercises

Answer the following questions, using the R package. For each question, please record your answer, and what
you typed into R to get this answer.
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Q1. In a previous practical, you saw that the Bacteriophage lambda genome sequence (NCBI accession NC_001416) has
long stretches of either very GC-rich (mostly in the first half of the genome) or very AT-rich sequence
(mostly in the second half of the genome). Use a HMM with two different states (“AT-rich” and “GC-rich”)
to infer which state of the HMM is most likely to have generated each nucleotide position in the Bacte-
riophage lambda genome sequence. For the AT-rich state, set pA= 0.27, pC= 0.2084, pG= 0.198, and pT=
0.3236. For the GC-rich state, set pA= 0.2462, pC= 0.2476, pG= 0.2985, and pT= 0.2077. Set the probability
of switching from the AT-rich state to the GC-rich state to be 0.0002, and the

probability of switching from the GC-rich state to the AT-rich state to be 0.0002. What is the
most probable state path?

Q2. Given a HMM with four different states (“A-rich”, “C-rich”, “G-rich” and “T-rich”), infer which state of
the HMM is most likely to have generated each nucleotide position in the Bacteriophage lambda genome
sequence. For the A-rich state, set pA= 0.3236, pC= 0.2084, pG= 0.198, and pT= 0.27. For the C-rich state,
set pA= 0.2462, pC= 0.2985, pG= 0.2476, and pT= 0.2077. For the G-rich state, set pA= 0.2462, pC= 0.2476,
pG= 0.2985, and pT= 0.2077. For the T-rich state, set pA= 0.27, pC= 0.2084, pG= 0.198, and pT= 0.3236.
Set the probability of switching from the A-rich state to any of the three other states to be 6.666667e-05.
Likewise, set the probability of switching from the C-rich/G-rich/T-rich state to any of the three other states
to be 6.666667e-05. What is the most probable state path? Do you find differences between these results
and the results from simply using a two-state HMM (as in Q1)?

Q3. Make a two-state HMM to model protein sequence evolution, with “hydrophilic” and “hydrophobic” states.
For the hydrophilic state, set pA= 0.02, pR= 0.068, pN= 0.068, pD= 0.068, pC= 0.02, pQ= 0.068, pE= 0.068,
pG= 0.068, pH= 0.068, pI= 0.012, pL= 0.012, pK= 0.068, pM= 0.02, pF= 0.02, pP= 0.068, pS= 0.068, pT=
0.068, pW= 0.068, pY= 0.068, and pV= 0.012. For the hydrophobic state, set pA= 0.114, pR= 0.007, pN=
0.007, pD= 0.007, pC= 0.114, pQ= 0.007, pE= 0.007, pG= 0.025, pH= 0.007, pI= 0.114, pL= 0.114, pK=
0.007, pM= 0.114, pF= 0.114, pP= 0.025, pS= 0.026, pT= 0.026, pW= 0.025, pY= 0.026, and pV= 0.114.
Set the probability of switching from the hydrophilic state to the hydrophobic state to be 0.01. Set the
probability of switching from the hydrophobic state to the hydrophilic state to be 0.01. Now infer which
state of the HMM is most likely to have generated each amino acid position in the the human odorant
receptor 5BF1 protein (UniProt accession Q8NHC7). What is the most probable state path? The odorant
receptor is a 7-transmembrane protein, meaning that it crosses the cell membrane seven times. As a
consequence the protein has seven hydrophobic regions that cross the fatty cell membrane, and seven
hydrophilic segments that touch the watery cytoplasm and extracellular environments. What do you think
are the coordinates in the protein of the seven transmembrane regions?

Answers to the End-of-chapter Exercises

DNA Sequence Statistics (1)

Q1.

What are the last twenty nucleotides of the DEN-1 Dengue virus genome sequence?

To answer this, you first need to install the “SeqinR” R package, and download the DEN-1 Dengue genome
sequence from the NCBI database and save it as a file “den1.fasta” in the “My Documents” folder.

Then to find the length of the DEN-1 Dengue virus genome sequence, type in the R console:

> library("seqinr")
> dengue <- read.fasta(file="den1.fasta")
> dengueseq <- dengue[[1]]
> length(dengueseq)
[1] 10735

This tells us that the length of the sequence is 10735 nucleotides. Therefore, the last 20 nucleotides are from
10716 to 10735. You can extract the sequence of these nucleotides by typing:
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> dengueseq[10716:10735]
[1] "c" "t" "g" "t" "t" "g" "a" "a" "t" "c" "a" "a" "c" "a" "g" "g" "t" "t" "c"
[20] "t"

Q2.

What is the length in nucleotides of the genome sequence for the bacterium Mycobacterium leprae strain TN
(accession NC_002677)?

To answer this question, you first need to retrieve the Mycobacterium leprae TN genome sequence from the NCBI
database. You can use this by going to the NCBI website and searching for it via the NCBI website, or alternatively
by using the getncbiseq() function in R.

To get the Mycobacterium leprae TN genome via the NCBI website, its necessary to first go to the NCBI website
(www.ncbi.nlm.nih.gov) and search for NC_002677 and download it as a fasta format file (eg. “leprae.fasta”) and
save it in the “My Documents” folder. You can then read the sequence into R from the file by typing:

Then in R type:

> leprae <- read.fasta(file="leprae.fasta")
> lepraeseq <- leprae[[1]]

Alternatively, to get the Mycobacterium leprae TN genome using the getncbiseq() function in R, you first need to
copy the getncbiseq() function and paste it into R, and then you can retrieve the sequence (accession NC_002677)
by typing in R:

> lepraeseq <- getncbiseq("NC_002677")

Now we have the Mycobacterium leprae TN genome sequence stored in the vector lepraseq in R. We can get the
length of the sequence by getting the length of the vector:

> length(lepraeseq)
[1] 3268203

Q3.

How many of each of the four nucleotides A, C, T and G, and any other symbols, are there in the Mycobacterium
leprae TN genome sequence?

Type:

> table(lepraeseq)
lepraeseq

a c g t
687041 938713 950202 692247

Q4.

What is the GC content of the Mycobacterium leprae TN genome sequence, when (i) all non-A/C/T/G nucleotides
are included, (ii) non-A/C/T/G nucleotides are discarded?

Find out how the GC function deals with non-A/C/T/G nucleotides, type:

> help("GC")

Type:
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> GC(lepraeseq)
[1] 0.5779675
> GC(lepraeseq, exact=FALSE)
[1] 0.5779675

This gives 0.5779675 or 57.79675%. This is the GC content when non-A/C/T/G nucleotides are not taken into
account.

The length of the M. leprae sequence is 3268203 bp, and it has 938713 Cs and 950202 Gs, and 687041 As and
692247 Ts. So to calculating the GC content when only considering As, Cs, Ts and Gs, we can also type:

> (938713+950202)/(938713+950202+687041+692247)
[1] 0.5779675

To take non-A/C/T/G nucleotides into account when calculating GC, type:

> GC(lepraeseq, exact=TRUE)
[1] 0.5779675

We get the same answer as when we ignored non-A/C/G/T nucleotides. This is actually because the M. leprae TN
sequence does not have any non-A/C/G/T nucleotides.

However, many other genome sequences do contain non-A/C/G/T nucleotides. Note that under ‘Details’ in the
box that appears when you type ‘help(‘GC’)’, it says : “When exact is set to TRUE the G+C content is estimated
with ambiguous bases taken into account. Note that this is time expensive. A first pass is made on non-ambiguous
bases to estimate the probabilities of the four bases in the sequence. They are then used to weight the contributions
of ambiguous bases to the G+C content.”

Q5.

How many of each of the four nucleotides A, C, T and G are there in the complement of the Mycobacterium leprae
TN genome sequence?

First you need to search for a function to calculate reverse complement, eg. by typing:

> help.search("complement")

You will find that there is a function seqinr::comp that complements a nucleic acid sequence. This means it is a
function in the SeqinR package.

Find out how to use this function by typing:

> help("comp")

The help says “Undefined values are returned as NA”. This means that the complement of non-A/C/T/G symbols
will be returned as NA.

To find the number of A, C, T, and G in the reverse complement type:

> complepraeseq <- comp(lepraeseq)
> table(complepraeseq)
complepraeseq

a c g t
692247 950202 938713 687041

Note that in the M. leprae sequence we had 687041 As, in the complement have 687041 Ts. In the M. leprae
sequence we had 938713 Cs, in the complement have 938713 Gs. In the M. leprae sequence we had 950202 Gs,
in the complement have 950202 Cs. In the M. leprae sequence we had 692247 Ts, in the complement have 692247
As.
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Q6.

How many occurrences of the DNA words CC, CG and GC occur in the Mycobacterium leprae TN genome
sequence?

> count(lepraeseq, 2)
aa ac ag at ca cc cg ct ga gc gg

149718 206961 170846 159516 224666 236971 306986 170089 203397 293261 243071
gt ta tc tg tt

210473 109259 201520 229299 152169

Get count for CC is 236,971; count for CG is 306,986; count for GC is 293,261.

Q7.

How many occurrences of the DNA words CC, CG and GC occur in the (i) first 1000 and (ii) last 1000 nucleotides
of the Mycobacterium leprae TN genome sequence?

Type:

> length(lepraeseq)
[1] 3268203

to find the length of the M. leprae genome sequence. It is 3,268,203 bp. Therefore the first 1000 nucleotides will
have indices 1-1000, and the last thousand nucleotides will have indices 3267204-3268203. We find the count of
DNA words of length 2 by typing:

> count(lepraeseq[1:1000],2)
aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
78 95 51 49 85 82 92 54 68 63 39 43 42 73 31 54

> count(lepraeseq[3267204:3268203],2)
aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
70 85 44 55 94 81 87 50 53 75 49 51 36 72 48 49

To check that the subsequences that you looked at are 1000 nucleotides long, you can type:

> length(lepraeseq[1:1000])
[1] 1000
> length(lepraeseq[3267204:3268203])
[1] 1000

DNA Sequence Statistics (2)

Q1.

Draw a sliding window plot of GC content in the DEN-1 Dengue virus genome, using a window size of 200
nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?

To do this, you first need to download the DEN-1 Dengue virus sequence from the NCBI database. To do this
follow the steps in the chapter DNA Sequence Statistics (1).

Then read the sequence into R using the SeqinR package:

> library("seqinr")
> dengue <- read.fasta(file = "den1.fasta")
> dengueseq <- dengue[[1]]

Then write a function to make a sliding window plot:
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> slidingwindowplot <- function(windowsize, inputseq)
{

starts <- seq(1, length(inputseq)-windowsize, by = windowsize)
n <- length(starts)
chunkGCs <- numeric(n)
for (i in 1:n) {

chunk <- inputseq[starts[i]:(starts[i]+windowsize-1)]
chunkGC <- GC(chunk)
chunkGCs[i] <- chunkGC

}
plot(starts,chunkGCs,type="b",xlab="Nucleotide start position",ylab="GC

→˓content")
}

Then make a sliding window plot with a window size of 200 nucleotides:

> slidingwindowplot(200, dengueseq)

The GC content varies from about 45% to about 50% throughout the DEN-1 Dengue virus genome, with some
noticeable troughs at about 2500 bases and at about 4000 bases along the sequence, where the GC content drops
to about 40%. There is no strong difference between the start and end of the genome, although from around bases
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4000-7000 the GC content is quite high (about 50%), and from about 2500-3500 and 7000-9000 bases the GC
content is relatively low (about 43-47%).

We can also make a sliding window plot of GC content using a window size of 2000 nucleotides:

> slidingwindowplot(2000, dengueseq)

In this picture it is much more noticeable that the GC content is relatively high from around 4000-7000 bases, and
lower on either side (from 2500-3500 and 7000-9000 bases).

Q2.

Draw a sliding window plot of GC content in the genome sequence for the bacterium Mycobacterium leprae strain
TN (accession NC_002677) using a window size of 20000 nucleotides. Do you see any regions of unusual DNA
content in the genome (eg. a high peak or low trough)?

To do this, you first need to download the Mycobacterium leprae sequence from the NCBI database. To do this
follow the steps in the chapter DNA Sequence Statistics (1).

Then read the sequence into R using the SeqinR package:
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> leprae <- read.fasta(file = "leprae.fasta")
> lepraeseq <- leprae[[1]]

Then make a sliding window plot with a window size of 20000 nucleotides:

> slidingwindowplot(20000, lepraeseq)

We see the highest peak in GC content at about 1 Mb into the M. leprae genome. We also see troughs in GC
content at about 1.1 Mb, and at about 2.6 Mb.

With a window size of 200 nucleotides, the plot is very messy, and we cannot see the peaks and troughs in GC
content so easily:

> slidingwindowplot(200, lepraeseq)
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With a window size of 200,000 nucleotides, the plot is very smooth, and we cannot see the peaks and troughs in
GC content very easily:

> slidingwindowplot(200000, lepraeseq)
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Q3.

Write a function to calculate the AT content of a DNA sequence (ie. the fraction of the nucleotides in the sequence
that are As or Ts). What is the AT content of the Mycobacterium leprae TN genome?

Here is a function to calculate the AT content of a genome sequence:

> AT <- function(inputseq)
{

mytable <- count(inputseq, 1) # make a table with the count of As, Cs, Ts,
→˓and Gs

mylength <- length(inputseq) # find the length of the whole sequence
myAs <- mytable[[1]] # number of As in the sequence
myTs <- mytable[[4]] # number of Ts in the sequence
myAT <- (myAs + myTs)/mylength
return(myAT)

}

We can then use the function to calculate the AT content of the M. leprae genome:
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> AT(lepraeseq)
[1] 0.4220325

You should notice that the AT content is (1 minus GC content), ie. (AT content + GC content = 1):

> GC(lepraeseq)
[1] 0.5779675
> 0.4220325 + 0.5779675
[1] 1

Q4.

Write a function to draw a sliding window plot of AT content. Use it to make a sliding window plot of AT
content along the Mycobacterium leprae TN genome, using a windowsize of 20000 nucleotides. Do you notice
any relationship between the sliding window plot of GC content along the Mycobacterium leprae genome, and the
sliding window plot of AT content?

We can write a function to write a sliding window plot of AT content:

> slidingwindowplotAT <- function(windowsize, inputseq)
{

starts <- seq(1, length(inputseq)-windowsize, by = windowsize)
n <- length(starts)
chunkATs <- numeric(n)
for (i in 1:n) {

chunk <- inputseq[starts[i]:(starts[i]+windowsize-1)]
chunkAT <- AT(chunk)
chunkATs[i] <- chunkAT

}
plot(starts,chunkATs,type="b",xlab="Nucleotide start position",ylab="AT

→˓content")
}

We can then use this function to make a sliding window plot with a window size of 20000 nucleotides:

> slidingwindowplotAT(20000, lepraeseq)
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This is the mirror image of the plot of GC content (because AT equals 1 minus GC):

> slidingwindowplot(20000, lepraeseq)
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Q5.

Is the 3-nucleotide word GAC GC over-represented or under-represented in the Mycobacterium leprae TN genome
sequence?

We can get the number of counts of each of the 3-nucleotide words by typing:

> count(lepraeseq, 3)
aaa aac aag aat aca acc acg act aga agc agg agt ata

→˓atc atg
32093 48714 36319 32592 44777 67449 57326 37409 31957 62473 38946 37470 25030
→˓57245 44268

att caa cac cag cat cca ccc ccg cct cga cgc cgg cgt
→˓cta ctc
32973 52381 64102 64345 43838 64869 46037 87560 38504 78120 82057 89358 57451
→˓29004 39954

ctg ctt gaa gac gag gat gca gcc gcg gct gga ggc ggg
→˓ggt gta
64730 36401 43486 61174 40728 58009 66775 80319 83415 62752 44002 81461 47651
→˓69957 33139
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gtc gtg gtt taa tac tag tat tca tcc tcg tct tga tgc
→˓tgg tgt
60958 65955 50421 21758 32971 29454 25076 48245 43166 78685 31424 49318 67270
→˓67116 45595

tta ttc ttg ttt
22086 43363 54346 32374

There are 61,174 GACs in the sequence.

The total number of 3-nucleotide words is calculated by typing:

> sum(count(lepraeseq,3))
[1] 3268201

Therefore, the observed frequency of GAC is 61174/3268201 = 0.01871794.

To calculate the expected frequency of GAC, first we need to get the number of counts of 1-nucleotide words by
typing:

> count(lepraeseq, 1)
a c g t

687041 938713 950202 692247

The sequence length is 3268203 bp. The frequency of G is 950202/3268203 = 0.2907414. The frequency of A is
687041/3268203 = 0.2102198. The frequency of C is 938713/3268203 = 0.2872260. The expected frequency of
GAC is therefore 0.2907414*0.2102198*0.2872260 = 0.01755514.

The value of Rho is therefore the observed frequency/expected frequency = 0.01871794/0.01755514 = 1.066237.
That, is there are about 1.1 times as many GACs as expected. This means that GAC is slightly over-represented in
this sequence. The difference from 1 is so little however that it might not be statistically significant.

We can search for a function to calculate rho by typing:

> help.search("rho")
base::getHook Functions to Get and Set Hooks for Load,

→˓Attach, Detach and Unload
seqinr::rho Statistical over- and under-

→˓representation of dinucleotides in a sequence
stats::cor.test Test for Association/Correlation Between

→˓Paired Samples
survival::pbc Mayo Clinic Primary Biliary Cirrhosis Dat

There is a function rho in the SeqinR package. For example, we can use it to calculate Rho for words of length 3
in the M. leprae genome by typing:

> rho(lepraeseq, wordsize=3)
aaa aac aag aat aca acc acg act

→˓ aga
1.0570138 1.1742862 0.8649101 1.0653761 1.0793820 1.1899960 0.9991680 0.8949893

→˓0.7610323
agc agg agt ata atc atg att caa

→˓ cac
1.0888781 0.6706048 0.8856096 0.8181874 1.3695545 1.0462815 1.0697245 1.2626819

→˓1.1309452
cag cat cca ccc ccg cct cga cgc

→˓ cgg
1.1215062 1.0487995 1.1444773 0.5944657 1.1169725 0.6742135 1.3615987 1.0467726

→˓1.1261261
cgt cta ctc ctg ctt gaa gac gag

→˓ gat
0.9938162 0.6939044 0.6996033 1.1197319 0.8643241 1.0355868 1.0662370 0.7012887

→˓1.3710523
gca gcc gcg gct gga ggc ggg ggt

→˓ gta
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1.1638601 1.0246015 1.0512300 1.0855155 0.7576632 1.0266049 0.5932565 1.1955191
→˓0.7832457

gtc gtg gtt taa tac tag tat tca
→˓ tcc
1.0544820 1.1271276 1.1827465 0.7112314 0.7888126 0.6961501 0.8135266 1.1542345

→˓0.7558461
tcg tct tga tgc tgg tgt tta ttc

→˓ ttg
1.3611325 0.7461477 1.1656391 1.1636701 1.1469683 1.0695410 0.7165237 1.0296334

→˓1.2748168
ttt

1.0423929

The Rho value for GAC is given as 1.0662370, in agreement with our calculation above.

Sequence Databases

Q1.

What information about the rabies virus sequence (NCBI accession NC_001542) can you obtain from its annota-
tions in the NCBI Sequence Database?

To do this, you need to go to the www.ncbi.nlm.nih.gov website and type the rabies virus genome sequence
accession (NC_001542) in the search box, and press ‘Search’.

On the search results page, you should see ‘1’ beside the word ‘Nucleotide’, meaning that there was one hit to a
sequence record in the NCBI Nucleotide database, which contains DNA and RNA sequences. If you click on the
word ‘Nucleotide’, it will bring you to the sequence record, which should be the NCBI sequence record for the
rabies virus’ genome (ie. for accession NC_001542):
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On the webpage (above), you can see the DEFINITION, ORGANISM and REFERENCE fields of the NCBI
record:

DEFINITION: Rabies virus, complete genome.

ORGANISM: Rabies virus

REFERENCE: There are several papers (the first is): AUTHORS: Tordo,N., Poch,O., Ermine,A., Keith,G. and
Rougeon,F.

TITLE: Completion of the rabies virus genome sequence determination: highly conserved domains among the L
(polymerase) proteins of unsegmented negative-strand RNA viruses

JOURNAL: Virology 165 (2), 565-576 (1988)

There are also some other references, for papers published about the rabies virus genome sequence.

An alternative way of retrieving the annotations for the rabies virus sequence is to use the SeqinR R package. As
the rabies virus is a virus, its genome sequence should be in the “refseqViruses” ACNUC sub-database. Therefore,
we can perform the following query to retrieve the annotations for the rabies virus genome sequence (accession
NC_001542):

> library("seqinr") # load the SeqinR R package
> choosebank("refseqViruses") # select the ACNUC sub-
→˓database to be searched
> query("rabies", "AC=NC_001542") # specify the query
> annots <- getAnnot(rabies$req[[1]]) # retrieve the annotations
> annots[1:20] # print out the first 20 lines
→˓of the annotations
[1] "LOCUS NC_001542 11932 bp ss-RNA linear VRL 08-DEC-

→˓2008"
[2] "DEFINITION Rabies virus, complete genome."
[3] "ACCESSION NC_001542"
[4] "VERSION NC_001542.1 GI:9627197"
[5] "DBLINK Project: 15144"
[6] "KEYWORDS ."
[7] "SOURCE Rabies virus"
[8] " ORGANISM Rabies virus"
[9] " Viruses; ssRNA negative-strand viruses; Mononegavirales;"
[10] " Rhabdoviridae; Lyssavirus."
[11] "REFERENCE 1 (bases 5388 to 11932)"
[12] " AUTHORS Tordo,N., Poch,O., Ermine,A., Keith,G. and Rougeon,F."
[13] " TITLE Completion of the rabies virus genome sequence determination:"
[14] " highly conserved domains among the L (polymerase) proteins of"
[15] " unsegmented negative-strand RNA viruses"
[16] " JOURNAL Virology 165 (2), 565-576 (1988)"
[17] " PUBMED 3407152"
[18] "REFERENCE 2 (bases 1 to 5500)"
[19] " AUTHORS Tordo,N., Poch,O., Ermine,A., Keith,G. and Rougeon,F."
[20] " TITLE Walking along the rabies genome: is the large G-L intergenic

→˓region"
> closebank()

Q2.

How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the NCBI Sequence
Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov and select “Nucleotide” from the drop-down list at the
top of the webpage, as you want to search for nucleotide (DNA or RNA) sequences.

Then in the search box, type “Chlamydia trachomatis”[ORGN] and press ‘Search’:
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Here [ORGN] specifies the organism you are interested in, that is, the species name in Latin.

The results page should give you a list of the hits to sequence records in the NCBI Nucleotide database:

It will say “Found 35577 nucleotide sequences. Nucleotide (35429) GSS (148)”. This means that 35,577 se-
quences were found, of which 35429 are DNA or RNA sequences, and 148 are DNA sequences from the Genome
Sequence Surveys (GSS), that is, from genome sequencing projects [as of 15-Jun-2011]. Note that there are new
sequences being added to the database continuously, so if you check this again in a couple of months, you will
probably find a higher number of sequences (eg. 36,000 sequences).

Note: if you just go to the www.ncbi.nlm.nih.gov database, and search for “Chlamydia trachomatis”[ORGN]
(without choosing “Nucleotide” from the drop-down list), you will see 35429 hits to the Nucleotide database and
148 to the GSS (Genome Sequence Survey) database:
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Note also that if you search for “Chlamydia trachomatis”, without using [ORGN] to specify the organism, you
will get 56032 hits to the Nucleotide database and 149 to the GSS database, but some of these might not be
Chlamydia trachomatis sequences - some could be sequences from other species for which the NCBI sequence
record contains the phrase “Chlamydia trachomatis” somewhere.

An alternative way to search for nucleotide sequences from the bacterium Chlamydia trachomatis is to use the
SeqinR package. We want to find nucleotide sequences, so the correct ACNUC sub-database to search is the
“genbank” sub-database. Thus, we can carry out our search by typing:

> library("seqinr") # load the SeqinR R package
> choosebank("genbank") # select the ACNUC sub-
→˓database to be searched
> query("Ctrachomatis", "SP=Chlamydia trachomatis") # specify the query
> Ctrachomatis$nelem # print out the number of
→˓matching sequences
[1] 35471

> closebank()

We find 35,471 nucleotide sequences from Chlamydia trachomatis. We do not get exactly the same number
of sequences as we got when we searched via the NCBI website (35,577 sequences), but the numbers are very
close. The likely reasons for the differences could be that the ACNUC “genbank” sub-database excludes some
sequences from whole genome sequencing projects from the NCBI Nucleotide database, and in addition, the
ACNUC databases are updated very regularly, but may be missing a few sequences that were added to the NCBI
database in the last day or two.

Q3.

How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the RefSeq part of the
NCBI Sequence Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov and select “Nucleotide” from the drop-down list at the
top of the webpage, as you want to search for nucleotide sequences.

Then in the search box, type “Chlamydia trachomatis”[ORGN] AND srcdb_refseq[PROP] and press ‘Search’:
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Here [ORGN] specifies the organism, and [PROP] specifies a property of the sequences (in this case that they
belong to the RefSeq subsection of the NCBI database).

At the top of the results page, it should say “Results: 1 to 20 of 29 sequences”, so there were 29 matching
sequences [as of 15-Jun-2011]. As for Q2, if you try this again in a couple of months, the number will probably
be higher, due to extra sequences added to the database.

Note that the sequences in Q2 are all Chlamydia trachomatis DNA and RNA sequences in the NCBI database.
The sequences in Q3 gives the Chlamydia trachomatis DNA and RNA sequences in the RefSeq part of the NCBI
database, which is a subsection of the database for high-quality manually-curated data.

The number of sequences in RefSeq is much fewer than the total number of C. trachomatis sequences, partly
because low quality sequences are never added to RefSeq, but also because RefSeq curators have probably not
had time to add all high-quality sequences to RefSeq (this is a time-consuming process, as the curators add
additional information to the NCBI Sequence records in RefSeq, such as references to papers that discuss a
particular sequence).

An alternative way to search for nucleotide sequences from the bacterium Chlamydia trachomatis in RefSeq use
the SeqinR package. We want to find RefSeq sequences, so the correct ACNUC sub-database to search is the
“refseq” sub-database. Thus, we can carry out our search by typing:

> library("seqinr") # load the SeqinR R package
> choosebank("refseq") # select the ACNUC sub-
→˓database to be searched
> query("Ctrachomatis2", "SP=Chlamydia trachomatis") # specify the query
> Ctrachomatis2$nelem # print out the number of
→˓matching sequences
[1] 1

> closebank()

We find 1 RefSeq sequence from Chlamydia trachomatis. We do not get exactly the same number of sequences as
we got when we searched via the NCBI website (29 sequences). This is because the 29 sequences found via the
NCBI website include whole genome sequences, but the whole genome sequences from bacteria are stored in the
ACNUC “bacterial” sub-database, and so are not in the ACNUC “refseq” sub-database.

Q4.

How many nucleotide sequences were submitted to NCBI by Matthew Berriman?

To answer this, you need to go to www.ncbi.nlm.nih.gov, and select “Nucleotide” from the drop-down list, as you
want to search for nucleotide sequences.

Then in the search box, type “Berriman M”[AU] and press ‘Search’.

Here [AU] specifies the name of the person who either submitted the sequence to the NCBI database, or wrote a
paper describing the sequence.

The results page should look like this:

1.13. Answers to the End-of-chapter Exercises 139

http://www.ncbi.nlm.nih.gov


A Little Book of R For Bioinformatics, Release 0.1

On the top of the results page, it says [as of 15-Jun-2011]: “Found 487270 nucleotide sequences. Nucleotide
(277546) EST (121075) GSS (88649)”. This means that 487270 DNA/RNA sequences were either submitted to
the NCBI database by someone called M. Berriman, or were described in a paper by someone called M. Berriman.
Of these, 277546 were DNA/RNA sequences, 121075 were EST sequences (part of mRNAs), and 88649 were
DNA sequences from genome sequencing projects (GSS or Genome Sequence Survey sequences).

Note that unfortunately the NCBI website does not allow us to search for “Berriman Matthew”[AU] so we cannot
be sure that all of these sequences were submitted by Matthew Berriman.

Note also that the search above will find sequences that were either submitted to the NCBI database by M. Berri-
man, or described in a paper on which M. Berriman was an author. Therefore, not all of the sequences found were
necessarily submitted by M. Berriman.

An alternative way to search for nucleotide sequences submitted by M. Berriman is to use the SeqinR package. We
want to find nucleotide sequences, so the appropriate ACNUC sub-database to search is “genbank”. Therefore,
we type:

> library("seqinr") # load the SeqinR R package
> choosebank("genbank") # select the ACNUC sub-database to be searched
> query("mberriman", "AU=Berriman") # specify the query
> mberriman$nelem # print out the number of matching sequences
[1] 169701

> closebank()

We find 169,701 matching sequences. This is less than the number found by searching via the NCBI website
(487,270 sequences). The difference is probably due to the fact that the “genbank” ACNUC sub-database excludes
some sequences from the NCBI Nucleotide database (eg. short sequences from genome sequencing projects).

Note that the “AU=Berriman” query will find sequences submitted or published by someone called Berriman. We
are not able to specify the initial of the first name of this person using the “query()” command, so we cannot
specify that the person is called “M. Berriman”.
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Q5.

How many nucleotide sequences from the nematode worms are there in the RefSeq Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov and select “Nucleotide” from the drop-down list, as you
want to search for nucleotide sequences.

Then in the search box, type Nematoda[ORGN] AND srcdb_refseq[PROP] and press ‘Search’.

Here [ORGN] specifies the group of species that you want to search for sequences from. In Q3, [ORGN] was
used to specify the name of one organism (Chlamydia trachomatis). However, you can also use [ORGN] to
specify the name of a group of organisms, for example, Fungi[ORGN] would search for fungal sequences or
Mammalia[ORGN] would search for mammalian sequences. The name of the group of species that you want
to search for must be given in Latin, so to search for sequences from nematode worms we use the Latin name
Nematoda.

The search page should say at the top ‘Results: 1 to 20 of 145355’ [as of 15-Jun-2011]. This means that 145,355
DNA or RNA sequences were found from nematode worm species in the RefSeq database. These sequences are
probably from a wide range of nematode worm species, including the model nematode worm Caenorhabditis
elegans, as well as parasitic nematode species.

An alternative way to search for RefSeq nucleotide sequences from nematode worms is to use the SeqinR package.
We want to find nucleotide sequences that are in RefSeq, so the appropriate ACNUC sub-database to search is
“refseq”. Therefore, we type:

> library("seqinr") # load the SeqinR R package
> choosebank("refseq") # select the ACNUC sub-database to be searched
> query("nematodes", "SP=Nematoda") # specify the query
> nematodes$nelem # print out the number of matching sequences
[1] 55241

> closebank()

That is, using SeqinR, we find 55,241 DNA or RNA sequences from nematode worms in the RefSeq database.
This is less than the number of sequences found by searching via the NCBI website (145,355 sequences). This is
because the “refseq” ACNUC sub-database does not contain all of the sequences in the NCBI RefSeq database, for
various reasons, for example, some of the sequences in the NCBI RefSeq database (eg. whole genome sequences)
are in other ACNUC sub-databases.

Q6.

How many nucleotide sequences for collagen genes from nematode worms are there in the NCBI Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov and select “Nucleotide” from the drop-down list, as you
want to search for nucleotide sequences.

Then in the search box, type Nematoda[ORGN] AND collagen.

Here [ORGN] specifies that we want sequences from nematode worms. The phrase “AND collagen” means that
the word collagen must appear somewhere in the NCBI entries for those sequences, for example, in the sequence
name, or in a description of the sequence, or in the title of a paper describing the sequence, etc.

On the results page, you should see ‘Found 8437 nucleotide sequences. Nucleotide (1642) EST (6795)’ [as of
15-Jun-2011]. This means that 8437 DNA or RNA sequences for collagen genes from nematode worms were
found, of which 6795 are EST sequences (parts of mRNAs). Note that these 8437 nucleotide sequences may not
all necessarily be for collagen genes, as some of the NCBI records found may be for other genes but contain the
word “collagen” somewhere in the NCBI record (for example, in the title of a cited paper). However, a good
number of them are probably collagen sequences from nematodes.

An alternative way to search for collagen nucleotide sequences from nematode worms is to use the SeqinR pack-
age. We want to find nucleotide sequences, so the appropriate ACNUC sub-database to search is “genbank”. To
search for collagen genes, we can specify “collagen” as a keyword by using “K=collagen” in our query. Therefore,
we type:
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> library("seqinr") # load the SeqinR R package
> choosebank("genbank") # select the ACNUC sub-database
→˓to be searched
> query("collagen", "SP=Nematoda AND K=collagen") # specify the query
> collagen$nelem # print out the number of
→˓matching sequences
[1] 60

> closebank()

That is, using SeqinR, we find 60 DNA or RNA sequences with the keyword “collagen” from nematode worms.
This is less than the number of sequences found by searching via the NCBI website (8437 sequences). This is
probably partly because the ACNUC “genbank” sub-database excludes some sequences that are in the NCBI Nu-
cleotide database (eg. short sequences from genome sequencing projects), but also partly because the method
used to assign keywords to sequences in ACNUC is quite conservative and relatively few sequences seem to be
assigned the keyword “collagen”. However, presumably most of the sequences tagged with the keyword “colla-
gen” are collagen genes (while the search via the NCBI website may have picked up many non-collagen genes, as
explained above).

Q7.

How many mRNA sequences for collagen genes from nematode worms are there in the NCBI Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov, and select “Nucleotide” from the drop-down sequences,
as you want to search for nucleotide sequences (nucleotide sequences include DNA sequences and RNA se-
quences, such as mRNAs).

Then in the search box, type Nematoda[ORGN] AND collagen AND “biomol mRNA”[PROP].

Here [ORGN] specifies the name of the group of species, collagen specifies that we want to find NCBI entries
that include the word collagen, and [PROP] specifies a property of those sequences (that they are mRNAs, in this
case).

The search page should say ‘Found 7751 nucleotide sequences. Nucleotide (956) EST (6795)’ [as of 15-Jun-
2011]. This means that 7751 mRNA sequences from nematodes were found that contain the word ‘collagen’ in
the NCBI record. Of the 7751, 6795 are EST sequences (parts of mRNAs).

Note that in Q6 we found 8437 nucleotide (DNA or RNA) sequences from nematode worms. In this question, we
found out that only 7751 of those sequences are mRNA sequences. This means that the other (8437-7751=) 686
sequences must be DNA sequences, or other types of RNA sequences (not mRNAs) such as tRNAs or rRNAs.

An alternative way to search for collagen mRNA sequences from nematode worms is to use the SeqinR package.
mRNA sequences are nucleotide sequences, so the appropriate ACNUC sub-database to search is “genbank”. To
search for mRNAs, we can specify “M=mRNA” in our query. Therefore, we type:

> library("seqinr") # load the SeqinR R
→˓package
> choosebank("genbank") # select the ACNUC
→˓sub-database to be searched
> query("collagen2", "SP=Nematoda AND K=collagen AND M=mRNA") # specify the query
> collagen2$nelem # print out the
→˓number of matching sequences
[1] 14

> closebank()

We find 14 nematode mRNA sequences labelled with the keyword “collagen”. Again, we find less sequences than
found when searching via the NCBI website (7751 sequences), but as in Q6, the search using the keyword “col-
lagen” in the SeqinR package may be more likely to pick up true collagen sequences (rather than other sequences
that just happen to contain the word “collagen” somewhere in their NCBI entries).
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Q8.

How many protein sequences for collagen proteins from nematode worms are there in the NCBI database?

To answer this, you need to go to www.ncbi.nlm.nih.gov, and select “Protein” from the drop-down list, as you
want to search for protein sequences.

Then type in the search box: Nematoda[ORGN] AND collagen and press ‘Search’:

On the results page, you should see ‘1 to 20 of 1982’. This means that 1982 protein sequences from nematode
worms were found that include the word collagen in the NCBI sequence entries [as of 15-Jun-2011].

As far as I know, there is not an ACNUC sub-database that contains all the protein sequences from the NCBI
Protein database, and therefore it is not currently possible to carry out the same query using SeqinR.

Q9.

What is the accession number for the Trypanosoma cruzi genome in NCBI?

There are two ways that you can answer this.

The first method is to go to www.ncbi.nlm.nih.gov and select “Genome” from the drop-down list, as you want to
search for genome sequences.

Then type in the search box: “Trypanosoma cruzi”[ORGN] and press ‘Search’:

This will search the NCBI Genome database, which contains fully sequenced genome sequences.

The results page says ‘All:1’, and lists just one NCBI record, the genome sequence for Trypanosoma cruzi strain
CL Brener, which has accession NZ_AAHK00000000:

The second method of answering the question is to go directly to the NCBI Genomes webpage.
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Click on the ‘Eukaryota’ link at the middle the page, as Trypanosoma cruzi is a eukaryotic species.

This will give you a complete list of all the eukaryotic genomes that have been fully sequenced.

Go to the ‘Edit’ menu of your web browser, and choose ‘Find’, and search for ‘Trypanosoma cruzi’:

You should find Trypanosoma cruzi strain CL Brener. You will also find that there are several ongoing genome
sequencing projects listed for other strains of Trypanosoma cruzi: strains JR cl. 4, Sylvio X10/1, Y, and Esmeraldo
Esmeraldo cl. 3.

If you look 7th column of the table, you will see that it says “Assembly” for strains CL Brener and Sylvio X10/1,
meaning that genome assemblies are available for these two strains. Presumably the other strains are still being
sequenced, and genome assemblies are not yet available.

The link ‘GB’ (in green) at the far right of the webpage gives a link to the NCBI record for the sequence. In this
case, the link for Trypanosoma cruzi strain CL Brener leads us to the NCBI record for accession AAHK01000000.
This is actually an accession for the T. cruzi strain CL Brener sequencing project, rather than for the genome
sequence itself. On the top right of the page, you will see a link “Genome”, and if you click on it, it will bring you
to the NCBI accession NZ_AAHK00000000, the genome sequence for Trypanosoma cruzi strain CL Brener.

Of the other T. cruzi strains listed, there is only a ‘GB’ link for one other strain, Sylvio X10/1. If you click
on the link for Trypanosoma cruzi strain Sylvio X10/1, it will bring you to the NCBI record for accession
ADWP01000000, the accession for the T. cruzi strain Sylvio X10/1 sequencing project.

Note that the answer is slightly different for the answer from the first method above, which did not find the
information on the genome projects for strains JR cl. 4, Sylvio X10/1, Y, and Esmeraldo Esmeraldo cl. 3, because
the sequencing projects for these species are still ongoing.

Q10.

How many fully sequenced nematode worm species are represented in the NCBI Genome database?

To answer this question, you need to go to the NCBI Genome webpage.

In the search box at the top of the page, type Nematoda[ORGN] to search for genome sequences from nematode
worms, using the Latin name for the nematode worms.

On the results page, you will see ‘Items 1 - 20 of 63’, indicating that 63 genome sequences from nematode worms
have been found. If you look down the page, you will see however that many of these are mitochondrial genome
sequences, rather than chromosomal genome sequences.

If you are just interested in chromosomal genome sequences, you can type ‘Nematoda[ORGN] NOT mitochon-
drion’ in the search box, to search for non-mitochondrial sequences. This should give you 16 sequences, which
are all chromosomal genome sequences for nematode worms, including the species Caenorhabditis elegans,
Caenorhabditis remanei, Caenorhabditis briggsae, Loa loa (which causes subcutaneous filariasis), and Brugia
malayi (which causes lymphatic filariasis).
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Thus, there are nematode genome sequences from five different species that have been fully sequenced (as of
15-Jun-2011). Because nematode worms are multi-chromosomal species, there may be several chromosomal
sequences for each species.

Note that when you search the NCBI Genome database, you will find the NCBI records for completely sequenced
genomes (completely sequenced nematode genomes in this case).

If you are interested in partially sequenced genomes, that is sequences from genome sequencing projects that are
still in progress, you can go to the NCBI Genome Projects website. If you search the NCBI Genome Projects
database for Nematoda[ORGN], you will find that genome sequencing projects for many other nematode species
are ongoing, including for the species Onchocerca volvulus (which causes onchocerciasis), Wuchereria bancrofti
(which causes lymphatic filariasis), and Necator americanus (which causes soil-transmitted helminthiasis).

Sequence Alignment

Q1.

Download FASTA-format files of the Brugia malayi Vab-3 protein (UniProt accession A8PZ80) and the Loa loa
Vab-3 protein (UniProt accession E1FTG0) sequences from UniProt.

We can use SeqinR to retrieve these sequences by typing:

> library("seqinr") # load the SeqinR package
> choosebank("swissprot") # select the ACNUC sub-database to
→˓be searched
> query("brugia", "AC=A8PZ80") # search for the Brugia sequence
> brugiaseq <- getSequence(brugia$req[[1]]) # get the Brugia sequence
> query("loa", "AC=E1FTG0") # search for the Loa sequence
> loaseq <- getSequence(loa$req[[1]]) # get the Loa sequence
> closebank() # close the connection to the ACNUC
→˓sub-database

Q2.

What is the alignment score for the optimal global alignment between the Brugia malayi Vab-3 protein and the
Loa loa Vab-3 protein, when you use the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap
extension penalty of -0.5?

We can use the Biostrings R package to answer this, by typing:

> library("Biostrings") # load the Biostrings package
> data(BLOSUM50) # load the BLOSUM50 scoring matrix
> brugiaseqstring <- c2s(brugiaseq) # convert the Brugia sequence to a
→˓string
> loaseqstring <- c2s(loaseq) # convert the Loa sequence to a
→˓string
> brugiaseqstring <- toupper(brugiaseqstring) # convert the Brugia sequence to
→˓uppercase
> loaseqstring <- toupper(loaseqstring) # convert the Loa sequence to a
→˓string
> myglobalAlign <- pairwiseAlignment(brugiaseqstring, loaseqstring,
→˓substitutionMatrix = "BLOSUM50",
gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two

→˓sequences
> myglobalAlign

Global PairwiseAlignedFixedSubject (1 of 1)
pattern: [1] MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKI...

→˓IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSA
subject: [1] SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKI...

→˓IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSV
score: 777.5
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The alignment score is 777.5.

Q3.

Use the printPairwiseAlignment() function to view the optimal global alignment between Brugia malayi Vab-3
protein and the Loa loa Vab-3 protein, using the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a
gap extension penalty of -0.5.

To do this, first you must copy and paste the printPairwiseAlignment() function into R.

Then you can use it to view the alignment that you obtained in Q2:

> printPairwiseAlignment(myglobalAlign)
[1] "MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 58"
[1] "SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 60"
[1] " "
[1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 118"
[1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 120"
[1] " "
[1] "DTIPSA 178"
[1] "DTIPSV 180"
[1] " "

The two proteins are very similar over their whole lengths, with few gaps and mostly identities (few mismatches).

Q4.

What global alignment score do you get for the two Vab-3 proteins, when you use the BLOSUM62 alignment
matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?

Again, we can use the Biostrings R package to answer this, by typing:

> data(BLOSUM62) # load the BLOSUM62 scoring matrix
> myglobalAlign2 <- pairwiseAlignment(brugiaseqstring, loaseqstring,
→˓substitutionMatrix = "BLOSUM62",
gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two

→˓sequences
> myglobalAlign2

Global PairwiseAlignedFixedSubject (1 of 1)
pattern: [1] MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKI...

→˓IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSA
subject: [1] SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKI...

→˓IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSV
score: 593.5

The alignment score when BLOSUM62 is used is 593.5, while the score when BLOSUM50 is used is 777.5 (from
Q2).

We can print out the alignment and see if the alignment made using BLOSUM62 is different from that when
BLOSUM50 is used:

> printPairwiseAlignment(myglobalAlign2)
[1] "MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 58"
[1] "SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 60"
[1] " "
[1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 118"
[1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 120"
[1] " "
[1] "DTIPSA 178"
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[1] "DTIPSV 180"
[1] " "

The alignment made using BLOSUM62 is actually the same as that made using BLOSUM50, so it doesn’t matter
which scoring matrix we use in this case.

Q5.

What is the statistical significance of the optimal global alignment for the Brugia malayi and Loa loa Vab-3
proteins made using the BLOSUM50 scoring matrix, with a gap opening penalty of -10 and a gap extension
penalty of -0.5?

To answer this, we can first make 1000 random sequences using a multinomial model in which the probabilities
of the 20 amino acids are set equal to their frequencies in the Brugia malayi Vab-3 protein.

First you need to first copy and paste the generateSeqsWithMultinomialModel() function into R, and then you can
use it as follows:

> randomseqs <- generateSeqsWithMultinomialModel(brugiaseqstring,1000)

This makes a vector randomseqs, containing 1000 random sequences, each of the same length as the Brugia malayi
Vab-3 protein.

We can then align each of the 1000 random sequences to the Loa loa Vab-3 protein, and store the scores for each
of the 1000 alignments in a vector randomscores:

> randomscores <- double(1000) # Create a numeric vector with 1000 elements
> for (i in 1:1000)
{

score <- pairwiseAlignment(loaseqstring, randomseqs[i], substitutionMatrix =
→˓"BLOSUM50",

gapOpening = -9.5, gapExtension = -0.5, scoreOnly = TRUE)
randomscores[i] <- score

}

The score for aligning the Brugia malayi and Loa loa Vab-3 proteins using BLOSUM50 with a gap opening
penalty of -10 and gap extension penalty of -0.5 was 777.5 (from Q2).

We can see what fraction of the 1000 alignments between the random sequences (of the same composition as
Brugia malayi Vab-3) and Loa loa Vab-3 had scores equal to or higher than 777.5:

> sum(randomscores >= 777.5)
[1] 0

We see that none of the 1000 alignments had scores equal to or higher than 777.5.

Thus, the p-value for the alignment of Brugia malayi and Loa loa Vab-3 proteins is 0, and we can therefore
conclude that the alignment score is statistically significant (as it is less than 0.05). Therefore, it is very likely that
the Brugia malayi Vab-3 and Loa loa Vab-3 proteins are homologous (related).

Q6.

What is the optimal global alignment score between the Brugia malayi Vab-6 protein and the Mycobacterium
leprae chorismate lyase protein?

To calculate the optimal global alignment score, we must first retrieve the M. leprae chorismate lyase sequence:

> choosebank("swissprot")
> query("leprae", "AC=Q9CD83")
> lepraeseq <- getSequence(leprae$req[[1]])
> closebank()
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> lepraeseqstring <- c2s(lepraeseq)
> lepraeseqstring <- toupper(lepraeseqstring)

We can then align the Brugia malayi Vab-3 protein sequence to the M. leprae chorismate lyase sequence:

> myglobalAlign3 <- pairwiseAlignment(brugiaseqstring, lepraeseqstring,
→˓substitutionMatrix = "BLOSUM50",
gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two

→˓sequences
> myglobalAlign3

Global PairwiseAlignedFixedSubject (1 of 1)
pattern: [1] M-----------------KLIVDSGHTGVNQLGGV...------INYAKQNNNLL----DRFILP---

→˓FSKL
subject: [1] MTNRTLSREEIRKLDRDLRILVATNGT-LTRVLNV...

→˓DTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL
score: 67.5

The alignment score is 67.5.

We can print out the alignment as follows:

> printPairwiseAlignment(myglobalAlign3)
[1] "M-----------------KLIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARP 43"
[1] "MTNRTLSREEIRKLDRDLRILVATNGT-LTRVLNVVANEEIVVDIINQQLLDVA-----P 54"
[1] " "
[1] "-------CDISRILQ---VSNGCVSKILCRYYESGTI---RPRAIGG-----SKPRVATV 85"
[1] "KIPELENLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHP-IGEI 113"
[1] " "
[1] "SVCDKIESYKREQ-------PSIFA----WEIRDKLLHEKVCSPDTIPSAVV-------- 126"
[1] "MAASRIETYKEDAQVWIGDLPCWLADYGYWDL---------------PKRAVGRRYRIIA 158"
[1] " "
[1] "--EAIIV-----------------INYAKQNNNLL----DRFILP---FSKL 160"
[1] "GGQPVIITTEYFLRSVFQDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL 218"
[1] " "

The alignment does not look very good, it contains many gaps and mismatches and few matches.

In Q5, we made a vector randomseqs that contains 1000 random sequences generated using a multinomial model
in which the probabilities of the 20 amino acids are set equal to their frequencies in the Brugia malayi Vab-3
protein.

To calculate a statistical significance for the alignment between Brugia malayi Vab-3 and M. leprae chorismate
lyase, we can calculate the alignment scores for the 1000 random sequences to M. leprae chorismate lyase:

> randomscores <- double(1000) # Create a numeric vector with 1000 elements
> for (i in 1:1000)
{

score <- pairwiseAlignment(lepraeseqstring, randomseqs[i], substitutionMatrix
→˓= "BLOSUM50",

gapOpening = -9.5, gapExtension = -0.5, scoreOnly = TRUE)
randomscores[i] <- score

}

We can then see how many of the 1000 alignment score exceed the actual alignment score for B. malayi Vab-3
and M. leprae chorismate lyase (67.5):

> sum(randomscores >= 67.5)
[1] 22

We see that 22 of the 1000 scores for the 1000 random sequences to M. leprae chorismate lyase are higher than
the actual alignment score of 67.5. Therefore the P-value for the alignment score is 22/1000 = 0.022. This is just
under 0.05, and so is quite near to the general cutoff for statistical significance (0.05). However, in fact it is close
enough to 0.05 that we should have some doubt about whether the alignment is statistically significant.
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In fact, the B. malayi Vab-3 and M. leprae chorismate lyase proteins are not known to be homologous (related),
and so it is likely that the relatively high alignment score (67.5) is just due to chance alone.

Multiple Alignment and Phylogenetic Trees

Q1.

Calculate the genetic distances between the following NS1 proteins from different Dengue virus strains: Dengue
virus 1 NS1 protein (Uniprot Q9YRR4), Dengue virus 2 NS1 protein (UniProt Q9YP96), Dengue virus 3 NS1
protein (UniProt B0LSS3), and Dengue virus 4 NS1 protein (UniProt Q6TFL5). Which are the most closely
related proteins, and which are the least closely related, based on the genetic distances?

To retrieve the sequences of the four proteins, we can use the retrieveseqs() function in R, to retrieve the sequences
from the “swissprot” ACNUC sub-database:

> library("seqinr") # Load the SeqinR package
> seqnames <- c("Q9YRR4", "Q9YP96", "B0LSS3", "Q6TFL5") # Make a vector
→˓containing the names of the sequences
> seqs <- retrieveseqs(seqnames,"swissprot") # Retrieve the sequences
→˓and store them in list variable "seqs"

We then can write out the sequences to a FASTA-format file called “NS1.fasta”, by typing:

> write.fasta(seqs, seqnames, file="NS1.fasta")

We can then use the CLUSTAL software to make a multiple alignment of the protein sequences in NS1.fasta, and
store it in a PHYLIP-format alignment file called “NS1.phy”, as described in the chapter.

The next step is to read the PHYLIP-format alignment into R, and calculate the genetic distances between the
protein sequences, by typing:

> NS1aln <- read.alignment(file = "NS1.phy", format = "phylip")
> NS1dist <- dist.alignment(NS1aln)
> NS1dist

Q9YRR4 Q9YP96 B0LSS3
Q9YP96 0.2544567
B0LSS3 0.2302831 0.2268713
Q6TFL5 0.3058189 0.3328595 0.2970443

We see that the two sequences with the greatest genetic distance are Q6TFL5 (Dengue virus 4 NS1) and Q9YP96
(Dengue virus 2 NS1), which have a genetic distance of about 0.33. The two sequences with the smallest genetic
distance are Q9YRR4 (Dengue virus 1 NS1) and B0LSS3 (Dengue virus 3 NS1), which have a genetic distance
of about 0.23.

Q2.

Build an unrooted phylogenetic tree of the NS1 proteins from Dengue virus 1, Dengue virus 2, Dengue virus 3 and
Dengue virus 4, using the neighbour-joining algorithm. Which are the most closely related proteins, based on the
tree? Based on the bootstrap values in the tree, how confident are you of this?

We can build an unrooted phylogenetic tree of the NS1 proteins using the neighbour-joining algorithm by typing:

> NS1alntree <- unrootedNJtree(NS1aln,type="protein")
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We see in the tree that Q6TFL5 (Dengue virus 4 NS1) and Q9YRR4 (Dengue virus 1 NS1) are grouped together,
with a bootstrap value of 100%, which is a high bootstrap value, so we are reasonably confident of this grouping.

The other two proteins, B0LSS3 (Dengue virus 3 NS1) and Q9YP96 (Dengue virus 2 NS1) are grouped together,
but the bootstrap value for the node representing the ancestor of this clade is just 19%.

One thing that is surprising is that Q6TFL5 and Q9YRR4 were not the two closest proteins when we calculated
the genetic distance (in Q1), and we should bear this in mind, as it should make us a little bit cautious in trusting
this phylogenetic tree.

Q3.

Build an unrooted phylogenetic tree of the NS1 proteins from Dengue viruses 1-4, based on a filtered alignment of
the four proteins (keeping alignment columns in which at least 30% of letters are not gaps, and in which at least
30% of pairs of letters are identical). Does this differ from the tree based on the unfiltered alignment (in Q2)?
Can you explain why?

To filter the alignment of the NS1 proteins, we can use the “cleanAlignment()” function:

> cleanedNS1aln <- cleanAlignment(NS1aln, 30, 30)

We can then build an unrooted tree based on the filtered alignment:

> cleanedNS1alntree <- unrootedNJtree(cleanedNS1aln,type="protein")
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We find that B0LSS3 (Dengue virus 3 NS1) and Q9YRR4 (Dengue virus 1 NS1) are grouped together with
bootstrap of 100%. This disagrees with what we found in the phylogenetic tree based on the unfiltered alignment
(in Q2), in which B0LSS3 was grouped with Q9YP96. However, it agrees with what we found when we calculated
the genetic distance matrix (in Q1), which suggested that B0LSS3 is most closely related to Q9YRR4.

Why do the filtered and unfiltered alignments disagree? To find out, it is a good idea to print out both alignments:

> printMultipleAlignment(NS1aln)
[1] "------------------------------------------------------------ 0"
[1] "DSGCVVSWKNKELKCGSGIFITDNVHTWTEQYKFQPESPSKLASAIQKAQEEGICGIRSV 60"
[1] "------------------------------------------------------------ 0"
[1] "DMGCVVSWNGKELKCGSGIFVIDNVHTRTEQYKFQPESPARLASAILNAHKDGVCGVRST 60"
[1] " "
[1] "------------------------------------------------------------ 0"
[1] "TRLENLMWKQITPELNHILSENEVKLTIMTGDIKGIMQAGKRSLRPQPTELKYSWKAWGK 120"
[1] "------------------------------------------------------------ 0"
[1] "TRLENVMWKQITNELNYVLWEGGHDLTVVAGDVKGVLTEGKRALTPPVNDLKYSWKTWGK 120"
[1] " "
[1] "------------------------------------------------------------ 0"
[1] "AKMLSTESHNQTFLIDGPETAECPNTNRAWNSLEVEDYGFGVFTTNIWLKLKEKQDAFCD 180"
[1] "------------------------------------------------------------ 0"
[1] "AKIFTLEARNSTFLIDGPDTSECPNERRAWNFLEVEDYGFGMFTTNIWMKFREGSSEVCD 180"
[1] " "
[1] "----------------DMGYWIESEKNETWKLARASFIEVKTCIWPKSHTLWSNGVWESE 44"
[1] "SKLMSAAIKDNRAVHADMGYWIESALNDTWKIEKASFIEVKNCHWPKSHTLWSNGVLESE 240"
[1] "------------ASHADMGYWIESQKNGSWKLEKASLIEVKTCTWPKSHTLWSNGVLESD 48"
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[1] "HRLMSAAIKDQKAVHADMGYWIESSKNQTWQIEKASLIEVKTCLWPKTHTLWSNGVLESQ 240"
[1] " "
[1] "MIIPKIYGGPISQHNYRPGYFTQTAGPWHLGKLELDFDLCEGTTVVVDEHCGNRGPSLRT 104"
[1] "MIIPKNFAGPVSQHNYRPGYHTQIAGPWHLGKLEMDFDFCDGTTVVVTEDCGNRGPSLRT 300"
[1] "MIIPKSLAGPISQHNYRPGYHTQTAGPWHLGKLELDFNYCEGTTVVITENCGTRGPSLRT 108"
[1] "MLIPRSYAGPFSQHNYRQGYATQTMGPWHLGKLEINFGECPGTTVAIQEDCGHRGPSLRT 300"
[1] " "
[1] "TTVTGKIIHEWCCRFCTLPPLRFRGEDGCWYGMEI----------------- 147"
[1] "TTASGKLITEWCCRSCTLPPLRYRGEDGCWYGMEIRPLKEKEENLVNSLVTA 360"
[1] "TTVSGKLIHEWCCRSCTLPPLRYMGEDG------------------------ 144"
[1] "TTASGKLVTQWCCRSCAMPPLRFLGEDGCWYGMEIRPLSEKEENMVKSQVTA 360"
[1] " "

We can see that the unfiltered (original) alignment (above) contains a lot of columns with gaps in them. This could
possibly be adding noise to the phylogenetic analysis.

Let’s print out the filtered alignment now:

> printMultipleAlignment(cleanedNS1aln)
[1] "------------------------------------------------------------ 0"
[1] "DGCVVSWKELKCGSGIFDNVHTTEQYKFQPESPLASAIAGCGRSTRLENMWKQITELNLE 60"
[1] "------------------------------------------------------------ 0"
[1] "DGCVVSWKELKCGSGIFDNVHTTEQYKFQPESPLASAIAGCGRSTRLENMWKQITELNLE 60"
[1] " "
[1] "------------------------------------------------------------ 0"
[1] "LTGDKGGKRLPLKYSWKWGKAKENTFLIDGPTECPNRAWNLEVEDYGFGFTTNIWKECDL 120"
[1] "------------------------------------------------------------ 0"
[1] "LTGDKGGKRLPLKYSWKWGKAKENTFLIDGPTECPNRAWNLEVEDYGFGFTTNIWKECDL 120"
[1] " "
[1] "-----------DMGYWIESKNTWKLARASFIEVKTCWPKSHTLWSNGVWESMIIPKGGPS 49"
[1] "MSAAIKDAVHADMGYWIESLNTWKIEKASFIEVKNCWPKSHTLWSNGVLESMIIPKAGPS 180"
[1] "-------ASHADMGYWIESKNSWKLEKASLIEVKTCWPKSHTLWSNGVLESMIIPKAGPS 53"
[1] "MSAAIKDAVHADMGYWIESKNTWQIEKASLIEVKTCWPKTHTLWSNGVLESMLIPRAGPS 180"
[1] " "
[1] "QHNYRPGYTQTAGPWHLGKLEDFCGTTVVVECGRGPSLRTTTVTGKIIHEWCCRFCTLPP 109"
[1] "QHNYRPGYTQIAGPWHLGKLEDFCGTTVVVECGRGPSLRTTTASGKLITEWCCRSCTLPP 240"
[1] "QHNYRPGYTQTAGPWHLGKLEDFCGTTVVIECGRGPSLRTTTVSGKLIHEWCCRSCTLPP 113"
[1] "QHNYRQGYTQTMGPWHLGKLENFCGTTVAIECGRGPSLRTTTASGKLVTQWCCRSCAMPP 240"
[1] " "
[1] "LRFGEDGCWYGMEI------------- 156"
[1] "LRYGEDGCWYGMEIRPLEKEENVSVTA 300"
[1] "LRYGEDG-------------------- 153"
[1] "LRFGEDGCWYGMEIRPLEKEENVSVTA 300"
[1] " "

The unfiltered alignment contains far fewer “gappy” columns (columns where two or more sequences have gaps)
compared to the original unfiltered alignment. It is likely that the gappy columns in the original unfiltered align-
ment were adding noise to the phylogenetic analysis, and that the phylogenetic tree based on the filtered alignment
is more reliable in this case.

Q4. Build a rooted phylogenetic tree of the Dengue NS1 proteins based on a filtered alignment, using the Zika
virus protein as the outgroup. Which are the most closely related Dengue virus proteins, based on the tree? What
extra information does this tree tell you, compared to the unrooted tree in Q2?

First we need to obtain the Zika virus protein (UniProt accession Q32ZE1):

> seqnames <- c("Q9YRR4", "Q9YP96", "B0LSS3", "Q6TFL5", "Q32ZE1") # Make a vector
→˓containing the names of the sequences
> seqs <- retrieveseqs(seqnames,"swissprot") # Retrieve the
→˓sequences and store them in list variable "seqs"

We then write out the sequences to a FASTA-format file called “NS1b.fasta”:
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> write.fasta(seqs, seqnames, file="NS1b.fasta")

We then use CLUSTAL to make a PHYLIP-format alignment, and save it as “NS1b.phy”.

We then read the alignment into R:

> NS1baln <- read.alignment(file = "NS1b.phy", format = "phylip")

We then discard unreliable columns from the alignment:

> cleanedNS1baln <- cleanAlignment(NS1baln, 30, 30)

We then can build a rooted phylogenetic tree using the Zika virus protein (accession Q32ZE1) as the outgroup, by
using the rootedNJtree() function:

> cleanedNS1balntree <- rootedNJtree(cleanedNS1baln, "Q32ZE1",type="protein")

We see in this tree that Q9YP96 (Dengue virus 2 NS1) and Q6TFL5 (Dengue virus 4 NS1) are grouped together
with bootstrap 47%. The next closest sequence is B0LSS3 (Dengue virus 3 NS1). The Q9YRR4 sequence (Dengue
virus 1 NS1) diverged earliest of the four Dengue virus NS1 proteins, as it is grouped with the outgroup.

Note that in Q3, we found that B0LSS3 (Dengue virus 3 NS1) and Q9YRR4 (Dengue virus 1 NS1) were grouped
together in an unrooted tree. The current rooted tree is consistent with this; it has B0LSS3 and Q9YRR4 as the
two earliest diverging Dengue NS1 proteins, as they are nearest to the outgroup in the tree.

Thus, the rooted tree tells you which of the Dengue virus NS1 proteins branched off the earliest from the ancestors
of the other proteins, and which branched off next, and so on... We were not able to tell this from the unrooted
tree.
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Computational Gene-finding

Q1.

How many ORFs are there on the forward strand of the DEN-1 Dengue virus genome (NCBI accession
NC_001477)?

To answer this, we can use the findORFsinSeq() function to find ORFs on the forward strand of the DEN-1
Dengue virus sequence. This function requires a string of characters as its input, so we first use “c2s()” to convert
the Dengue virus sequence to a string of characters:

> dengueseqstring <- c2s(dengueseq) # Convert the Dengue sequence to a
→˓string of characters
> mylist <- findORFsinSeq(dengueseqstring) # Find ORFs in "dengueseqstring"
> orflengths <- mylist[[3]] # Find the lengths of ORFs in
→˓"dengueseqstring"
> length(orflengths) # Find the number of ORFs that were
→˓found
[1] 116

We find that there are 116 ORFs on the forward strand of the DEN-1 Dengue virus genome.

Q2.

What are the coordinates of the rightmost (most 3’, or last) ORF in the forward strand of the DEN-1 Dengue virus
genome?

To answer this, we need to get the coordinates of the ORFs in the DEN-1 Dengue virus genome, as follows:

> dengueseqstring <- c2s(dengueseq) # Convert the Dengue sequence to a
→˓string of characters
> mylist <- findORFsinSeq(dengueseqstring) # Find ORFs in "dengueseqstring"
> starts <- mylist[[1]] # Start positions of ORFs
> stops <- mylist[[2]] # Stop positions of ORFs

The vector starts contains the start coordinates of the predicted start codons, and the vector stops contains the end
coordinates of the predicted stop codons. We know there are 116 ORFs on the forward strand (from Q1), and we
want the coordinates of the 116th ORF. Thus, we type:

> starts[116]
[1] 10705

> stops[116]
[1] 10722

This tells us that the most 3’ ORF has a predicted start codon from 10705-10707 and a predicted stop codon from
10720-10722. Thus, the coordinates of the 3’-most ORF are 10705-10722.

Q3.

What is the predicted protein sequence for the rightmost (most 3’, or last) ORF in the forward strand of the DEN-1
Dengue virus genome?

To get the predicted protein sequence of the 5’-most ORF (from 10705-10722), we type:

> myorfvector <- dengueseq[10705:10722] # Get the DNA sequence of the ORF
> seqinr::translate(myorfvector)

[1] "M" "E" "W" "C" "C" "*"

The sequence of the ORF is “MEWCC”.
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Q4.

How many ORFs are there of 30 nucleotides or longer in the forward strand of the DEN-1 Dengue virus genome
sequence?

The findORFsinSeq() function returns a list variable, the third element of which is a vector containing the lengths
of the ORFs found. Thus we can type:

> dengueseqstring <- c2s(dengueseq) # Convert the Dengue sequence to a
→˓string of characters
> mylist <- findORFsinSeq(dengueseqstring) # Find ORFs in "dengueseqstring"
> orflengths <- mylist[[3]] # Find the lengths of ORFs in
→˓"dengueseqstring"
> summary(orflengths >= 30)

Mode FALSE TRUE NA's
logical 54 62 0

This tells us that 62 ORFs on the forward strand of the DEN-1 Dengue virus are 30 nucleotides or longer.

Q5.

How many ORFs longer than 248 nucleotides are there in the forward strand of the DEN-1 Dengue genome
sequence?

To answer this, we type:

> summary(orflengths >= 248)
Mode FALSE TRUE NA's

logical 114 2 0

This tells us that there are 2 ORFs of 248 nucleotides or longer on the forward strand.

Q6.

If an ORF is 248 nucleotides long, what length in amino acids will its predicted protein sequence be?

If we include the predicted stop codon in the length of the ORF, it means that the last three bases of the ORF are
not coding for any amino acid. Therefore, the length of the ORF that is coding for amino acids is 245 bp. Each
amino acid is coded for by 3 bp, so there can be 245/3 = 81 amino acids. Thus, the predicted protein sequence
will be 81 amino acids long.

Q7.

How many ORFs are there on the forward strand of the rabies virus genome (NCBI accession NC_001542)?

We first retrieve the rabies virus sequence by copying and pasting the “getncbiseq()” function into R, and then
typing:

> rabiesseq <- getncbiseq("NC_001542")

We then find the ORFs in the forward strand by typing:

> rabiesseqstring <- c2s(rabiesseq) # Convert the rabies sequence to a
→˓string of characters
> rabieslist <- findORFsinSeq(rabiesseqstring)# Find ORFs in "rabiesseqstring"
> rabiesorflengths <- rabieslist[[3]] # Find the lengths of ORFs in
→˓"rabiesseqstring"
> length(rabiesorflengths) # Find the number of ORFs that were
→˓found
[1] 111
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There were 111 ORFs on the forward strand.

Q8.

What is the length of the longest ORF among the 99% of longest ORFs in 10 random sequences of the same lengths
and composition as the rabies virus genome sequence?

We generate 10 random sequences using a multinomial model in which the probabilities of the 4 bases are set
equal to their frequencies in the rabies sequence:

> randseqs <- generateSeqsWithMultinomialModel(rabiesseqstring, 10) # Generate 10
→˓random sequences using the multinomial model
> randseqorflengths <- numeric() # Tell R that we want to make a new
→˓vector of numbers
> for (i in 1:10)
{
print(i)
randseq <- randseqs[i] # Get the ith random sequence
mylist <- findORFsinSeq(randseq) # Find ORFs in "randseq"
lengths <- mylist[[3]] # Find the lengths of ORFs in

→˓"randseq"
randseqorflengths <- append(randseqorflengths, lengths,

→˓after=length(randseqorflengths))
}

To find the length of the longest ORF among the 99% of the longest ORFs in the 10 random sequences, we find
the 99th quantile of randomseqorflengths:

> quantile(randseqorflengths, probs=c(0.99))
99%
259.83

That is, the longest of the longest 99% of ORFs in the random sequences is 260 nucleotides.

Q9.

How many ORFs are there in the rabies virus genome that are longer than the threshold length that you found in
Q8?

To answer this, we type:

> summary(rabiesorflengths > 260)
Mode FALSE TRUE NA's

logical 105 6 0

There are 6 ORFs in the rabies virus genome that are longer than the threshold length found in Q8 (260 nu-
cleotides).

Comparative Genomics

Q1.

How many Mycobacterium ulcerans genes are there in the current version of the Ensembl Bacteria database?

Q2.

How many of the Mycobacterium ulcerans Ensembl genes are protein-coding genes?
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Q3.

How many Mycobacterium ulcerans protein-coding genes have Mycobacterium leprae orthologues?

Q4.

How many of theMycobacterium ulcerans protein-coding genes have one-to-one orthologues in Mycobacterium
leprae?

Q5.

How many Mycobacterium ulcerans genes have Pfam domains?

Q6.

What are the top 5 most common Pfam domains in Mycobacterium ulcerans genes?

Q7.

How many copies of each of the top 5 domains found in Q6 are there in the Mycobacterium ulcerans protein set?

Q8.

How many of copies are there in the Mycobacterium lepraae protein set, of each of the top 5 Mycobacterium
ulcerans Pfam protein domains?

Q9.

Are the numbers of copies of some domains different in the two species?

Q10.

Of the differences found in Q9, are any of the differencess statistically significant?

Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email
address alc@sanger.ac.uk

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.
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Answers to Revision Exercises

Revision Exercises 1

Q1.

What is the length of (total number of base-pairs in) the Schistosoma mansoni mitochondrial genome (NCBI
accession NC_002545), and how many As, Cs, Gs and Ts does it contain?

To do this, you need to go to the www.ncbi.nlm.nih.gov website and type the S. mansoni mitochondrial genome
(accession NC_002545) in the search box, and press ‘Search’.

On the search results page, you should see ‘1’ beside the word ‘Nucleotide’, meaning that there was one hit to a
sequence record in the NCBI Nucleotide database, which contains DNA and RNA sequences. If you click on the
word ‘Nucleotide’, it will bring you to the sequence record, which should be the NCBI sequence record for the
S.mansoni mitochondrial genome (ie. for accession NC_002545).

To save the sequence as FASTA-format file, click on ‘Send’ at the top right of the page, and choose ‘File’, then
select ‘FASTA’ from the drop-down list labelled ‘Format’, then click ‘Create File’. Save the file with a name that
you will remember (eg. “smansoni.fasta”) in your “My Documents” folder.

You can then read the sequence into R by typing:

> library("seqinr") # load the SeqinR R package
> smansoni <- read.fasta(file="smansoni.fasta") # read in the sequence file
> smansoniseq <- smansoni[[1]] # get the sequence
> length(smansoniseq) # get the length of the
→˓sequence
[1] 14415

> table(smansoniseq) # get the number of As, Cs, Gs,
→˓ Ts
smansoniseq
a c g t

3654 1228 3307 6226

Thus, the mitochondrial genome is 14415 bases long, and consists of 3654 As, 1228 Cs, 3307 Gs and 6226 Ts.

Note that, as far as I know, it is not possible to retrieve the sequence for accession NC_002545 directly using the
“query()” function in SeqinR, because the S. mansoni mitochondrial genome sequence does not seem to be stored
in any of the ACNUC sub-databases.

Q2.

What is the length of the Brugia malayi mitochondrial genome (NCBI accession NC_004298), and how many As,
Cs, Gs and Ts does it contain?

To do this, you need to go to the www.ncbi.nlm.nih.gov website and type the B. malayi mitochondrial genome
(accession NC_004298) in the search box, and press ‘Search’.

As in Q1, go to the NCBI record for the sequence, and save the sequence in a FASTA format file, for example,
called “bmalayi.fasta”.

Then read the sequence into R, and get its length and composition by typing:

> bmalayi <- read.fasta(file="bmalayi.fasta") # read in the sequence file
> bmalayiseq <- bmalayi[[1]] # get the sequence
> length(bmalayiseq) # get the length of the
→˓sequence
[1] 13657

> table(bmalayiseq) # get the number of As, Cs, Gs,
→˓ Ts
bmalayiseq
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a c g t
2950 1054 2297 7356

The sequence is 13657 bases long, and consists of 2950 As, 1054 Cs, 2297 Gs and 7356 Ts.

Note that, as far as I know, it is not possible to retrieve the sequence for accession NC_004298 directly using the
“query()” function in SeqinR, because the B. malayi mitochondrial genome sequence does not seem to be stored
in any of the ACNUC sub-databases.

Q3.

What is the probability of the Brugia malayi mitochondrial genome sequence (NCBI accession NC_004298),
according to a multinomial model in which the probabilities of As, Cs, Gs and Ts (pA, pC, pG, and pT) are set
equal to the fraction of As, Cs, Gs and Ts in the Schistosoma mansoni mitochondrial genome?

First we can calculate the frequencies of A, C, G and T in the S. mansoni mitochondrial sequence. We can do this
by making a table of the counts of As, Cs, Gs and Ts, and dividing the counts of the bases by the total sequence
length to get frequencies:

> mytable <- table(smansoniseq)
> mytable

a c g t
3654 1228 3307 6226

> mytable <- mytable/length(smansoniseq) # Divide the counts by the sequence
→˓length, to get frequencies
> mytable

a c g t
0.25348595 0.08518904 0.22941381 0.43191120

> freqA <- mytable[["a"]] # Get the frequency of As
> freqC <- mytable[["c"]] # Get the frequency of Cs
> freqG <- mytable[["g"]] # Get the frequency of Gs
> freqT <- mytable[["t"]] # Get the frequency of Ts
> probabilities <- c(freqA,freqC,freqG,freqT) # Make a vector containing the
→˓frequencies of As,Cs,Gs,Ts
> probabilities

[1] 0.25348595 0.08518904 0.22941381 0.43191120

First we need to make a function to calculate the probability of a sequence, given a particular multinomial model
(with a certain pA, pC, pG, pT). To do this, we can write the following R function “multinomialprob()”:

> multinomialprob <- function(mysequence, probabilities)
{

nucleotides <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
names(probabilities) <- nucleotides
mysequence <- toupper(mysequence)# Convert the sequence to uppercase

→˓letters
seqlength <- length(mysequence) # Get the length of the input sequence
seqprob <- numeric() # Make a variable to hold to probability

→˓of the whole sequence
for (i in 1:seqlength) # For each letter in the input sequence
{

nucleotide <- mysequence[i] # Find the ith nucleotide in the sequence
# Calculate the probability of the ith nucleotide in the sequence
nucleotideprob <- probabilities[nucleotide]
# The probability of the whole sequence is calculated by multiplying

→˓together
# the probabilities of the nucleotides at each sequence position
if (i == 1) { seqprob <- nucleotideprob[[1]] }
else { seqprob <- seqprob * nucleotideprob[[1]] }

}
# Return the value of the probability of the whole sequence
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return(seqprob)
}

The function multinomialprob() takes as its arguments (inputs) a vector that contains the DNA sequence, and a
vector containing the probabilities pA, pC, pG, and pT.

You will need to copy and paste this function into R to use it. You can then use it to calculate the probability
of the B. malayi mitochondrial sequence, using a multinomial model where pA, pC, pG, pT are set equal to the
fraction of As, Cs, Gs, and Ts in the S. mansoni mitohondrial sequence (which we have already stored in the vector
probabilities, see above):

> multinomialprob(bmalayiseq, probabilities)
0

In this case, the probability is so small that it is effectively zero.

Q4.

What are the top three most frequent 4-bp words (4-mers) in the genome of the bacterium Chlamydia trachomatis
strain D/UW-3/CX (NCBI accession NC_000117), and how many times do they occur in its sequence?

To do this, you need to go to the www.ncbi.nlm.nih.gov website and type the C. trachomatis D/UW-3/CX genome
(accession NC_000117) in the search box, and press ‘Search’.

As in Q1, go to the NCBI record for the sequence, and save the sequence in a FASTA format file, for example,
called “ctrachomatis.fasta”.

Alternatively, you can retrieve the sequence using the SeqinR package. The sequence is a fully sequenced bacterial
genome, so is in the ACNUC sub-database called “bacterial”. Thus, we type in R:

> choosebank("bacterial") # select the ACNUC sub-
→˓database to search
> query("ctrachomatis", "AC=NC_000117") # specify the query
> ctrachomatisseq <- getSequence(ctrachomatis$req[[1]]) # get the sequence
> closebank() # close the connection to
→˓the ACNUC sub-database

We can now find the most frequent 4-bp words in the sequence by using the “count()” function from SeqinR:

> mytable <- count(ctrachomatisseq, 4) # get the count for each
→˓4-bp word
> sort(mytable) # sort the 4-bp words, by
→˓the number of occurrences of each word
ccgg cggg ggcc cccg cgcg cggc gccg cgcc ggcg cggt gccc cacg gggc
1180 1198 1206 1215 1287 1321 1334 1407 1435 1481 1512 1520 1537
cgtg accg ggtc gacc cgac gtcg gcgg ccgc acgg gacg cgtc ccgt gtac
1541 1545 1558 1567 1606 1647 1658 1678 1716 1750 1786 1802 1802
...
agag agct ctct tatt cttc tttg caaa gaag ttta taaa attt aaat tttc
6836 6860 6937 6946 7234 7280 7289 7353 7671 7731 8100 8144 8462
gaaa aaag cttt tctt aaga ttct agaa tttt aaaa
8563 9099 9199 10060 10069 10492 10581 14021 14122

The three most frequent 4-bp words are “aaaa” (14122 occurrences), “tttt” (14021 occurrences) and “agaa” (10581
occurrences).

Q5.

Write an R function to generate a random DNA sequence that is n letters long (that is, n bases long) using a
multinomial model in which the probabilities pA, pC, pG, and pT are set equal to the fraction of As, Cs, Gs and
Ts in the Schistosoma mansoni mitochondrial genome.
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In Q3 above, we stored the frequencies of A, C, G and T in the S. mansoni mitochondrial genome in a vector
called probabiltiies:

> probabilities
[1] 0.25348595 0.08518904 0.22941381 0.43191120

The R function “generateSeqWithMultinomialModel()” below is an R function for generating a random sequence
with a multinomial model, where the probabilities of the different letters are set equal to the fraction of As, Cs,
Gs, and Ts in the S. mansoni mitochondrial genome (ie. with vector probabilities as its input):

> generateSeqWithMultinomialModel <- function(n, probabilities)
{

# Define the letters in the alphabet
letters <- c("A", "C", "G", "T")
# Make a random sequence of length n letters, using the multinomial model

→˓with probabilities "probabilities"
seq <- sample(letters, n, rep=TRUE, prob=probabilities) # Sample with

→˓replacement
# Return the sequence
return(seq)

}

To use this function to generate a 10-bp random sequence, using vector probabilities as input, we would type:

> generateSeqWithMultinomialModel(10, probabilities)
[1] "T" "A" "T" "G" "T" "G" "G" "A" "G" "G"

Each time we call the function, it will create a slightly different 10-bp sequence:

> generateSeqWithMultinomialModel(10, probabilities)
[1] "A" "G" "T" "A" "G" "G" "T" "T" "T" "T"

> generateSeqWithMultinomialModel(10, probabilities)
[1] "C" "G" "A" "T" "A" "T" "G" "T" "T" "A"

Q6.

Give an example of using your function from Q5 to calculate a random sequence that is 20 letters long, using a
multinomial model with pA =0.28, pC =0.21, pG =0.22, and pT =0.29.

First we need to define a vector myprobabilities containing the probabilities of A, C, G, and T:

> myprobabilities <- c(0.28, 0.21, 0.22, 0.29)

Then we can use the function “generateSeqWithMultinomialModel()” to calculate a 20-bp random sequence, using
the vector myprobabilities as its input:

> generateSeqWithMultinomialModel(20, myprobabilities)
[1] "C" "C" "G" "A" "T" "A" "T" "C" "C" "G" "C" "C" "T" "G" "A" "G" "T" "T" "T"
[20] "C"

Q7.

How many protein sequences from rabies virus are there in the NCBI Protein database?

To do this, you need to go to the www.ncbi.nlm.nih.gov website and select ‘Protein’ from the drop-down box
above the search box.

Then type “rabies virus”[ORGN] in the search box, and press ‘Search’.
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On the results page, it should say “Results: 1 to 20 of 11768”, meaning that there are 11768 protein sequences
from rabies virus in the database [as of 16-Jun-2011]. Note that if you carry out this search at a later date, you
may find more sequences, as the database is growing all the time.

Q8.

What is the NCBI accession for the Mokola virus genome?

To do this, you need to go to the www.ncbi.nlm.nih.gov website and select ‘Genome’ from the drop-down box
above the search box.

Then type “Mokola virus”[ORGN] in the search box, and press ‘Search’.

You should get a hit to accession NC_006429, the Mokola virus genome sequence.

Note that alternatively you can go to the www.ncbi.nlm.nih.gov website, and type “Mokola virus”[ORGN] in
the search box, and press ‘Search’. On the results page, you will see lots of hits to the Nucleotide and Protein
databases, and 1 hit to the Genome database. If you click on the 1 hit beside “Genome”, it will bring you to
accession NC_006429, the Mokola virus genome sequence.

Revision Exercises 2

Q1.

Use the dotPlot() function in the SeqinR R package to make a dotplot of the rabies virus phosphoprotein and
Mokkola virus phosphoprotein, using a windowsize of 10 and threshold of 5.

First we need to retrieve the rabies virus phosphoprotein (UniProt P06747) and Mokola virus phosphoprotein
(UniProt P0C569) sequences from UniProt, which we can do using SeqinR:

> library("seqinr") # load the SeqinR package
> choosebank("swissprot") # select the ACNUC sub-
→˓database to search
> query("rabies", "AC=P06747") # specify the query
> rabiesseq <- getSequence(rabies$req[[1]]) # get the sequence
> query("mokola", "AC=P0C569") # specify the query
> mokolaseq <- getSequence(mokola$req[[1]]) # get the sequence
> closebank() # close the connection to
→˓the ACNUC sub-database

If you look at the help page of the dotPlot function (by typing “help(dotPlot)”), you will see that the windowsize
can be specified using the “wsize” argument and the threshold can be specified using the “nmatch” argument.

We can therefore use dotPlot() to make a dotplot of the two proteins, using a windowsize of 10 and a threshold of
5, by typing:
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> dotPlot(mokolaseq,rabiesseq,wsize=10,nmatch=5)

You can see that there is a region of similarity that covers about 60-70 amino acids at the start of the two proteins,
then there is a region of similarity from about 210-280 in each of the two proteins. There is also a weak amount
of similarity in a region from about 85-100 in the two proteins.

Q2.

Use the function makeDotPlot1 to make a dotplot of the rabies virus phosphoprotein and the Mokola virus phos-
phoprotein, setting the argument “dotsize” to 0.1.

To use the function makeDotPlot1(), we first need to copy and paste it into R.

We can then use it to make a dotplot, setting “dotsize” to 0.1, by typing:
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> makeDotPlot1(mokolaseq,rabiesseq,dotsize=0.1)

As in Q1, you can see that there is a region of similarity that covers about 60-70 amino acids at the start of the two
proteins, then there is a region of similarity from about 210-280 in each of the two proteins.

There are a lot of off-diagonal dots in this picture, because a dot is plotted at every position where the two
sequences are identical in one letter (while in Q1, we only plotted a dot at the start of a 10-letter window, where 5
or more out of 10 positions in the window were identical).

The fact that there are so many dots in the picture makes it hard to see the weak region of similarity seen in Q1,
from about 85-100 in the two proteins.

Q3.

Adapt the R code in Q2 to write a function that makes a dotplot using a window of size x letters, where a dot
is plotted in the first cell of the window if y or more letters compared in that window are identical in the two
sequences.

Here is an R function that will do this:

> makeDotPlot3 <- function(seq1,seq2,windowsize,threshold,dotsize=1)
{

length1 <- length(seq1)
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length2 <- length(seq2)
# make a plot:
x <- 1
y <- 1
plot(x,y,ylim=c(1,length2),xlim=c(1,length1),col="white")
for (i in 1:(length1-windowsize+1))
{

word1 <- seq1[i:(i+windowsize)]
word1b <- c2s(word1)
for (j in 1:(length2-windowsize+1))
{

word2 <- seq2[j:(j+windowsize)]
word2b <- c2s(word2)
# count how many identities there are:
identities <- 0
for (k in 1:windowsize)
{

letter1 <- seq1[(i+k-1)]
letter2 <- seq2[(j+k-1)]
if (letter1 == letter2)
{

identities <- identities + 1
}

}
if (identities >= threshold)
{

# add a point to the plot at the position
for (k in 1:1)
{

points(x=(i+k-1),(y=j+k-1),cex=dotsize,col="blue",pch=7)
}

}
}

}
print(paste("FINISHED NOW"))

}

Q4.

Use the dotPlot() function in the SeqinR R package to make a dotplot of rabies virus phosphoprotein and Mokola
virus phosphoprotein, using a window size of 3 and a threshold of 3. Use your own R function from Q3 to make
a dotplot of rabies virus phosphoprotein and Mokola virus phosphoprotein, using a windowsize (x) of 3 and a
threshold (y) of 3. Are the two plots similar or different, and can you explain why?

We can use the dotPlot() function from SeqinR to make a dotplot of the rabies and Mokola virus phosphoproteins,
using a window size of 3 and a threshold of 3, by typing:

> dotPlot(mokolaseq,rabiesseq,wsize=3,nmatch=3)
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We can also use our function makeDotPlot3 to make a dotplot of the rabies and Mokola virus proteins, using a
window size of 3 and a threshold of 3:

> makeDotPlot3(mokolaseq,rabiesseq,windowsize=3,threshold=3,dotsize=0.1)
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The two pictures are the same, as they should be, as both are plotting a dot in the first position of a 3-letter window
if all 3 letters in that window are identical in the two sequences.

Q5.

Write an R function to calculate an unrooted phylogenetic tree with bootstraps, using the minimum evolution
method.

We can adjust the function unrootedNJtree, which uses the neighbour-joining method, as it calls the function “nj()”
to build a tree.

You can search for R functions that build a tree using minimum evolution method by typing:

> help.search("evolution")
ape::fastme Tree Estimation Based on the Minimum Evolution

Algorithm

We find that there is a function “fastme()” in the Ape package to build a tree using the minimum evolution method.

You can view the help page for this function by typing ‘help(“fastme”)’. If you do this, you will see that it can be
run by typing fastme.bal() or fastme.ols(), which are two different versions of the minimum evolution function.

Thus, we can adapt the unrootedNJtree to make a function that builds a tree using minimum evolution, by using
“fastme.bal()” instead of “nj()”:
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> unrootedMEtree <- function(alignment,type)
{

# load the ape and seqinR packages:
require("ape")
require("seqinr")
# define a function for making a tree:
makemytree <- function(alignmentmat)
{

alignment <- ape::as.alignment(alignmentmat)
if (type == "protein")
{

mydist <- dist.alignment(alignment)
}
else if (type == "DNA")
{

alignmentbin <- as.DNAbin(alignment)
mydist <- dist.dna(alignmentbin)

}
mytree <- fastme.bal(mydist)
mytree <- makeLabel(mytree, space="") # get rid of spaces in tip names.
return(mytree)

}
# infer a tree
mymat <- as.matrix.alignment(alignment)
mytree <- makemytree(mymat)
# bootstrap the tree
myboot <- boot.phylo(mytree, mymat, makemytree)
# plot the tree:
plot.phylo(mytree,type="u") # plot the unrooted phylogenetic tree
nodelabels(myboot,cex=0.7) # plot the bootstrap values
mytree$node.label <- myboot # make the bootstrap values be the node labels
return(mytree)

}

Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email
address alc@sanger.ac.uk

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

Protein-Protein Interaction Graphs

More about R

In previous practicals you have have used the R statistics software for analysing many different types of data. In
this practical, you will use R for analysing protein-protein interaction data. However, first we will discuss some
features of R that will be useful in this practical.

One thing that is useful to know about R is that many R packages come with example data sets, which can be
used to familiarise yourself with the functions in the particular package. To list the data sets that come with a
particular package, you can use the data() function in R. For example, to find the data sets that come with the
“graph” package, type:
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> library("graph")
> data(package="graph")
Data sets in package 'graph':

IMCAAttrs (integrinMediatedCellAdhesion)
KEGG Integrin Mediated Cell Adhesion graph

IMCAGraph (integrinMediatedCellAdhesion)
KEGG Integrin Mediated Cell Adhesion graph

MAPKsig A graph encoding parts of the MAPK signaling pathway
MAPKsig (defunctGraph) A graph encoding parts of the MAPK signaling pathway
apopGraph KEGG apoptosis pathway graph
biocRepos A graph representing the Bioconductor package
→˓repository
graphExamples A List Of Example Graphs
pancrCaIni A graph encoding parts of the pancreatic cancer
→˓initiation

You can then load any of these data sets into R by typing, for example, to load the apopGraph data set:

> data("apopGraph")

In this practical, you will also be using the table() function to make tables of data stored in vectors. If you have a
vector containing numeric values, the table() function is useful for making a table saying how many elements in
the vector have each of the values. For example:

> y <- c(10, 10, 20, 20, 20, 20, 20, 30) # Make a numeric vector "y"
> table(y)
y
10 20 30
2 5 1

The results from the table() function tell us that two of the elements in vector y have values of 10, five elements
have values of 20, and one element has a value of thirty.

Another use of the table() function is to tell us how many elements in a vector of numbers have a particular numeric
value. For example, if we want to know how many elements in vector y have a value of 20, we can type:

> table(y == 20)
FALSE TRUE

3 5

This tells us that five elements of vector y have values of 20.

In this practical you will be using functions from several different packages. It’s important to remember that
sometimes functions in different packages have the same name. For example, there is a function called degree()
in both the “igraph” and “graph” packages. Therefore, you need to specify which degree() function you want
to use, by putting the package name, followed by ”:”, before the name of the function. For example, to use the
degree() function from the “graph” package, you can type graph::degree(), while to use the degree() function from
the “igraph” package, you can type igraph::degree().

Graphs for protein-protein interaction data in R

Protein-protein interaction data can be described in terms of graphs. In this practical, we will explore a curated
data set of protein-protein interactions, by using R packages for analysing and visualising graphs.

We will use three main R packages that have been written for handling biological graphs: the “graph” pack-
age, the “RBGL” package, and the “Rgraphviz” package. The Rgraphviz package is part of the Bioconductor
set of R packages, so needs to be installed as part of that set of package (see the Bioconductor webpage at
www.bioconductor.org/docs/install/ for details).

We will first analyse a curated data set of protein-protein interactions in the yeast Saccharomyces cerevisiae
extracted from published papers. This data set comes from with an R package called “yeastExpData”, which

1.15. Protein-Protein Interaction Graphs 169

http://www.bioconductor.org/docs/install/


A Little Book of R For Bioinformatics, Release 0.1

calls the data set “litG”. This data was first described in a paper by Ge et al (2001) in Nature Genetics (http:
//www.nature.com/ng/journal/v29/n4/full/ng776.html).

To read the litG data set into R, we first need to load the yeastExpData package, and then we can use the R data()
function to read in the litG data set:

> library("yeastExpData") # Load the yeastExpData package
> data("litG") # Read the litG data set

When you read in the litG data set using the data() function, it is stored as a graph in R. In this graph, the vertices
(nodes) are proteins, and edges between vertices indicate that two proteins interact. There are 2885 different
vertices in the graph, representing 2885 different proteins.

You can print out the number of vertices and edges in a graph in R by just typing the name of the graph, for
example:

> litG
A graphNEL graph with undirected edges
Number of Nodes = 2885
Number of Edges = 315

This tells us that the litG graph has 2885 vertices, and 315 edges. The 315 edges in the graph represent 315
protein-protein interactions between 315 pairs of proteins.

Finding the names of vertices in graphs for protein-protein interaction data in R

The “graph” R package contains many functions for analysing graph data in R. For example, the nodes() function
from the graph package can be used to retrieve the names of the vertices (nodes) in the graph. For example, we
can retrive the names of the vertices in the litG graph, and store them in a vector “mynodes”, by typing:

> library("graph") # Load the graph package
> mynodes <- nodes(litG) # Retrieve the names of the vertices in the litG graph

We can then print the names of the first 10 vertices in the litG graph, by typing:

> mynodes[1:10] # Print the names of the first 10 vertices in the litG
→˓graph
[1] "YBL072C" "YBL083C" "YBR009C" "YBR010W" "YBR031W" "YBR093C" "YBR106W"
[8] "YBR118W" "YBR188C" "YBR191W"

This gives the names of the yeast proteins corresponding to the first 10 vertices in the litG graph. Note that the
order that the proteins are stored in the graph does not have any meaning; these 10 proteins just happen to be the
first 10 stored in the litG graph. As mynodes is a vector that contains one element for each vertex in the litG graph,
the number of elements mynodes should be equal to the number of vertices in the litG graph:

> length(mynodes) # Find the number of vertices in the litG graph
[1] 2885

As expected, we find that the litG graph contains 2885 vertices, which represent 2885 different yeast proteins.

Finding the names of proteins that a particular protein interacts with

If you are particularly interested in a particular protein in a protein-protein interaction graph, you may want to
print out the list of the proteins that that protein interacts with. To do this, you can use the adj() function in the
R “graph” package. For example, to print out the proteins that yeast protein YBR009C interacts with in the litG
graph, you can type:

> adj(litG, "YBR009C")
$YBR009C
[1] "YBR010W" "YNL031C" "YDR227W"
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This tells us that protein YBR009C interacts with three other protein in the litG graph, that is, YBR010W,
YNL031C and YDR227W.

Calculating the degree distribution for a graph in R

The degree of a vertex (node) in a graph is the number of connections that it has to other vertices in the graph.

The degree distribution for a graph is the distribution of degree values for all the vertices in the graph, that is, the
number of vertices in the graph that have degrees of 0, 1, 2, 3, etc.

In terms of a protein-protein interaction graph, each vertex in the graph represents a protein, and the degree of a
particular vertex is the number of interactions that that protein has with other proteins.

You can calculate the degrees of all the vertices in a graph by using the degree() function in the R “graph” package.
The degree() function returns a vector containing the degrees of each of the vertices in the graph. Remember that
there is a degree() function in both the “graph” and “igraph” packages, so if you have loaded both packages, you
will need to specify that you want to use the degree() function in the “graph” package, by writing graph::degree().

For example, to calculate the degrees of vertices in the litG graph, we type:

> mydegrees <- graph::degree(litG)
> mydegrees # Print out the values in the vector "mydegrees"
YBL072C YBL083C YBR009C YBR010W YBR031W YBR093C YBR106W YBR118W

0 0 3 3 0 0 0 2

For example, we see from the above results that the yeast protein YBL072C does not interact with any other
protein, while the yeast protein YBR118W interacts with two other yeast proteins. Only the first line of the results
is shown, as there are 2885 vertices in the litG graph.

You can sort the vector mydegrees in order of the number of degrees, by using the sort() function:

> sort(mydegrees)
YBL072C YBL083C YBR031W YBR093C YBR106W YBR188C YBR191W YBR206W

→˓YCL007C YCL018W
0 0 0 0 0 0 0 0

→˓ 0 0
...

YBR198C YDR392W YDR448W YBR160W YFL039C
8 8 9 10 12

Only the first and last lines of the output are shown above. You can see from the last line of the output that
there are some vertices that have high degrees. For example, the vertex corresponding to the protein YFL039C is
12. This means that the protein YFL039C interacts with 12 other proteins. Such highly connected proteins in a
protein-protein interaction graph are sometimes called hub proteins.

We can calculate the degree distribution for a graph by using the table() function to make a table of how many
vertices in the graph have degrees of 0, 1, 2, 3, etc. For example, to calculate the degree distribution for the litG
graph, you can type:

> table(mydegrees)
mydegrees

0 1 2 3 4 5 6 7 8 9 10 12
2587 159 58 38 19 7 3 7 4 1 1 1

This tells us that 2587 vertices in the litG graph are not connected to any other vertices, 159 vertices are connected
to one other vertex, 58 vertices are connected to two other vertices, and so on. You can calculate the mean degree
of the vertices using the mean() function in R:

> mean(mydegrees)
[1] 0.2183709

The mean degree is only about 0.22 for the litG graph, as most of the proteins do not interact with any other
protein.
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It is nice to visualise the degree distribution for a graph by plotting it as a histogram (using the hist() R function):

> hist(mydegrees, col="red")

src/../../_static/MB6300_P1_image5.png

Finding connected components in graphs for protein-protein interaction data in
R

If you are analysing a very large graph, it may contain several subgraphs, where the vertices within each subgraph
are connected to each other by edges, but there are no edges connecting the vertices in different subgraphs. In this
case, the subgraphs are known as connected components (also called maximally connected subgraphs).

For example, the graph below contains three connected components:
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src/../../_static/MB6300_P1_image1.png

Image source: http://en.wikipedia.org/wiki/Connected_component_(graph_theory)

You can find connected components of a graph in R, by using the connectedComp function in the “RBGL” pack-
age. For example, to find connected components in the litG graph, we type:

> library("RBGL")
> myconnectedcomponents <- connectedComp(litG)

The commands above store the connected components in the litG graph in a list myconnectedcomponents. Each
connected component is stored in one element of the list variable myconnectedcomponents. That is, each element
of the list myconnectedcomponents is a vector containing the names of the proteins in a particular connected
component.

We can print out the yeast proteins that are the vertices of the first three connected components by printing out the
first three elements in the list myconnectedcomponents. Remember that you need to use double square brackets to
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access the elements of a list variable in R:

> myconnectedcomponents[[1]]
[1] "YBL072C"
> myconnectedcomponents[[2]]
[1] "YBL083C"
> myconnectedcomponents[[3]]
[1] "YBR009C" "YBR010W" "YNL030W" "YNL031C" "YOL139C" "YAR007C" "YBR073W"
[8] "YER095W" "YJL173C" "YNL312W" "YBL084C" "YDR146C" "YLR127C" "YNL172W"

[15] "YLR134W" "YMR284W" "YER179W" "YIL144W" "YML104C" "YOR191W" "YDL008W"
[22] "YDL030W" "YDL042C" "YDR004W" "YGR162W" "YMR117C" "YDR386W" "YDR485C"
[29] "YDL043C" "YDR118W" "YMR106C" "YML032C" "YDR076W" "YDR180W" "YDL013W"
[36] "YDR227W"

That is, the first two connected components only contain one protein each. These two proteins must not have
interactions with any of the other yeast proteins in the litG graph. The third connected component contains 36
proteins. These 36 proteins are not necessarily all connected to each other, but each of the 36 proteins must be
connected to at least one of the other 35 proteins in the connected component. Note that the connected components
are not stored in the list myconnectedcomponents in any particular order; these just happen to be the first three
connected components stored in the list.

To find the total number of connected components in the litG graph, we can just find the length of the list mycon-
nectedcomponents:

> length(myconnectedcomponents)
[1] 2642

That is, there are 2642 different connected components in the litG graph. These are 2642 subgraphs of the graph,
where there are edges between the vertices within a subgraph, but no edges between the 2642 subgraphs.

It is interesting to know what is the largest connected component in a graph. How can we calculate this for the
litG graph? Well, each element of the litG graph contains a vector storing the proteins in a particular connected
component, and the length of this vector is the number of proteins in that connected component. Thus, to calculate
the sizes of all connected components in the litG graph, we can use a “for loop” to calculate the length of each of
the vectors in myconnectedcomponents in turn:

> componentsizes <- numeric(2642) # Make a vector for storing the sizes of the
→˓2642 connected components
> for (i in 1:2642) {

component <- myconnectedcomponents[[i]] # Store the connected component in a
→˓vector "component"

componentsize <- length(component) # Find the number of vertices in this
→˓connected component

componentsizes[i] <- componentsize # Store the size of this component
}

In the code above, the line componentsizes <- numeric(2642) makes a new vector componentsizes which has
the same number of elements as the number of connected components in the litG graph (2642). This vector
componentsizes is then used within the for loop for storing the size of each connected component. We can now
find the size of the largest connected component in the litG graph by using the max() R function to find the largest
value in the vector componentsizes:

> max(componentsizes)
[1] 88

That is, the largest connected component in the litG graph has 88 different proteins.

We can also use the table() function in R to make a table of the number of connected components of different
sizes:

> table(componentsizes)
componentsizes
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1 2 3 4 5 6 7 8 12 13 36 88
2587 29 10 7 1 1 2 1 1 1 1 1

This tells us that there is just one connected component with 88 proteins. Furthermore, we see that there are
2587 connected components that contain just 1 protein each. These proteins presumably do not have any known
interactions with with any other protein in the litG data set.

To find the connected component that a particular protein belongs to, you can use the findcomponent function:

> findcomponent <- function(graph,vertex)
{

# Function to find the connected component that contains a particular vertex
require("RBGL")
found <- 0
myconnectedcomponents <- connectedComp(graph)
numconnectedcomponents <- length(myconnectedcomponents)
for (i in 1:numconnectedcomponents)
{

componenti <- myconnectedcomponents[[i]]
numvertices <- length(componenti)
for (j in 1:numvertices)
{

vertexj <- componenti[j]
if (vertexj == vertex)
{

found <- 1
return(componenti)

}
}

}
print("ERROR: did not find vertex in the graph")

}

The function findcompontent() returns a vector containing the names of the proteins in the connected component.
For example, to find the connected component containing the protein YBR009C, you can type:

> mycomponent <- findcomponent(litG, "YBR009C")
> mycomponent # Print out the members of this connected component.

[1] "YBR009C" "YBR010W" "YNL030W" "YNL031C" "YOL139C" "YAR007C" "YBR073W"
→˓"YER095W" "YJL173C" "YNL312W"
[11] "YBL084C" "YDR146C" "YLR127C" "YNL172W" "YLR134W" "YMR284W" "YER179W"

→˓"YIL144W" "YML104C" "YOR191W"
[21] "YDL008W" "YDL030W" "YDL042C" "YDR004W" "YGR162W" "YMR117C" "YDR386W"

→˓"YDR485C" "YDL043C" "YDR118W"
[31] "YMR106C" "YML032C" "YDR076W" "YDR180W" "YDL013W" "YDR227W"

Extracting a subgraph from a graph in R

If you want to extract a particular subgraph of a graph (that is, part of a graph), you can use the subGraph function
in the “graph” package. As its arguments (inputs), the subGraph function contains a vector containing the vertices
(nodes) in the subgraph that we’re interested in, and the graph that the subgraph belongs to.

For example, if we want to extract the subgraph (of graph litG) that contains the third connected component in the
vector myconnectedcomponents, we type:

> myconnectedcomponents <- connectedComp(litG)
> component3 <- myconnectedcomponents[[3]]
> component3 # Print out the proteins in connected component 3
[1] "YBR009C" "YBR010W" "YNL030W" "YNL031C" "YOL139C" "YAR007C" "YBR073W"
[8] "YER095W" "YJL173C" "YNL312W" "YBL084C" "YDR146C" "YLR127C" "YNL172W"

[15] "YLR134W" "YMR284W" "YER179W" "YIL144W" "YML104C" "YOR191W" "YDL008W"
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[22] "YDL030W" "YDL042C" "YDR004W" "YGR162W" "YMR117C" "YDR386W" "YDR485C"
[29] "YDL043C" "YDR118W" "YMR106C" "YML032C" "YDR076W" "YDR180W" "YDL013W"
[36] "YDR227W"
> mysubgraph <- subGraph(component3, litG)
> mysubgraph
A graphNEL graph with undirected edges
Number of Nodes = 36
Number of Edges = 48

The commands above store the subgraph corresponding to component3 in a graph object mysubgraph that contains
36 vertices and 48 edges.

Plotting graphs for protein-protein interaction data in R

The “Rgraphviz” R package contains useful functions for plotting graphs, or plotting parts of graphs (“sub-
graphs”).

The layoutGraph and renderGraph functions in the Rgraphviz package can be used to make a nice plot of a
subgraph. There are lots of options for the colours to use for plotting vertices and edges.

For example, if we want to make a plot of the subgraph corresponding to the third connected component in the
vector myconnectedcomponents, we can type:

> library("Rgraphviz")
> mysubgraph <- subGraph(component3, litG)
> mygraphplot <- layoutGraph(mysubgraph, layoutType="neato")
> renderGraph(mygraphplot)

src/../../_static/MB6300_P1_image2.png

The plot above shows a plot of the third connected component in the graph litG. There are 36 vertices in this
subgraph, corresponding to 36 different yeast proteins. The names of the proteins are shown in the circles that
represent the vertices. The edges between vertices represent interactions between pairs of proteins.

Detecting communities in a protein-protein interaction graph using R

A property common to many types of graphs, including protein-protein interaction graphs, is community structure.
A community is often defined as a subset of the vertices in the graph such that connections btween the vertices
are denser than connections with the rest of the graph. For example, the graph in the picture below consists
of one connected component. However, within that connected component, we can see three densely connected
subgraphs; these could be said to be three different communities within the graph:

src/../../_static/MB6300_P1_image7.png

Image source: http://en.wikipedia.org/wiki/Community_structure

In terms of protein-protein interaction networks, if there are several communities within a connected component
(for example, three communities, as in the picture above), these could represent three different groups of proteins,
where the proteins within one community interact much more with each other than with proteins in the other
communities.
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By detecting communities within a protein-protein interaction graph, we can detect putative protein complexes,
that is, groups of associated proteins that are probably fairly stable over time. In other words, protein complexes
can be detected by looking for groups of proteins among which there are many interactions, and where the mem-
bers of the complex have few interactions with other proteins that do not belong to the complex.

There are lots of different methods available for detecting communities in a graph, and each method will give
slightly different results. That is, the particular method used for detecting communities will decide how you split
a connected component into one or more communities.

The function findcommunities() below identifies communities within a graph (or subgraph of a graph). It requires
a second function, findcommunities2(), which is also below:

> findcommunities <- function(mygraph,minsize)
{

# Function to find network communities in a graph
# Load up the igraph library:
require("igraph")
# Set the counter for the number of communities:
cnt <- 0
# First find the connected components in the graph:
myconnectedcomponents <- connectedComp(mygraph)
# For each connected component, find the communities within that connected

→˓component:
numconnectedcomponents <- length(myconnectedcomponents)
for (i in 1:numconnectedcomponents)
{

component <- myconnectedcomponents[[i]]
# Find the number of nodes in this connected component:
numnodes <- length(component)
if (numnodes > 1) # We can only find communities if there is more than one

→˓node
{

mysubgraph <- subGraph(component, mygraph)
# Find the communities within this connected component:
# print(component)
myvector <- vector()
mylist <- findcommunities2(mysubgraph,cnt,"FALSE",myvector,minsize)
cnt <- mylist[[1]]
myvector <- mylist[[2]]

}
}
print(paste("There were",cnt,"communities in the input graph"))

}
> findcommunities2 <- function(mygraph,cnt,plot,myvector,minsize)

{
# Function to find network communities in a connected component of a graph
# Find the number of nodes in the input graph
nodes <- nodes(mygraph)
numnodes <- length(nodes)
# Record the vertex number for each vertex name
myvector <- vector()
for (i in 1:numnodes)
{

node <- nodes[i] # "node" is the vertex name, i is the vertex number
myvector[`node`] <- i # Add named element to myvector

}
# Create a graph in the "igraph" library format, with numnodes nodes:
newgraph <- graph.empty(n=numnodes,directed=FALSE)
# First record which edges we have seen already in the "mymatrix" matrix,
# so that we don't add any edge twice:
mymatrix <- matrix(nrow=numnodes,ncol=numnodes)
for (i in 1:numnodes)
{
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for (j in 1:numnodes)
{

mymatrix[i,j] = 0
mymatrix[j,i] = 0

}
}
# Now add edges to the graph "newgraph":
for (i in 1:numnodes)
{

node <- nodes[i] # "node" is the vertex name, i is the vertex number
# Find the nodes that this node is joined to:
neighbours <- adj(mygraph, node)
neighbours <- neighbours[[1]] # Get the list of neighbours
numneighbours <- length(neighbours)
if (numneighbours >= 1) # If this node "node" has some edges to other nodes
{

for (j in 1:numneighbours)
{

neighbour <- neighbours[j]
# Get the vertex number
neighbourindex <- myvector[neighbour]
neighbourindex <- neighbourindex[[1]]
# Add a node in the new graph "newgraph" between vertices i and

→˓neighbourindex
# In graph "newgraph", the vertices are counted from 0 upwards.
indexi <- i
indexj <- neighbourindex
# If we have not seen this edge already:
if (mymatrix[indexi,indexj] == 0 && mymatrix[indexj,indexi] == 0)
{

mymatrix[indexi,indexj] <- 1
mymatrix[indexj,indexi] <- 1
# Add edges to the graph "newgraph"
newgraph <- add.edges(newgraph, c(i, neighbourindex))

}
}

}
}
# Set the names of the vertices in graph "newgraph":
newgraph <- set.vertex.attribute(newgraph, "name", value=nodes)
# Now find communities in the graph:
communities <- spinglass.community(newgraph)
# Find how many communities there are:
sizecommunities <- communities$csize
numcommunities <- length(sizecommunities)
# Find which vertices belong to which communities:
membership <- communities$membership
# Get the names of vertices in the graph "newgraph":
vertexnames <- get.vertex.attribute(newgraph, "name")
# Print out the vertices belonging to each community:
for (i in 1:numcommunities)
{

cnt <- cnt + 1
nummembers <- 0
printout <- paste("Community",cnt,":")
for (j in 1:length(membership))
{

community <- membership[j]
if (community == i) # If vertex j belongs to the ith community
{

vertexname <- vertexnames[j]
if (plot == FALSE)
{
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nummembers <- nummembers + 1
# Print out the vertices belonging to the community
printout <- paste(printout,vertexname)

}
else
{

# Colour in the vertices belonging to the community
myvector[`vertexname`] <- cnt

}
}

}
if (plot == FALSE && nummembers >= minsize)
{

print(printout)
}

}
return(list(cnt,myvector))

}

The function findcommunities() uses the function spinglass.community() from the “igraph” package to iden-
tify communities in a graph or subgraph. As its arguments (inputs), the findcommunities() function takes the
graph/subgraph that we want to find communities in, and the minimum number of vertices that a community must
have to be reported.

For example, to find communities within the subgraph corresponding to the third connected component of the litG
graph, we can type:

> mysubgraph <- subGraph(component3, litG)
> findcommunities(mysubgraph, 1)
[1] "Community 1 : YML104C YOR191W YDL030W YDR485C YDL013W"
[1] "Community 2 : YBR073W YDR146C YLR134W YER179W YIL144W"
[1] "Community 3 : YOL139C YGR162W YMR117C YDR386W YDL043C YDR180W"
[1] "Community 4 : YBL084C YLR127C YNL172W YDL008W YDR118W"
[1] "Community 5 : YAR007C YER095W YJL173C YNL312W YDR004W YML032C YDR076W"
[1] "Community 6 : YBR009C YBR010W YNL030W YNL031C YMR284W YDL042C YMR106C YDR227W"
[1] "There were 6 communities in the input graph"

This tells us that there are six different communities in the subgraph corresponding to the third connected compo-
nent of the litG graph.

Note that if you run findcommunities() again and again on the same input graph, it might find slightly different
sets of communities each time. This is because it uses a random number generator in the method that it uses for
identifying communities, and the random number used will be different each time you run the findcommunities()
function, which means that you will get slightly different answers each time. The answers should be very similar,
however, but you might see a small difference, for example, a large community might be split into two smaller
communities.

You can make a plot of the communities in a graph or subgraph by using the plotcommunities() function:

> plotcommunities <- function(mygraph)
{

# Function to plot network communities in a graph
# Load the "igraph" package:
require("igraph")
# Make a plot of the graph
graphplot <- layoutGraph(mygraph, layoutType="neato")
renderGraph(graphplot)
# Get the names of the nodes in the graph:
vertices <- nodes(mygraph)
numvertices <- length(vertices)
# Now record the colour of each vertex in a vector "myvector":
myvector <- vector()
colour <- "red"
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for (i in 1:numvertices)
{

vertex <- vertices[i]
myvector[`vertex`] <- colour # Add named element to myvector

}
# Set the counter for the number of communities:
cnt <- 0
# First find the connected components in the graph:
myconnectedcomponents <- connectedComp(mygraph)
# For each connected component, find the communities within that connected

→˓component:
numconnectedcomponents <- length(myconnectedcomponents)
for (i in 1:numconnectedcomponents)
{

component <- myconnectedcomponents[[i]]
# Find the number of nodes in this connected component:
numnodes <- length(component)
if (numnodes > 1) # We can only find communities if there is more than one

→˓node
{

mysubgraph <- subGraph(component, mygraph)
# Find the communities within this connected component:
mylist <- findcommunities2(mysubgraph,cnt,"TRUE",myvector,0)
cnt <- mylist[[1]]
myvector <- mylist[[2]]

}
}
# Get a set of cnt colours, where cnt is equal to the number of communities

→˓found:
mycolours <- rainbow(cnt)
# Set the colour of the vertices, so that vertices in each community are of

→˓the same colour,
# and vertices in different communities are different colours:
myvector2 <- vector()
for (i in 1:numvertices)
{

vertex <- vertices[i]
community <- myvector[vertex]
mycolour <- mycolours[community]
myvector2[`vertex`] <- mycolour

}
nodeRenderInfo(graphplot) = list(fill=myvector2)
renderGraph(graphplot)

}

For example, to make a plot of the communities in the third connected component of the litG graph using the
plotcommunities() function, you need to type:

> mysubgraph <- subGraph(component3, litG)
> plotcommunities(mysubgraph)

src/../../_static/MB6300_P1_image8.png

In the graph above, the six communities in the third connected component of the litG graph are coloured with six
different colours.
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Reading in protein-protein interaction data in R

In the above example, you looked at the litG data set of protein-protein interactions, which is a data set that comes
with the “yeastExpData” R package. But what if you want to look at a data set of protein-protein interactions that
does not come from R?

It is common to store data on protein-protein interactions in a text file with two columns, where each line of the
file contains a pair of proteins that interact with each other. For example, such a file may look like this: YKL166C
YIL033C YCR002C YHR107C YCR002C YJR076C YCR002C YLR314C YJR076C YHR107C This indicates
that there are 5 protein-protein interactions, between protein YKL166C and protein YIL033C, between YCR002C
and YHR107C, between YCR002C and YJR076C, between YCR002C and YLR314C, and between YJR076C and
YHR107C.

The function makeproteingraph() makes a graph based on an input file of protein-protein interactions, where the
first two columns of the input file indiciate the pairs of proteins that interact:

> makeproteingraph <- function(myfile)
{

# Function to make a graph based on protein-protein interaction data in an
→˓input file

require("graph")
mytable <- read.table(file(myfile)) # Store the data in a data frame
proteins1 <- mytable$V1
proteins2 <- mytable$V2
protnames <- c(levels(proteins1),levels(proteins2))
# Find out how many pairs of proteins there are
numpairs <- length(proteins1)
# Find the unique protein names:
uniquenames <- unique(protnames)
# Make a graph for these proteins with no edges:
mygraph <- new("graphNEL", nodes = uniquenames)
# Add edges to the graph:
# See http://rss.acs.unt.edu/Rdoc/library/graph/doc/graph.pdf for more

→˓examples
weights <- rep(1,numpairs)
mygraph2 <- addEdge(as.vector(proteins1),as.vector(proteins2),mygraph,weights)
return(mygraph2)

}

For example, the example file http://www.maths.tcd.ie/~avrillee/littlebookofr/ExampleInteractionData contains
the five pairs of interacting proteins listed above. You can read it in and make a graph for these interacting
proteins by typing:

> thegraph <- makeproteingraph("http://www.maths.tcd.ie/~avrillee/littlebookofr/
→˓ExampleInteractionData")

You can then make a plot of this graph as before:

> mygraphplot <- layoutGraph(thegraph, layoutType="neato")
> renderGraph(mygraphplot)

src/../../_static/MB6300_P1_image4.png
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Creating random graphs in R

A random graph is a graph that is generated by a random process, where you start off with a certain number of
vertices (nodes), and edges are added by randomly choosing pairs of vertices and making an edge between the
two members of each of those pairs of vertices. (This is known as the Erdös-Renyi model for random graphs). In
a random graph, vertices with lots of connections are equally likely as vertices with very few connections. That
is, if you calculate the average degree of the vertices in a random graph, you will find that the degrees of most of
the vertices in the graph is near to the average.

It is often useful and interesting to compare the properties of biological graphs to random graphs. In order to do
this, you need to be able to generate some random graphs. The function makerandomgraph() in R makes a random
graph with a certain number of edges:

> makerandomgraph <- function(numvertices,numedges)
{

# Function to make a random graph
require("graph")
# Make a vector with the names of the vertices
mynames <- sapply(seq(1,numvertices),toString)
myrandomgraph <- randomEGraph(mynames, edges = numedges)
return(myrandomgraph)

}

This function takes as its argument (input) the number of vertices and edges that you want the random graph to
have to have. For example, to create a random graph that has 15 vertices and 43 edges, we type:

> myrandomgraph <- makerandomgraph(15, 43)
> myrandomgraph # Print out the number of vertices and edges in the graph
A graphNEL graph with undirected edges
Number of Nodes = 15
Number of Edges = 43

In the R code above, we tell R to give the vertices the labels 1 to 15. We can of course plot the random graph:

> myrandomgraphplot <- layoutGraph(myrandomgraph, layoutType="neato")
> renderGraph(myrandomgraphplot)

src/../../_static/MB6300_P1_image6.png

Summary

In this practical, you will have learnt to use the following R functions:

1. data() to load a data set that comes with a package into R

2. table() for making a table of the data in a vector, or finding out how many elements in a vector have a
particular value

3. sort() for sorting a vector

All of these functions belong to the standard installation of R.

You have also learnt the following R functions that belong to the additional R packages:

1. nodes() from the “graph” package for getting a list of the names of vertices in a graph

2. adj() from the “graph” package for getting a list of the vertices that a particular vertex is connected to in a
graph
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3. degree() from the “graph” package for calculating the degree of each of the vertices in a graph

4. connectedComp() from the “RBGL” package for identifying connected components in a graph

5. subGraph() from the “graph” package for extracting a subgraph from a graph

6. layoutGraph() and renderGraph() from the “Rgraphviz” package for plotting a graph or subgraph

Links and Further Reading

Some links are included here for further reading.

For background reading on graphs and protein-protein interaction graphs, it is recommended to read Chapters 1,
2 and 4 of Principles of Computational Cell Biology: from protein complexes to cellular networks by Volkhard
Helms (Wiley-VCH; http://www.wiley-vch.de/publish/en/books/bySubjectLS00/ISBN3-527-31555-1).

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is also a useful introduction to R in Appendix A (“A Brief Introduction to R”) of the book Computational
genome analysis: an introduction by Deonier, Tavaré and Waterman (Springer).

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.

For more in-depth information and more examples on using the “graph” package for analysing graphs, look at the
“graph” package documentation, www.cran.r-project.org/web/packages/graph/index.html.

More information and examples on using the “RBGL” package is available in the RBGL documentation at
www.cran.r-project.org/web/packages/RBGL/index.html.

More information and examples on using the “Rgraphviz” package is available in the Rgraphviz documentation
at www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html.

More information and examples on using the “igraph” package is available in the “igraph” documentation at
www.cran.r-project.org/web/packages/igraph/index.html.

There are also very useful chapters on “Using Graphs for Interactome Data” and “Graph Layout” in the book
Bioconductor Case Studies by Florian Hahne, Wolfgang Huber, Robert Gentleman and Seth Falcon (http://www.
bioconductor.org/pub/biocases/).
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Exercises

Answer the following questions, using the R package. For each question, please record your answer, and what
you typed into R to get this answer.

Q1. de Lichtenberg et al identified protein-protein complexes in the yeast Saccharomyces cerevisiae that form during the yeast cell cycle. Their data set of pairs of interacting proteins is available for download at the website http://www.cbs.dtu.dk/databases/cellcycle/yeast_complexes/binary_interaction_data.txt. Read this protein-protein interaction data set into R as a graph. How many vertices (proteins) and edges (protein-protein interactions) are there in the graph?
There are about 6600 predicted genes in the S. cerevisiae genome. Is this the same as the number of
vertices in the graph of de Lichtenberg et al‘s data? If not, can you explain why? Note: the full paper by de
Lichtenberg et al is available at http://www.sciencemag.org/content/307/5710/724.abstract

Q2. What is the minimum, maximum and mean number of interactions for the proteins in the graph of de Lichtenberg et al‘s data?
Can you find an example of a hub protein? Make a histogram plot of the number of interactions for the S.
cerevisiae proteins in de Lichtenberg et al‘s data set.

Q3. Make a random graph with the same number of vertices and edges as the graph of de Lichtenberg et al‘s data. What is the minimum, maximum and mean degree of the vertices for the random graph?
Is there a difference in the minimum, maximum and mean degree of the vertices for the random graph,
when compared to the graph of de Lichtenberg et al‘s data? Compare a histogram plot of the degree
distribution for the random graph to a histogram plot of the degree distribution for Lichtenberg et al‘s data
set. What do the differences tell you?

Q4. How many connected components exist in the graph of de Lichtenberg et al‘s data? How many con-
nected components just contain 2 proteins? Make a plot of the largest connected component in the graph of
de Lichtenberg et al‘s data.

Q5. What proteins does yeast protein YPR119W interact with, in de Lichtenberg et al‘s data? Draw a pic-
ture of the connected component that yeast protein YPR119W belongs to. Can you see YPR119W in
the picture? Plot the communities in this connected component. Which communities does YPR119W
belong to? What protein complex(es) do you think YPR119W belongs to? Can you find anything
about the nature of the interactions between YPR119W and the proteins that it interacts with? Hint:
search for YPR119W and the proteins that it interacts with in the Saccharomyces Genome Database
(www.yeastgenome.org/). It may also be useful to look at Figure 3 in de Lichtenberg et al‘s paper (http:
//www.sciencemag.org/content/307/5710/724.abstract). Can you identify the complex(es) that YPR119W
belongs to in Figure 1 of de Lichtenberg et al‘s paper?
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