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Summary. Generalized linear mixed models (GLMMs) are widely used in the analysis of clustered data. However, the
validity of likelihood-based inference in such analyses can be greatly affected by the assumed model for the random effects.
We propose a diagnostic method for random-effect model misspecification in GLMMs for clustered binary response. We provide
a theoretical justification of the proposed method and investigate its finite sample performance via simulation. The proposed
method is applied to data from a longitudinal respiratory infection study.
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1. Introduction
Generalized linear mixed models (GLMMs) are frequently
used to analyze data from a wide range of applications. They
are flexible models for nonnormal responses, repeated mea-
surements, and other forms of clustered data. This class of
models can easily account for multiple sources of variation
and address various correlation structures in correlated data.
A natural concern in using GLMMs is misspecifying the model
for the random effects. For computational convenience, ran-
dom effects in GLMMs are almost routinely assumed to be
normal. However, the normality assumption may be unreal-
istic in some applications. Moreover, to decide which covari-
ates in the model have random coefficient is also a difficult
question.

Early investigation to address this concern suggested that
misspecifying the models for the random effects usually only
results in a small amount of bias in the maximum likelihood
estimators (MLEs) for the fixed effects (Neuhaus, Hauck,
and Kalbfleisch, 1992). However, more recently, many authors
have found that likelihood-based inference can be severely af-
fected if the random-effect model is misspecified. For example,
Heagerty and Kurland (2001) computed the asymptotic bias
in the MLEs for the parameters in a logistic mixed model in
four instances of random-effect model misspecification. They
concluded that incorrect assumptions on the random effects
can lead to substantial bias in the MLEs for the fixed effects.
Agresti, Caffo, and Ohman-Strickland (2004) conducted em-
pirical studies on the impact of model misspecification for the
random effects in GLMMs, showing that the MLEs for the
fixed effects can be very sensitive to the assumed random-
effect model. Finally, Litière, Alonso, and Molenberghs (2007)
used simulation to show that the type I and type II errors of
tests for the mean structure in a logistic mixed model can
be seriously affected by violations of the random-effect model
assumptions.

There are many inferential methods developed to avoid in-
valid inference due to random-effects model misspecification.

For instance, Chen, Zhang, and Davidian (2002) developed a
seminonparametric approach to model random effects using
a smooth density representation. Nonparametric approaches
(Heckman and Singer, 1984) and use of normal mixtures
(Magder and Zeger, 1996) have been proposed to circumvent
making restrictive parametric assumptions on the random ef-
fects. These nonparametric and semiparametric methods typ-
ically involve intensive computation with a potential loss in
efficiency. Unlike parametric approaches, the aforementioned
methods often lack a natural likelihood function, which is
useful for model selection, hypothesis testing, and variance
estimation. Moreover, in some applications the characteris-
tics of random effects are of scientific interest in their own
right, which may not be explicitly explored if nonparametric
or semiparametric methods are used.

Until now, there has been no diagnostic procedure de-
veloped to detect random-effect model misspecification in
GLMMs. White (1981, 1982) studied the properties of MLE
resulting from a misspecified model for the observed data and
proposed an information matrix test for general model mis-
specification. Although White’s method is applicable for any
model in principle, it is complicated to implement and it does
not provide direction of model correction when misspecifi-
cation is detected. Agresti et al. (2004) suggested comparing
results from both parametric and nonparametric methods, ar-
guing that a substantial discrepancy between the two analyses
indicates model misspecification.

The difficulty in detecting model misspecification for the
random effects is mainly due to the obvious fact that there is
no data realization or surrogate observation for the random
effects. Consequently, none of the traditional diagnostic tech-
niques that rely solely on the observed data can justify model
assumptions for the random effects. In this article, we propose
a novel parametric diagnostic method that makes use of both
the observed data and a reconstructed data set induced from
the observed data, with computational complexity compara-
ble with that of GLMMs. The observed data, the construction
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of the reconstructed data, and the models for these two data
types are given in Section 2. In Section 3, test statistics are
defined to assess the adequacy of the assumed random-effect
model. In Section 4, we study the operating characteristics of
the proposed test statistics via simulation. In Section 5, we
investigate the impact of additional misspecification for the
fixed-effect part of the model on the proposed test statistics.
In Section 6, we apply our diagnostic technique to a data set
from a longitudinal respiratory infection study. In Section 7,
we provide a summary discussion and address future research
topics.

2. Data and Models
2.1 Observed Data
Herein we focus on clustered data with binary response. Ex-
tensions of the proposed method to other types of response
are discussed in Section 7. Denote by Yi = (Yi1, . . . , Yin i

)T the
ni × 1 vector of binary responses for cluster i, i = 1 , . . . , m.
Consider the conditional mean model defined by

E(Yij |Xij , Zij , bi ) = h(Xij β + Zij bi ), (1)

where β is a p × 1 vector of fixed effects, p < m, bi is a q × 1
mean-zero vector of random effects, Xij is the jth row of the
ni × p design matrix Xi for the fixed effects, Zij is the jth row
of the ni × q design matrix Zi for the random effects, for i =
1 , . . . , m, j = 1 , . . . , ni , and h(·) is a monotonic differentiable
inverse link function. Our assumptions on the model in equa-
tion (1) are that E(Yij |Xij ,Zij , bi ) = E(Yij |Xi ,Zi , bi ), for
i = 1 , . . . , m, and that the link function is appropriate for
the data, thus the main concern is the choice of an assumed
random-effect model. Furthermore, the m clusters are inde-
pendent, and within cluster i, {Yij }n i

j=1 are independent given
bi . Define Ω as the r × 1 parameter vector that includes β and
the parameters in the assumed model for bi , denoted by τ .
The contribution to the observed-data likelihood from cluster
i is given by

fYi
(Yi |Xi ,Zi ;Ω) =

∫
fbi

(bi ; τ )
n i∏
j=1

h(Xij β + Zij bi )Y i j

×{1 − h(Xij β + Zij bi )}1−Y i j dbi , (2)

where fbi
(bi ; τ ) is the density function associated with the

assumed model for bi . It is clear from equation (2) that
the quality of the MLE for β, denoted by β̂, usually relies on
the assumed model for bi . Correct specification of fbi

(bi ; τ )
is a sufficient condition for β̂ being consistent. In this article,
where asymptotic properties are concerned, we refer to the
properties when m → ∞ and the cluster size is bounded.

2.2 Reconstructed Data
Based on the observed data, we form a reconstructed data
set by partitioning the ni subjects within cluster i into Gi

subgroups, for i = 1 , . . . , m; then we define the new clustered
binary response for cluster i as Y∗

i = (Y ∗
i1, . . . , Y

∗
iG i

)T , where
Y ∗

ig = 0 if all the Y ij ’s in subgroup g of cluster i equal zero,
and Y ∗

ig = 1 otherwise, for g = 1 , . . . , Gi . Deduced from equa-
tion (1), the conditional mean model for Y ∗

ig is given by, for

i = 1 , . . . , m and g = 1 , . . . , Gi ,

E
(
Y ∗

ig

∣∣Xij , Zij , bi , j ∈ group g
)

= 1 −
∏

j∈ group g

{1 − h(Xij β + Zij bi )},

where “
∏

j ∈ group g ” refers to the product taken over all sub-
jects in subgroup g of cluster i. It follows that the contribution
of cluster i to the reconstructed-data likelihood is

fY∗
i

(
Y∗

i

∣∣Xi ,Zi ;Ω
)

=
∫

fbi
(bi ; τ )

G i∏
g =1

[
1 −

∏
j∈ group g

{
1−h(Xij β+Zij bi )

}]Y ∗
i g

×

[ ∏
j∈ group g

{1−h(Xij β+Zij bi )}

]1−Y ∗
i g

dbi. (3)

The subgroup composition will be detailed in Section 4.

3. Diagnostic Method
3.1 Test Statistics
Denote by Ω̂ and Ω̂

∗
the MLEs for Ω based on the observed

data and the reconstructed data, respectively. Both estima-
tors are consistent when the random-effect model is correctly
specified, but not necessarily so otherwise. More importantly,
as will be shown in Section 3.2, in the presence of model mis-
specification, the asymptotic means of Ω̂ and Ω̂

∗
, denoted by

Ω̃ and Ω̃
∗
, respectively, can differ. This motivates an indicator

of model misspecification, which is defined as

T 2 =
m − r

r(m − 1)
(Ω̂

∗
− Ω̂)T V̂−1(Ω̂

∗
− Ω̂), (4)

where V̂ is an estimator for the variance-covariance matrix
of Ω̂

∗
− Ω̂. The derivation of V̂ is given in Web Appendix A,

where we show that r(m − 1)(m − r)−1T 2 is a Hotelling’s T 2

statistic, and T 2 ∼ F (r, m − r) asymptotically under the null
hypothesis H0 : Ω̃ = Ω̃

∗
. Strong evidence against H0 implies

model misspecification. When model misspecification exists,
the MLEs for different parameters in Ω are affected differ-
ently, depending on how the assumed model compares to the
true model. To study how different ways of misspecifying the
model can influence different parameters, we define another
test statistic to compare two MLEs for any one parameter
based on two data types,

tθ = (θ̂∗ − θ̂)ν̂−1, (5)

where θ denotes any one element in Ω, θ̂ and θ̂∗ are the MLEs
for θ based on the observed data and the reconstructed data,
respectively, and ν̂2 is the diagonal element of V̂ correspond-
ing to θ. By the construction of tθ and ν̂2, tθ follows a Stu-
dent’s t distribution with m − r degrees of freedom asymptot-
ically under the null hypothesis Hθ

0 : θ̃ = θ̃∗, where θ̃ and θ̃∗

are the elements in Ω̃ and Ω̃
∗
corresponding to θ, respectively.

In summary, T 2 in equation (4) is a global test statis-
tic that assesses the overall discrepancy between the MLEs
for Ω based on two data types, and tθ in equation (5) is
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an individual test statistic that evaluates the disparity be-
tween the MLEs for a particular parameter computed from
two data types. As demonstrated in Section 4, the global
test can provide evidence of model misspecification, and the
individual test can suggest which type of misspecification
occurs.

An alternative global test statistic for H0 can be con-
structed by combining the r individual tθ ’s following the ap-
proach described in Wu, Genton, and Stefanski (2006), which
is referred to as the pooled component test (PCT) statistic.
PCT is motivated by and designed for testing the equality
of two mean vectors when r > m. It was shown that when
m > r, as in the scenarios we consider here, PCT performs
similarly as the Hotelling’s T 2 test.

3.2 Theoretical Justification
Under the conditions given in White (1982), Ω̂ converges al-
most surely to Ω̃ as m →∞, where Ω̃ minimizes the Kullback–
Leibler information criterion defined by

lim
m →∞

EY |X,Z

{
log

gY(Y |X,Z;Ω0)
fY(Y |X,Z;Ω)

}
,

in which Y = {Yi}m
i=1,X = {Xi}m

i=1,Z = {Zi}m
i=1, gY(Y |X,Z;

Ω0) is the true density of Y given X and Z, Ω0 is the param-
eter vector associated with this true model, and the expec-
tation is taken with respect to the true distribution. Equiva-
lently, Ω̃ solves

lim
m →∞

EY |X,Z{(∂/∂Ω) log fY(Y |X,Z;Ω)} = 0. (6)

Similarly, Ω̂
∗

converges almost surely to Ω̃
∗

as m → ∞, and
Ω̃

∗
is uniquely determined by

lim
m →∞

EY∗ |X,Z{(∂/∂Ω) log fY∗(Y∗ |X,Z;Ω)} = 0, (7)

where Y∗ = {Y∗
i }m

i=1. We next compute Ω̃ and Ω̃
∗

to
justify the theoretical motivation of the proposed test
statistics.

There are many possible ways that one may misspecify the
model for the random effects bi . To provide a concrete presen-
tation of the impact of random-effect model misspecification
on Ω̃ and Ω̃

∗
, we focus on the logistic model considered by

Heagerty and Kurland (2001) with conditional mean model

E(Yij |Xij , bij ) = {1 + exp(−β0 − β1Xij,1 − β2Xij,2

−β3Xij,1Xij,2 − bij )}−1, (8)

where X ij ,1 = xi represents a between-cluster covariate that
takes values either 0 or 1, Xij ,2 = (j − 1)/(ni − 1) is a
within-cluster covariate, and bij is the random effect, for i =
1 , . . . , m and j = 1 , . . . , ni . The true regression parameter val-
ues are, β 0 = −2, β 1 = 1, β 2 = 0.5, and β 3 = −0.25. Suppose
that one always assumes bij = bi0, where bi0 ∼ N (0, σ2

0), for
i = 1 , . . . , m and j = 1 , . . . , ni . For the truth regarding bij ,
we consider the following four cases, (I): bij = bi0 = σ(ai −
λ)/

√
λ, where ai ∼ gamma(λ, 1), σ = 3, and λ = 1; (II):

bij = bi0, where [bi0 | xi = 0] ∼ N (0, σ2
00) and [bi0 |xi = 1] ∼

N (0, σ2
01), σ00 = 3 and σ01 = 0.5; (III): bij = bi0 + bi1X ij ,2,

where bi0 ∼ N (0, σ2
0) is independent of bi1 ∼ N (0, σ2

1), σ0 =
0.5, σ1 = 2; and (IV): cov(bij , bik ) = σ2ρ|j−k |, where σ = 3

and ρ = 0.5. That is, we assume a normal random-intercept
logistic model whereas the truth is that, the random inter-
cept is nonnormal, or it depends on a covariate, or there is
a random slope in addition to the random intercept, or the
random effects are autocorrelated. We follow the settings used
in Heagerty and Kurland (2001) and choose specific param-
eter values in each case to create situations where moderate
to severe bias is observed in some elements in Ω̂. It is pos-
sible in practice that more than one type of misspecification
occurs, but we choose herein to study cases (I)–(IV) individu-
ally. The results from our case-by-case investigations can shed
light on the more complex cases. For ease of exposition, we
assume in this subsection that ni = n and Gi = G, for i =
1 , . . . , m.

To solve equations (6) and (7), we exploit the approach
of using artificial sample described in Rotnitzky and Wypij
(1994) and also used by Heagerty and Kurland (2001). For ex-
ample, in solving equation (6), the artificial sample consists
of 2n distinct combinations, indexed by l, of zeros and ones
in an n × 1 binary response vector. For the logistic model
in equation (8), the distinct fixed-effect design matrices in-
clude X(1) = [1 0 S 0] and X(2) = [1 1 S S], where 1 is the
n × 1 vector of ones, 0 is the n × 1 vector of zeros, and S =
(0, 1/(n − 1), 2/(n − 1), · · ·, 1)T. Assuming equal propor-
tions of clusters with design matrices X(1) and X(2), the so-
lution to equation (6) maximizes the following weighted log
likelihood over Ω,

2n∑
l=1

{
π(1)(Yl ) log fYl

(
Yl

∣∣X(1);Ω
)

+ π(2)(Yl ) log fYl

(
Yl

∣∣X(2);Ω
)}

, (9)

where fYl
(Yl |X(k );Ω) is given by equation (2), and π(k )

(Yl ) = g(Yl |X(k ); Ω0), for k = 1, 2.
Because it is extremely tedious to analytically derive the

2n +1 probabilities, π(k )(Yl ), for k = 1, 2 and l = 1 , . . . , 2n , we
resort to the Monte Carlo method described in Heagerty and
Kurland (2001). This method estimates each of the two sets
of probabilities, {π(1)(Yl )}2n

l=1 and {π(2)(Yl )}2n

l=1, via a random
sample of size Q. For instance, to estimate π(1)(·), we generate
Q vectors of clustered response from the true GLMM evalu-
ated at X(1), and use the sample proportion of Yl to estimate
π(1)(Yl ), for l = 1 , . . . , 2n. In the subsequent results, we set
n = 8 and Q = 109. To perform the necessary integration,
we use a 50-point Gauss–Hermite quadrature to approximate
equation (2) when computing fYl

(Yl |X(k );Ω). In order to
determine the size of Q to ensure desired precision in estimat-
ing π(k )(·), and to determine the number of quadrature points
needed to achieve a reasonable approximation to the inte-
gral, we experiment on a fifth case, case (V), where the true
and the assumed random-effect models coincide, that is, bij =
bi0 ∼ N (0, σ2

0), where σ0 = 3. Obviously, Ω̃ ≡ Ω0 in case (V).
When n = 8, with Q = 109 and with 50 quadrature points
in the Gauss–Hermite quadrature approximation, we find the
difference between the Ω̃ obtained from this algorithm and
Ω0 to be virtually negligible, suggesting that the algorithm
produces very accurate and precise solutions to equation (6).
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Applying the same algorithm on the reconstructed data
with G = 2, we compute Ω̃

∗
by maximizing

2G∑
l=1

{
π(1)

(
Y∗

l

)
log f ∗

Y∗
l

(
Y∗

l

∣∣X(1);Ω
)

+ π(2)
(
Y∗

l

)
log fY∗

l

(
Y∗

l

∣∣X(2);Ω
)}

, (10)

where f ∗
Y∗

l
(Y∗

l |X(k );Ω), for k = 1, 2, is defined in equation (3).
Strictly speaking, because the true probabilities that spec-
ify the distribution of Y given X, π(k )(·), are estimated, Ω̃
and Ω̃

∗
so obtained are still estimators instead of the lim-

iting MLEs that solve equations (6) and (7). But as rein-
forced by our findings from case (V), the algorithm yields
only very little variability, thus the solutions to equations (6)
and (7) found from this algorithm are close enough to the
true values of Ω̃ and Ω̃

∗
to truly reflect the impact of model

misspecification.
Table 1 presents Ω̃ and Ω̃

∗
under cases (I)–(V). According

to Table 1, except for case (V) where Ω̃ = Ω̃
∗

= Ω0, most of
the elements in Ω̃ and Ω̃

∗
exhibit moderate to large bias.

More importantly, in each case of model misspecification, Ω̃
and Ω̃

∗
are affected differently. The test statistics defined in

equations (4) and (5) are constructed to assess how much Ω̃
and Ω̃

∗
differ, overall or elementwise, and by so doing, detect

model misspecification.

Table 1
The limiting MLEs based on the observed data and the reconstructed data when assuming normal random intercept, bij = bi0 ∼
N (0, σ2

0), in the logistic model in equation (8). Five cases, (I)–(V), of the true random-effect distribution are considered. The
numbers in parentheses are the associated relative bias defined by 100 × (θ̆ − θ0)/θ0, where θ̆ denotes the limiting MLE for a

parameter in the assumed random-intercept logistic model, and θ0 is the true value. The true values of the regression parameters
are β 0 = −2, β 1 = 1, β 2 = 0.5, and β 3 = −0.25.

β 0 β 1 β 2 β 3 σ0

(I)
Observed data −2.70 (35.20) 1.03 (3.19) 0.48 (−3.40) −0.23 (−7.47) 3.16 (5.47)
Reconstructed −2.61 (30.39) 0.91 (−8.54) 0.44 (−11.10) −0.19 (−23.45) 2.34 (−21.90)

(II)
Observed data −1.48 (−26.20) 0.27 (−72.66) 0.39 (−21.30) −0.10 (−58.70) 1.58 (–)
Reconstructed −1.85 (−7.42) 1.08 (7.97) 0.32 (−36.90) 0.06 (−123.31) 1.52 (–)

(III)
Observed data −2.31 (15.41) 1.15 (14.79) 1.22 (144.69) −0.60 (139.96) 1.02 (–)
Reconstructed −1.99 (−0.67) 1.17 (17.17) 0.50 (0.87) −0.76 (205.64) 0.84 (–)

(IV)
Observed data −0.98 (−50.80) 0.49 (−50.54) 0.31 (−38.31) −0.16 (−37.86) 0.74 (−25.67)
Reconstructed −1.06 (−46.78) 0.46 (−54.41) 0.25 (−50.19) −0.15 (−41.16) 0.60 (−79.99)

(V)
Observed data −2.00 (0.00) 1.00 (0.00) 0.50 (0.00) −0.25 (0.00) 3.00 (0.00)
Reconstructed −2.00 (0.00) 1.00 (0.00) 0.50 (0.00) −0.25 (0.00) 3.00 (0.00)

(I): bij = bi0 = σ(ai − λ)/
√

λ, where ai ∼ gamma(λ, 1),σ = 3, and λ = 1.
(II): bij = bi0, where [bij |X ij ,1 = 0] ∼ N (0, σ2

00) and [bij |X ij ,1 = 1] ∼ N (0, σ2
01), with σ 00 = 3 and σ 01 = 0.5.

(III): bij = bi0 + bi1X ij ,2, where bi0 ∼ N (0, σ2
0), bi1 ∼ N (0, σ2

1), σ 0 = 0.5,σ 1 = 2, and bi0 is independent of bi1.
(IV): Random effects are autocorrelated with cov(bij , bik ) = σ2ρ|j−k |, where σ = 3 and ρ = 0.5.
(V): bij = bi0 ∼ N (0, σ2

0), where σ 0 = 3.

4. Finite Sample Performance
4.1 Simulation Study
We now present the finite-sample performance of the pro-
posed test statistics via simulation. In the simulation, 300
Monte Carlo replicated data sets are generated from the logis-
tic model in equation (8) with the random effects generated
according to cases (I)–(V). Each data set consists of m =
300 clusters, each of size n = 8. To create the reconstructed
data, we first sort the subjects within a cluster by the val-
ues of X ij ,2, then we divide the sorted data in each cluster
into G equal subgroups. This subgroup composition, referred
to as homogeneous composition henceforth, maximizes the
between-subgroup variation and yields more efficient MLEs
based on the reconstructed data. We set G = 2 for all cases
except for case (IV), where we set G = 4. The choice of G will
be elaborated in the next subsection.

Based on each Monte Carlo replicate, we compute Ω̂, Ω̂
∗
,

and the proposed test statistics. The Monte Carlo averages of
Ω̂ and Ω̂

∗
(not shown) resemble the results in Table 1. The

empirical powers and sizes of the test statistics are presented
in Table 2, with significance level equal to 0.05. The results
from case (V) suggest that the test statistics have sizes close
to the nominal level. When misspecification occurs, T 2 shows
promising power, and at least one of the tθ ’s tends to be
significant. Furthermore, combining the results in Tables 1
and 2, it appears that tθ tends to be significant more often
when θ̃ deviates further from the truth.
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Table 2
The empirical powers and sizes of tθ and T 2 from 300 Monte
Carlo replicated data sets, each with m = 300 clusters, and

cluster size n = 8. Assume a normal random-intercept logistic
model. The true random-effect models are specified in cases

(I)–(V).

tβ 0 tβ 1 tβ 2 tβ 3 tσ 0 T 2

(I) 0.04 0.03 0.05 0.06 0.72 0.66
(II) 0.70 0.87 0.07 0.06 0.06 1
(III) 0.61 0.04 0.76 0.08 0.19 0.95
(IV) 0.22 0.05 0.05 0.04 0.64 0.99
(V) 0.03 0.05 0.05 0.06 0.04 0.03

(I): bij = bi0 = σ(ai − λ)/
√

λ, where ai ∼ gamma(λ, 1), where
σ = 3, and λ = 1.

(II): bij = bi0, where [bij |X ij ,1 = 0] ∼ N (0, σ2
00) and [bij |X ij ,1 =

1] ∼ N (0, σ2
01), with σ 00 = 3 and σ 01 = 0.5.

(III): bij = bi0 + bi1X ij ,2, where bi0 ∼ N (0, σ2
0), bi1 ∼ N (0, σ2

1),
σ 0 = 0.5,σ 1 = 2, and bi0 is independent of bi1.

(IV): Random effects are autocorrelated with cov(bij , bik ) =
σ2ρ|j−k |, where σ = 3 and ρ = 0.5.

(V): bij = bi0 ∼ N (0, σ2
0), where σ 0 = 3.

Note: Powers greater than 0.10 are in boldface.

It is not meaningful to compare the MLEs or the test statis-
tics among different types of model misspecification because
the influences of different model misspecifications are not al-
ways comparable. For instance, one cannot conclude, by com-
paring the results from cases (I) and (II) in Table 2, that
the test statistics have more power to detect the second type
of misspecification than the first type. Within each of the
four types of misspecification, we monitor the changes in tθ

and T 2 as the misspecification becomes more severe. In what
follows, we report in detail the results for case (III), when
there is a random coefficient bi1 for the within-cluster covari-
ate in the true model. Fixing the variance component for bi0 at
σ2

0 = 0.25, we raise the variance component for bi1 by increas-
ing σ1 from 0.5 to 3 so that the assumed random-intercept
model deviates further from the true model gradually. The
observed empirical powers of the test statistics when m =
100 and 300 are given in Table 3. It is evident from Table 3
that, as the misspecification becomes more severe, the power

Table 3
The empirical powers of tθ and T2 from 300 Monte Carlo

replicated data sets, each with m = 100 or 300 clusters, and
cluster size n = 8. Assume normal random-intercept logistic
model. The true random-effect model is given by bij = bi0 +
bi1X ij ,2, where bi0 ∼ N (0, 0.52), bi1 ∼ N (0, σ2

1), and bi0 is
independent of bi1.

m σ1 tβ 0 tβ 1 tβ 2 tβ 3 tσ 0 T 2

100 0.5 0.04 0.05 0.06 0.06 0.14 0.14
1 0.08 0.06 0.09 0.06 0.11 0.15
2 0.31 0.05 0.35 0.04 0.05 0.49
3 0.56 0.04 0.69 0.06 0.12 0.84

300 0.5 0.06 0.06 0.07 0.06 0.08 0.13
1 0.13 0.03 0.19 0.04 0.03 0.23
2 0.57 0.04 0.74 0.07 0.20 0.94
3 0.94 0.04 0.98 0.09 0.32 1

of T 2 increases quickly, so do the powers of tβ 0 and tβ 2 , even
when the sample size is moderate. On the other hand, when
the misspecification has only a small effect on the estima-
tors, the test statistics are much less significant. We have ob-
served the same phenomenon for the other three cases, except
that the pattern of tθ ’s differs from case to case, where the
pattern is in terms of which tθ tends to be more significant.
Overall, the study on the power suggests that T 2 can have suc-
cess in detecting random-effect model misspecification, and tθ

can distinguish among different types of misspecification.

4.2 Implementation Details
The results in Table 2 reveal that the pattern regarding the
magnitude of tθ ’s depends on the nature of the model mis-
specification. When the distribution family of a random effect
is misspecified, the tθ for the corresponding variance compo-
nent tends to be significant. If the variance of the random
intercept depends on a covariate, or a random slope for a co-
variate is missing from the assumed model, then the tθ asso-
ciated with that covariate will stand out as being significant.
Lastly, significant tθ ’s for the fixed intercept and the variance
components can be evidence of misspecifying the correlation
structure of the random effects. Based on such knowledge, we
propose a two-step diagnostic method to detect random-effect
model misspecification. In the first step, one tests globally the
existence of model misspecification via T 2. If T 2 is not signi-
ficant, then one may conclude lack of sufficient evidence of
model misspecification. Otherwise, one executes the second
step, where individual tθ is inspected. The pattern of the tθ

values will provide clues regarding the type of model misspec-
ification.

The operating characteristics of the proposed test statistics
are affected by the subgroup composition. Because the data
reconstruction causes loss in information, which can lead to
unreliable inference and degrade the proposed testing proce-
dure, we recommend use of homogeneous composition when-
ever possible to minimize the information loss. As for the
number of subgroups in a cluster, G, we find in cases (I)–(IV)
that smaller G(≥2) results in larger discrepancy between Ω̃
and Ω̃

∗
. Therefore, with moderate or large samples, we suggest

G = 2 in order to magnify the effect of model misspecification.
One exception is that, when the random effects are autocor-
related, larger G(<n) leads to higher power especially with
small or moderate samples. This is expected in finite samples
because to detect special correlation structure within a clus-
ter requires more information per cluster. In summary, when
creating the reconstructed data, unless one suspects autocor-
related random effects, or when m or n is small, one should set
G = 2 to maximize the power of the tests, and homogeneous
composition is always preferable. To preserve the nominal size
of the tests depends more on the size of m than the choice of
G. Under the current simulation setting, the type I errors of
the tests remain close to the nominal level when m >50. As a
preliminary check of whether m is large enough for the test-
ing procedure to be reliable, one can estimate the variance of
Ω̂ and Ω̂

∗
first to see whether or not they are terribly variable.

We explore an alternative strategy of creating recon-
structed data where we keep a fraction of the data within
each cluster. Note that the likelihood for the reconstructed
data so obtained has the same functional form as that for
the observed data. In contrast, the likelihood function for our
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reconstructed data and the likelihood for the observed data
have different functional forms. Such nontrivial difference re-
sults in Ω̃ and Ω̃

∗
far more distinct than those resulting from

the alternative strategy when there exists model misspecifi-
cation. And substantial distinction between Ω̃ and Ω̃

∗
is the

key to detecting model misspecification. Simulation studies
(not shown) show that the power of the test statistics under
the alternative strategy is much lower than that under the
strategy used in this article.

5. Additional Fixed-Effect Misspecification
Besides misspecifying the random effects, one may as well
misspecify the fixed-effect part of the GLMMs. To investigate
the characteristics of the test statistics in the presence of both
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Figure 1. Plots (a) and (b) are β̂0 under the wrong fixed-effect specification versus β̂0 under the correct fixed-effect specifi-
cation for case (III) [◦] and case (V) [�]. Plots (c) and (d) are T 2 for the wrong fixed-effect specification versus T 2 for the
correct fixed-effect specification under case (III) [◦] and case (V) [�]. The dashed reference lines in (a) and (b) are at the
true value of β 0. The dashed reference lines in (c) and (d) are at the 95th percentile of F (4, 296). The solid diagonal lines in
all plots are the lines with slope one and intercept zero. The plotted results are from 50 Monte Carlo replications randomly
selected from a total of 300 Monte Carlo replications.

sources of misspecification, we design experiments where dif-
ferent types of fixed-effect misspecification interact with the
random-effect specification given by cases (I)–(V). Examples
of fixed-effect misspecification considered in our experiments
include misspecifying the functional form of a covariate, miss-
ing a between- or within-cluster covariate, and missing the
interaction of two covariates. In all the interactions we have
studied, we observe amazing robustness of the test statistics
to the additional fixed-effect misspecification. One notewor-
thy phenomenon is that, when the random effect is correctly
specified as in case (V), T 2 and all tθ ’s remain mostly in-
significant despite the fixed-effect misspecification.

Figure 1 depicts the results from one of these experiments,
where we consider the random-effect specification in cases
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(III) and (V), and assume the conditional mean model given
by

E(Yij |Xij , bij ) = {1 + exp(−β0 − β1Xij,1 − β2Xij,2 − bij )}−1,

whereas the truth is E(Y ij |Xij , bij ) = {1 + exp(−β 0 −
β 1X ij ,1 − β 2X

2
ij ,2 − bij )}−1, where β 0 = −2, β 1 = 1, and

β 2 = 0.5 or 2. Figure 1a and b show that, whether or not the
random-effect model is misspecified, misspecifying the fixed
effect leads to biased MLEs. However, Figure 1c and d sug-
gest that fixed-effect misspecification has little impact on T 2.
More interestingly, under the correct model for the random
effect, almost all T 2 fall below the critical value even when
the fixed effect is misspecified.

A closer look at Ω̃ and Ω̃
∗

reveals that the impact of
random-effect model misspecification on Ω̃

∗
− Ω̃ dominates

that of fixed-effect misspecification. That is, if the fixed ef-
fect is misspecified, Ω̂ and Ω̂

∗
change more similarly than the

way they change due to random-effect model misspecification.
Consequently, the test statistics are usually robust to fixed-
effect misspecification. This allows one to test the random-
effect specification and fixed-effect specification separately by
first using our diagnostic method to check the random-effect
assumptions, then applying other tests on the fixed effects.
The diagnosis in the first step is fairly robust to the fixed-
effect specification yet to be justified in the second step.

6. Application to Respiratory Infection Data
We now apply the proposed diagnostic method to the data
analyzed using semiparametric regression in Lin and Carroll
(2001). The data are from a study where preschool children
were examined every three months for 18 months for the pres-
ence of respiratory infection, which recorded each child’s age
at the beginning of the study, gender, height, season when
the examination took place, presence of respiratory infection,
etc. The subsequent analyses use a subset of the data from
192 children who were examined at least four times in the
study. The response variable of interest is the binary variable,
Y ij , which equals one if child i had symptoms of respiratory
infection during examination j, and zero otherwise, for i =
1 , . . . , 192 and j = 1 , . . . , ni , where ni ranges from 4 to 6.

Based on our preliminary analysis and the analysis pre-
sented in Lin and Carroll (2001), we first posit a condi-
tional mean model given by, for i = 1 , . . . , 192 and j =
1 , . . . , ni , E(Y ij = 1 | bi0) = {1 + exp(−β 0 − β 1bslagei −
β 2seasonij − bi0)}−1, where “bslage” is defined as [{baseline
age (in months) − 36}/12]3, and bi0 is the normal random in-
tercept with variance σ2

0. The reconstructed data have Gi = 2
subgroups within each child, for i = 1 , . . . , 192, created using
homogeneous composition according to season. Depending on
ni , the subgroup size can be 2 or 3. The MLEs, Ω̂ and Ω̂

∗
,

and the test statistics are computed for this normal random-
intercept logistic model. The p-value for the resultant T 2 is
0.01, indicating strongly that there exists model misspecifi-
cation. Moreover, the values of tβ 0 and tβ 2 are highly signif-
icant, with p-values 0.001 and 0.008, respectively. This leads
us to consider another logistic model with a random slope for
“season” given by

E(Yij = 1 | bij ) = [1 + exp{−β0 − β1bslagei

− (β2 + bi1)seasonij − bi0}]−1,

(11)

where bi1 ∼ N (0, σ2
1). We find σ̂2

0 under equation (11) nearly
zero. Hence we drop bi0 from equation (11) and fit a normal
random-slope logistic model. This model results in a T 2 with
p-value 0.09. Using 0.05 as the significance level, we conclude
that there is not sufficient evidence of model misspecification
for the normal random-slope model. We also conduct the vari-
ance component test developed by Lin (1997). Lin’s test for
the normal random-slope model suggests that the variance
component for the random slope is highly significant, with
p-value less than 0.001. Table 4 presents the MLEs
and the test statistics from the analyses on the nor-
mal random-intercept model and the normal random-slope
model.

It is worth pointing out that, in Table 4, the values of tβ 0

and tβ 2 in the normal random-slope model are much less
significant than their counterparts in the normal random-
intercept model, but they still exceed in absolute value the
critical value (≈1.97) at 0.05 significance level. However, we
do not view this as sufficient evidence of model misspecifi-
cation because the global test statistic T 2 for the normal
random-slope model is not significant. If one intends to con-
clude model misspecification if at least one tθ is significant,
then one is conducting multiple comparisons. To control the
familywise type I error in multiple comparisons at 0.05, the
critical value for tθ should be higher (in absolute value) than
1.97. We do not pursue the issue of multiple comparisons in
this article.

If one is concerned about the significant tβ 0 and tβ 2 ,
or the nearly significant T 2 for the normal random-slope
model, one may continue to search for more appropriate as-
sumed model of the random coefficient for “season.” For in-
stance, we explore the assumed model for bi1 specified by
the first-order seminonparametric density (Chen et al., 2002),
which is given by fbi 1 (bi1; τ ) = {a0 + a1η

−1(bi1 − ξ)}2η−1 ×
φ{η−1(bi1 − ξ)}, where φ(·) is the standard normal density
function, a0 = sin(ω), a1 = cos(ω), ω ∈ (−π/2, π/2], η > 0,
τ = (ω, η)T , and lastly, ξ = −2ηa0a1 so that E(bi1) = 0. The
estimator for σ2

1 = var(bi1) is a function of the estimated τ ,
and we use the Delta method to obtain a variance estima-
tor for σ̂2

1, and also the variance estimator ν̂2 needed in tσ 2
1
.

As shown in Table 4, none of the tθ ’s is significant when the
assumed model for the random slope is more flexible.

7. Discussion
We focus on clustered binary response data and propose a
two-step diagnostic method to detect random-effect model
misspecification in GLMMs. This method utilizes both the
observed data and a reconstructed data created from the ob-
served data. It will fail if Ω̂ and Ω̂

∗
are both inconsistent

due to model misspecification yet they converge to the same
limit as m → ∞. We have not encountered such a case so
far. We have investigated a wide range of GLMMs relevant in
practice, and found that the proposed method can be very ef-
fective in detecting random-effect model misspecification, and
moreover, in directing model selection.
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Table 4
The MLEs in the logistic mixed model for the indicator of presence of respiratory infection and the test statistics.
The numbers in parentheses next to the MLEs are the sandwich-type estimated standard errors for the MLEs. The

numbers in parentheses next to the test statistics are the associated p-values. The notation “SNP” refers to the
first-order seminonparametric.

Observed data Reconstructed data tθ T 2

Normal β 0 −2.57 (0.33) −1.88 (0.40) 3.20 (0.001) 3.24 (0.01)
Random intercept β 1 −0.04 (0.02) −0.04 (0.02) −1.08 (0.281)
Logistic model β 2 −0.09 (0.10) −0.38 (0.16) 2.66 (0.008)

σ2
0 0.89 (0.45) 0.90 (0.59) 0.01 (0.995)

Normal β 0 −2.07 (0.27) −1.47 (0.39) 2.34 (0.02) 2.08 (0.09)
Random slope β 1 −0.04 (0.02) −0.04 (0.02) 1.24 (0.21)
Logistic model β 2 −0.29 (0.14) −0.59 (0.21) −2.06 (0.04)

σ2
1 0.12 (0.07) 0.18 (0.12) 0.66 (0.51)

SNP β 0 −2.05 (0.29) −1.40 (0.47) 1.70 (0.09) 1.81 (0.11)
Random slope β 1 −0.04 (0.02) −0.04 (0.02) 0.98 (0.33)
Logistic model β 2 −0.34 (0.22) −0.70 (0.40) −1.10 (0.27)

σ2
1 0.22 (0.26) 0.37 (1.01) 0.15 (0.88)

The intriguing robustness of the proposed test statis-
tics to fixed-effect misspecification calls for more thor-
ough exploration on the property of MLE under model
misspecification with different data structure. Better under-
standing of this may suggest ways to improve the testing pro-
cedure, and even lead to a more sophisticated way to detect
random-effect model misspecification and fixed-effect misspec-
ification separately in a unified framework.

We are currently investigating generalization of the pro-
posed method to the nonlinear mixed models for other types
of nonnormal response. The use of reconstructed data is a
novel idea that we have not seen being studied in the liter-
ature. This idea has the potential to test statistical assump-
tions that have been claimed to be “not testable” due to lack
of observed data on latent or missing quantities, such as as-
sumptions on missing data mechanism. In conclusion, the use
of reconstructed data is a topic worth further investigation.

8. Supplementary Materials
Web Appendix A referenced in Section 3 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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