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a b s t r a c t

Mixed effects models provide a suitable framework for statistical inference in a wide range
of applications. The validity of likelihood inference for this class of models usually depends
on the assumptions on random effects. We develop diagnostic tools for detecting random-
effects model misspecification in a rich class of mixed effects models. These methods are
illustrated via simulation and application to soybean growth data.
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1. Introduction

Mixed effects models are widely used in statistical applications in biology, agriculture, sociology, and environmental
science, where clustered data are often collected. Under the framework of mixed effects models, it is straightforward to
make prediction at the inter-cluster level as well as the intra-cluster level. Davidian and Giltinan (2003) and McCulloch
et al. (2008) provide a comprehensive survey of mixed effects models. A major concern in this realm lies in random-effects
assumptions. Hartford and Davidian (2000), Heagerty and Kurland (2001), Agresti et al. (2004) and Litière et al. (2007, 2008)
showed various adverse effects of erroneous random-effects assumptions on inference.
Semiparametric and nonparametric methods have been developed to relax the parametric assumptions on random

effects. Davidian and Gallant (1993) used a flexible, smooth density to characterize the distribution of random effects.
Fattinger et al. (1995) used spline functions to transform the random effects, initially assumed to be normal, so that the
resulting random effects can follow an arbitrary distribution dictated by data. Lai and Shih (2003) took a nonparametric
approach to estimate the distribution of random effects. The price one pays to avoid suspicious parametric assumptions by
using these methods is often heavy computation. Some of these methods only provide discrete estimation for the random-
effects distribution. This can be unsatisfactory when the distributional characteristics of random effects are of interest.
Because a parsimonious parametric model can be appealing for its simplicity and potential gain in efficiency, techniques
to check parametric assumptions on random effects in mixed effects models are valuable.
There are three main lines of development thus far for assessing the validity of model specification. The first line

of work is based on the information matrix equivalence under a correct model (White, 1981, 1982). Focusing on the
variance–covariance structure for the random effects in nonlinear mixed models (NLMM), Vonesh et al. (1996) compared
two variance–covariance estimators that are equivalent under the correct model. Litière (2007) developed a series of tests
motivated by the information matrix equivalence to diagnose random-effects misspecification in linear mixed models
(LMM) and generalized linear mixed models (GLMM). The second line of development aims at obtaining an empirical
distribution of the random effects. For example, Lange and Ryan (1989) estimated the cumulative distribution of random
effects using the empirical Bayes estimates of individual random effects. Ritz (2004) extended their results and derived a
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weighted empirical process for the random effects. Waagepetersen (2006) simulated random effects from the conditional
distribution of random effects given the observed data in GLMM. The third line of research has some similarity with the first
line but is relatively underdeveloped. Instead of comparing two information matrices, one compares two estimators for the
fixed effects, with one robust to model misspecification and the other sensitive to it. This idea was once prevalent in the
econometrics community (Hausman, 1978) and was recently used by Tchetgen and Coull (2006) to construct a test for a
specific form of GLMM.
These existing diagnostic methods are either too general to provide guidance for correction when misspecification is

detected or too specific to allow immediate extension to complex models or to detect departures other than normality
assumption. Admittedly, as shown by Verbeke and Molenberghs (submitted for publication), without assuming other
component models in a hierarchical mixed effects model correctly specified, random-effects assumptions are unverifiable.
With multiple uncertain component models, one can test the sensitivity of inference to multiple model assumptions but
may not be able to single out the assumptions on random effects. If one has more confidence in the other component
models than in the random effects, then it is possible to verify random-effects assumptions by studying the robustness
of inference under these assumptions. This is the underlying philosophy of the methods discussed in this article. As a
starting point, Huang (2009) provided empirical evidence that MLEs in a GLMM for binary response are not robust to data
grouping in the presence of random-effects model misspecification. Motivated by this finding, she constructed diagnostic
tests based on the discrepancy between the observed-data MLEs and the MLEs from the induced grouped data. Compared
to the aforementioned existing methods, her tests can be more informative because the outcomes of the tests can depend
on the source of model misspecification besides its existence.
In this article, we shed further light on the ideamotivatingHuang’smethod,which is the content of Section 2. In Section 3,

this idea is extended to a richer class of mixed effects models where the response is not binary. New test statistics that
are computationally more efficient than those in Huang (2009) are defined in Section 4, where simulation studies are also
presented. In Section 5, the diagnostic techniques are applied to a real data example. Concluding remarks and future research
topics are given in Section 6.

2. Diagnostic method for GLMM

2.1. Test statistics

Denote by� the p× 1 vector of unknown parameters in the model, by �̃ and �̃c the limiting MLE based on the observed
data and that based on the grouped data, respectively, where the limit is taken as the number of clusters,m, tends to infinity
and the size of the cluster is bounded. Under a correct model, it is expected that �̃ = �̃c , and erroneous model assumptions
can result in �̃ 6= �̃c . Following this claim, Huang (2009) considered testing H0 : �̃ = �̃c , and proposed test statistics that
compare the finite-sample counterparts of �̃ and �̃c , denoted by �̂ and �̂c . The follow test statistics implement elementwise
comparison,

t1 = (�̂− �̂c)#vecdiag(V̂−11 ), (1)

where V̂1 is an estimator for the variance–covariance matrix of �̂− �̂c, vecdiag(V̂−11 ) denotes the column vector consisting
of the diagonal elements of V̂−11 , and ‘‘#’’ is the elementwise multiplication operator. Detailed derivation of V̂1 is given in
Huang (2009), where it is shown that, under H0, an element in t1 associated with a parameter γ , t1(γ ), follows a Student’s
t distribution withm− p degrees of freedom. Another test statistic compares the entire vector of MLEs as follows,

F1 =
m− p
p(m− 1)

(�̂− �̂c)
TV̂−11 (�̂− �̂c), (2)

which follows an F(p,m − p) distribution under H0. A significantly large value of F1 casts doubt about the veracity of H0.
Individual values of t1(γ ) assess the sensitivity of individual parameter estimate to data grouping, which can relate to how a
model is misspecified. These tests do not directly test the validity of random-effects assumptions. Rather, they are designed
to test if the inference is robust to data grouping under these model assumptions, and being robust is no guarantee for
correct model assumptions, but is merely some reassurance that the inference, even if it is inconsistent, may not deteriorate
(in terms of consistency but not efficiency) when grouped data are used. In the next subsection, we use a concrete example
to elaborate the fundamental idea behind these tests and, by so doing, give one some confidence in extending this idea to
other mixed effects models.

2.2. Limiting maximum likelihood estimators and coarsened data

Grouped data is a special case of coarsened data (Heitjan and Rubin, 1991; Tsiatis, 2006). Other examples of coarsened
data common in practice include censored data, incomplete data due to missingness, rounded data, etc. Before focusing on
grouped data, it is instructive to first introduce the notion of coarsened data generically. Let (1i, Y∗i ) be the ith datum in
the coarsened data, where 1i is the coarsening variable (if needed), and Y∗i = C1i(Yi) is the coarsened response, C1i(Yi) is
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a many-to-one coarsening function that maps Yi to Y∗i . Designing a coarsening mechanism includes specifying a probability
model for 1i and defining a coarsening function C1i(·). Likelihood inference based on coarsened data can depend on both
aspects of a coarsening mechanism. Moreover, the effect of random-effects model misspecification on inference based on
coarsened data can also depend on these two aspects. In other words, likelihood inference based on coarsened data can be
affected by the interaction of model misspecification and coarsening mechanism. In what follows, an example is used to
demonstrate explicitly that �̃c resulting from grouped data depends on the group size and the source of misspecification.
Let Yi = (Yi1, . . . , Yini)

T denote the vector of binary responses observed from cluster i, for i = 1, . . . ,m. Suppose that
one assumes a logistic model as follows,

P(Yij = 1|Xij, bi0) =
{
1+ exp(−β0 − bi0 − β1Xij,1 − β2Xij,2 − β3Xij,1Xij,2)

}−1
, (3)

where Xij = (Xij,1, Xij,2)T, Xij,1 = xi (=0 or 1) is a between-cluster covariate, Xij,2 = (j − 1)/(n − 1) is a within-cluster
covariate, for j = 1, . . . , ni, bi0 is a random intercept, ni = n = 12 for i = 1, . . . ,m, and β = (β0, β1, β2, β3)

T is the
vector of fixed effects. Moreover, one assumes that bi0, i = 1, . . . ,m, are independent and identically distributed according
to N(0, σ 20 ). Under these assumptions, the observed-data density associated with cluster i is given by

fYi(Yi|Xi;�) =
∫
fbi0(bi0; σ0)

ni∏
j=1

P(Yij = 1|Xij, bi0)YijP(Yij = 0|Xij, bi0)1−Yij dbi0, (4)

where fbi0(bi0; σ0) = σ
−1
0 φ(bi0/σ0), φ(·) is the standard normal density function, and� = (βT, σ0)T.

Given the above assumed (possiblymisspecified)model, we next design three truemodels that deviate from the assumed
model in different ways to represent several commonly encounteredmisspecification in practice. Thenwewill demonstrate
the dependence of �̃c on data grouping under each type ofmisspecification. Denote by gYi(Yi|Xi;�0) the true observed-data
density for cluster i, where�0 is the vector of true parameters, among which β = (−2, 1, 0.5,−0.25)T.

(M1) gYi(Yi|Xi;�0) is identical to (4) except that bi0 = σ0(ai − λ)/
√
λ, where ai ∼ gamma(λ, 1), σ0 = 3, and λ = 1.

(M2) gYi(Yi|Xi;�0) is identical to (4) except that [bi0|xi = 0] ∼ N(0, σ
2
00) and [bi0|xi = 1] ∼ N(0, σ

2
01), where σ00 = 3 and

σ01 = 0.5.
(M3) The true logistic model is given by

P(Yij = 1|Xij, bi0, bi1) =
[
1+ exp

{
−β0 − bi0 − β1Xij,1 − (β2 + bi1)Xij,2 − β3Xij,1Xij,2

}]−1
,

where bi0 ∼ N(0, σ 20 ) is independent of bi1 ∼ N(0, σ
2
1 ), σ0 = 0.5, and σ1 = 2.

Exploiting the result in Rotnitzky and Wypij (1994), one has

�̃ = argmax
�

2n∑
l=1

{
π (1)(Yl) log fYl(Yl|X

(1)
;�)+ π (2)(Yl) log fYl(Yl|X

(2)
;�)

}
, (5)

where {Yl, l = 1, . . . , 2n} forms the sample space of the n × 1 binary response Y,X(1) = [1 0 S 0] and X(2) = [1 1 S S] are
the two distinct fixed-effects design matrices, 1 denotes the n × 1 vector of ones, 0 denotes the n × 1 vector of zeros, and
S = (0, 1/(n−1), 2/(n−1), . . . , 1)T. Lastly, π (k)(Yl) = gYl(Yl|X

(k)
;�0), for k = 1, 2, are the true probabilities of observing

Yl when the fixed-effects design matrix is X(k), for l = 1, . . . , 2n. Computation details to obtain �̃ are described in Huang
(2009) and omitted here.
Based on the observed data, we generate grouped binary responses by first forming Gi groups within cluster i, then

defining Y∗i = (Y
∗

i1, . . . , Y
∗

iGi
)T, where Y ∗ig is equal to one if at least one of the Yij’s in group g is one, and zero otherwise, for

g = 1, . . . ,Gi, i = 1, . . . ,m. For simplicity, we set Gi = G for i = 1, . . . ,m. The density of the grouped data, fY∗i (Y
∗

i |Xi;�),
can be straightforwardly derived based on fYi(Yi|Xi;�) (see Eq. (3) in Huang (2009)). Then �̃c can be similarly defined by (5),
with fYl(Yl|X

(k)
;�) replaced by fY∗l (Y

∗

l |X
(k)
;�), the true probabilitiesπ (k)(Y∗l ) = gY∗l (Y

∗

l |X
(k)
;�0), and the new sample space

being {Y∗l , l = 1, . . . , 2
G
}. To check the accuracy of the calculation and to provide reference values for the limiting MLEs, we

also compute �̃ and �̃c according to (5) when the true model coincides with the assumed model (4), as it is expected that
�̃ = �̃c = �0 in this case.
Under the case of correct modeling and three cases of model misspecification (M1)–(M3), we compute �̃ and �̃c with

G = 2, 3, 4, 6, where �̃ can be viewed as a special case of �̃c with G = n = 12. The results are depicted in Fig. 1. As
expected, all MLEs are more or less biased in the presence of model misspecification, and the limiting MLEs under the
correct modeling always retain at their true values. Note that, at a fixed level of G, the bias is invisible without knowing
�0; and the bias becomes visible as G varies (with �0 still unknown) because then the bias also varies, as demonstrated
in Fig. 1. Since the value of G is part of the coarsening mechanism one designs, the dependence of the bias on G can be
revealed by data at hand and so is the existence of bias. More importantly, Fig. 1 suggests that which element in �̃c is most
sensitive to the change in G depends on the source of model misspecification. In particular, in case (M1), where the only
misspecification is on the distribution family of the random intercept, the dependence of σ̃0c on G stands out. In case (M2),
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Fig. 1. Limiting MLEs of four parameters under the correct modeling (‘‘c’’) and under three cases of model misspecification (M1)–(M3) (‘‘1’’, ‘‘2’’, and ‘‘3’’)
defined in Section 2.2. The group size of G = 12 refers to the observed data.

where the variance of the true random intercept depends on Xij,1, but one ignores this heterogeneity in the assumedmodel,
β̃1c changesmost dramatically as G varies. In case (M3), where there is a random slope associatedwith Xij,2 in the truemodel
while one excludes it in the assumed model, β̃2c is the least robust to G.
In summary, the novel thrust of Huang’s method is to use coarsened data to reveal the dependence of the bias in

MLEs on the interaction of data coarsening and model misspecification, and to further pinpoint the possible source of
misspecification. This method is easy to implement because calculating the test statistics only involves routine maximum
likelihood. The operation of grouping in this method forms a partition on the response vector space. Such partition differs
from the partition on the covariate space used in the goodness-of-fit (GOF) test for logistic models proposed by Tsiatis
(1980), the GOF tests for proportional hazards models discussed in Schoenfeld (1980), and the tests for GEE developed by
Barnhart andWilliamson (1998). Another type of partition used in constructing GOF tests is the one based on the predicted
probabilities in logistic models, as in Hosmer and Lemeshow (1980) and Horton et al. (1999), the latter of which pointed out
the equivalence between their partition and the partition on the covariate space. Besides the nature of the utilized partition,
another distinct feature of our method is that we compare two sets of estimators for model parameters whereas the above
existing GOF tests compare the response resulting from the grouping with the expected response such as expected cell
counts.
Direct computation of �̃ and �̃c is infeasible for more complex data structure andmodels, such as NLMM. Hence explicit

analyses of effects ofmodelmisspecification on �̃c as above cannot be easily generalized. But it is not unreasonable to expect
that, in general, the limiting MLE can be sensitive to data coarsening in the presence model misspecification. This motivates
the following extension to NLMM for non-binary response.

3. Coarsened data in NLMM

3.1. Model specification

Now consider an NLMMwith the intra-cluster model given by Yij = f (Xij, βi)+εij, i = 1, . . . ,m, j = 1, . . . , ni, whereXij
denotes the covariates associated with observation j in cluster i, βi is the cluster-specific parameter vector for cluster i, f (·)
is a function known up to βi, and εij is the intra-cluster random errors. Define Xi = (XTi1, . . . ,X

T
ini
)T, εi = (εi1, . . . , εini)

T,
and assume εi|βi ∼ N

{
0,Ri(βi, ξ)

}
, where ξ denotes parameters in the variance–covariance matrix of εi besides βi. The
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inter-cluster model is assumed to be

βi = g(Wi, β, bi), i = 1, . . . ,m, (6)

where β is the vector of the fixed effects, bi are the random effects associated with cluster i, andWi denotes the observable
attributes of cluster i. It is assumed that {Yij, j = 1, . . . , ni} are conditionally independent given (Xi, bi), i = 1, . . . ,m.
Define fij = f (Xij, βi) and let fi = (fi1, . . . , fini)

T, for i = 1, . . . ,m. The density of the observed data from cluster i is then

fYi(Yi;�) =
∫
fbi(bi; τ)

|Ri(βi, ξ)|−1/2

(2π)ni/2
exp

{
−
1
2
(Yi − fi)TRi(βi, ξ)

−1(Yi − fi)
}
dbi, (7)

where fbi(bi; τ) is the assumed density of bi indexed by variance components τ, and � = (βT, ξT, τT)T. In this article, we
assume that the nonlinear function f (·) and the intra-cluster variance–covariance matrix Ri(·) are correctly specified but
that g(·) in (6) and fbi(bi; τ) in (7) may be incorrect.

3.2. Coarsening mechanism

There are more choices of coarsening mechanism for non-binary response than for binary response. From a practical
standpoint, because the diagnostic method is likelihood-based, it is preferable that the chosenmechanism yields a tractable
coarsened-data density. For illustrative purpose, we focus on two coarsening mechanisms that yield tractable likelihood in
the forthcoming simulation study.
Both mechanisms start with partitioning cluster i into Gi groups, each of size kig , for i = 1, . . . ,m, g = 1, . . . ,Gi.

According to the first mechanism, a new response for group g in cluster i is defined by

Y (a)ig = k
−1
ig

∑
j∈Iig

Yij, i = 1, . . . ,m, g = 1, . . . ,Gi, (8)

where Iig denotes the index set corresponding to the observations in group g of cluster i. The secondmechanism defines the
new response as

Y (b)ig = maxj∈Iig
Yij, i = 1, . . . ,m, g = 1, . . . ,Gi. (9)

We refer to the coarsened datawith response defined in (8) as average-coarsened data (ACD), and to the coarsened datawith
response defined in (9) as maximum-coarsened data (MCD). Define Y(a)i = (Y

(a)
i1 , . . . , Y

(a)
iGi
)T and Y(b)i = (Y

(b)
i1 , . . . , Y

(b)
iGi
)T, for

i = 1, . . . ,m. It can be shown that the density of Y(a)i is

fY(a)i
(Y(a)i ;�) =

∫
fbi(bi; τ)

|R∗i (βi, ξ)|
−1/2

(2π)Gi/2
exp

{
−
1
2

(
Y(a)i − f∗i

)T
R∗i (βi, ξ)

−1
(
Y(a)i − f∗i

)}
dbi, (10)

where f∗i = Sifi,R∗i (βi, ξ) = SiRi(βi, ξ)STi , and Si satisfies Y
(a)
i = SiYi. The density of Y

(b)
i is more involved. In a simple case

with Ri(βi, ξ) = diag(σ 2i1, . . . , σ
2
ini
), the density of Y(b)i is given by

fY(b)i
(Y(b)i ;�) =

∫
fbi(bi; τ)

Gi∏
g=1

[∏
j∈Iig

σ−1ij Φ
{
σ−1ij

(
Y (b)ig − fij

)}

×

∑
j∈Iig

φ
{
σ−1ij

(
Y (b)ig − fij

)}
Φ−1

{
σ−1ij

(
Y (b)ig − fij

)}]
dbi, (11)

where Φ(·) denotes the standard normal cumulative distribution function. Denote by �̂
(a)
c and �̂

(b)
c the MLEs for � based

on ACD and MCD, respectively, and by �̃
(a)
c and �̃

(b)
c their limits asm→∞with max1≤i≤m Gi bounded. With the likelihood

function well defined, the test statistics t1 and F1 can be easily calculated and used to assess the sensitivity of MLEs to data
coarsening under the presumed NLMM for non-binary response.
The power of the tests depends on how sensitive the inference is to the interaction of model assumptions and data

coarsening. We now construct a measure of this sensitivity, which sheds some light on the nature of t1 and F1 from a
different angle. The proposed measure is closely related to a sensitivity measure defined by Gustafson (2001). He defined a
ratio of two Kullback–Leibler (KL) divergence, with the numerator being the KL divergence of the asymptotic distribution
of the misspecified-model MLE from the asymptotic distribution of the true-model MLE, and the denominator being the KL
divergence of themisspecifiedmodel from the truemodel. For two distributions with densities, h1 and h2, the KL divergence
is defined by KL(h1 ‖ h2) =

∫
log(h1/h2)dH1, where H1 is the distribution function corresponding to h1. Even though

the true model is unknown in practice, Gustafson’s sensitivity measure can enhance one’s understanding of the effects of
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model misspecification on likelihood inference. Following his idea, for a parameter γ , we use the following ratio of two KL
divergence to assess the sensitivity of inference for γ ,

KL{h(γ̂ ) ‖ h(γ̂c)}
KL{h∗(γ̂ ) ‖ h∗(γ̂c)}

, (12)

where h(γ̂ ) and h(γ̂c) are the densities of the asymptotic distributions of γ̂ and γ̂c under the assumed model based on
the observed data and the coarsened data, respectively, and h∗(γ̂ ) and h∗(γ̂c) are the counterpart densities under the true
model. The numerator in (12) quantifies the discrepancy between the inference resulting from the coarsened data and that
from the observed data based on the assumed model. Assuming γ̂ ∼ AN(γ̃ ,m−1ζ ) and γ̂c ∼ AN(γ̃c,m−1ζc), one can show
that

KL{h(γ̂ ) ‖ h(γ̂c)} =
m(γ̃c − γ̃ )2

2ζc
+
1
2

{
ζ

ζc
− log

(
ζ

ζc

)
− 1

}
. (13)

Under the true model, since both MLEs are consistent estimators, one can assume that the asymptotic distributions of γ̂
and γ̂c are AN(γ0,m−1ζ ∗) and AN(γ0,m−1ζ ∗c ), respectively, where γ0 denotes the true parameter value. Consequently, the
denominator of (12) equals

KL{h∗(γ̂ ) ‖ h∗(γ̂c)} =
1
2

{
ζ ∗

ζ ∗c
− log

(
ζ ∗

ζ ∗c

)
− 1

}
, (14)

which measures the discrepancy in inference for γ based on the observed data and the coarsened data in the absence of
model misspecification. The ratio of (13) and (14) can be viewed as a standardized divergence that assesses the difference
between the inference for γ using the coarsened data and the inference based on the observed data after adjusting for the
inevitable efficiency loss due to data coarsening. Clearly, (12) equals one when the assumed model coincides with the true
model. When the true model is known as in a simulation setting, this ratio can be used to explicitly investigate the effect
of using different coarsened data on the subsequent inference when model assumptions are violated. In practice, when the
true model is unknown, and so is (14), one can consider the leading term in (12) as m → ∞ to compare the sensitivity of
different coarsened data to model misspecification, that is,

(γ̃c − γ̃ )
2

ζc

{
ζ∗

ζ∗c
− log

(
ζ∗

ζ∗c

)
− 1

} ∝ (γ̃c − γ̃ )
2

ζc
. (15)

In fact, one can construct a statistic to diagnose model misspecification based on the second expression in (15) provided
that one can derive the null distribution of this statistic. Indeed, the second expression in (15) is akin in spirit to t1
and F1, whose null distributions are in familiar distribution families. This similarity hints at the connection between the
proposed diagnostic tests and the measure of sensitivity of coarsened data to model misspecification originating from the
KL divergence.

4. Implementation of diagnostic methods

4.1. New test statistics

To lessen computational burden, we construct a new set of test statistics that is free of �̂c . This feature is especially
appealing when fitting the model for the coarsened data is more numerically problematic than fitting the model for the
observed data. The motivation of these test statistics is that, under H0, because both �̂ and �̂c are consistent, the solution
to the normal score equation associated with the observed data should approximately solve the normal score equation for
the coarsened data. Based on this logic, we define the following test statistic,

t2 =

{
m−1/2

m∑
i=1

ψc(Y
∗

i ; �̂)

}
#vecdiag(V̂−12 ), (16)

where Y∗i is the coarsened data for cluster i,ψc(Y
∗

i ; �̂) is the partial derivative of the log likelihood of Y
∗

i with respect
to � evaluated at �̂, and V̂2 is an estimator for the variance–covariance matrix of m−1/2

∑m
i=1ψc(Y

∗

i ; �̂) (derived in the
Appendix). Denote by t2(γ ) the element in t2 corresponding to parameter γ . Under H0, t2(γ ) is close to zero. A value of
t2(γ ) that significantly deviates from zero implies possible model misspecification. It is shown in the Appendix that t2(γ )
follows a t distribution asymptotically withm− p degrees of freedom under H0. Analogous to the construction of F1 in (2),
we define a test statistic based on t2 that combines the elementwise evidence as follows,

F2 =
m− p

mp(m− 1)

{
m∑
i=1

ψc

(
Y∗i ; �̂

)}T
V̂−12

{
m∑
i=1

ψc

(
Y∗i ; �̂

)}
, (17)
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Table 1
Monte Carlo averages of maximum likelihood estimates forΩ across 200 replicated data sets in Example 1 in Section 4.2. Numbers in parentheses are the
Monte Carlo standard errors. The true parameter values are β1 = 1, β2 = 5, β3 = 2, σ 2 = 1, and σ 21 = 1.5.

Observed data ACD MCD Observed data ACD MCD

[Correct model] [(C1) with θ = 0]
β̂1 1.00 (0.005) 1.00 (0.005) 1.00 (0.006) 1.00 (0.005) 1.00 (0.005) 1.01 (0.007)
β̂2 4.99 (0.013) 4.99 (0.015) 5.00 (0.026) 4.99 (0.014) 5.00 (0.017) 5.06 (0.032)
β̂3 2.00 (0.012) 1.99 (0.014) 2.00 (0.020) 1.99 (0.011) 2.00 (0.014) 2.03 (0.025)
σ̂ 2 1.00 (0.001) 0.99 (0.003) 1.00 (0.003) 1.00 (0.001) 0.99 (0.003) 1.00 (0.003)
σ̂ 21 1.51 (0.011) 1.52 (0.013) 1.52 (0.016) 1.50 (0.009) 1.52 (0.011) 1.53 (0.016)

[(C1) with θ = 0.5] [(C2) missing bi2 , with θ = 0.5]
β̂1 0.79 (0.013) 1.06 (0.007) 0.70 (0.008) 0.76 (0.014) 1.15 (0.010) 0.93 (0.007)
β̂2 4.87 (0.010) 5.09 (0.022) 4.89 (0.019) 5.34 (0.012) 5.46 (0.023) 5.73 (0.022)
β̂3 2.04 (0.005) 1.99 (0.013) 2.06 (0.012) 2.13 (0.005) 2.13 (0.012) 2.19 (0.011)
σ̂ 2 1.47 (0.012) 0.36 (0.002) 2.05 (0.043) 1.17 (0.005) 0.29 (0.001) 1.24 (0.010)
σ̂ 21 0.26 (0.007) 1.87 (0.030) 0.42 (0.013) 0.59 (0.011) 3.23 (0.045) 1.04 (0.018)
θ̂ 1.07 (0.003) 0.95 (0.004) 1.07 (0.005) 0.98 (0.003) 0.83 (0.004) 0.90 (0.004)

[(C3) missing bi2 and bi3 , with σ 23 = 1.5] [(C3) missing bi2 and bi3 , with σ 23 = 2]
β̂1 0.92 (0.005) 0.93 (0.005) 0.83 (0.006) 0.89 (0.005) 0.90 (0.004) 0.77 (0.006)
β̂2 4.72 (0.018) 4.69 (0.016) 4.74 (0.025) 4.63 (0.019) 4.55 (0.019) 4.66 (0.027)
β̂3 1.96 (0.014) 1.94 (0.017) 1.76 (0.022) 2.04 (0.016) 2.01 (0.018) 1.73 (0.020)
σ̂ 2 1.07 (0.002) 1.28 (0.007) 1.15 (0.005) 1.09 (0.002) 1.39 (0.007) 1.19 (0.005)
σ̂ 21 1.29 (0.010) 1.04 (0.010) 1.15 (0.013) 1.22 (0.010) 0.90 (0.009) 1.05 (0.012)

which follows an F(p,m− p) distribution asymptotically under H0 by the construction of V̂2 given in the Appendix. Similar
to t1 and F1, the pattern of the individual test statistics t2 is related to the source of model misspecification, and F2 gives an
overall assessment of the sensitivity of inference to data coarsening under the current model assumptions.

4.2. Simulation evidence

Two examples in NLMM are used next to illustrate the implementation and performance of the proposed tests.

Example 1 (Growth Model).Mimicking the logistic model for the growth of orange trees in Pinheiro and Bates (1995), one
posits an NLMMwith intra-cluster model

Yij =
βi1

1+ exp
{
−(tij − β2i)/β3i

} + εij, i = 1, . . . ,m, j = 1, . . . , ni, (18)

where βi = (βi1, βi2, βi3)
T is the vector of cluster-specific parameters, tij is the observed covariate representing time,

εi = (εi1, . . . , εini)
T
∼ N{0,Ri(βi, ξ)},Ri(βi, ξ) = σ 2diag(f 2θi1 , . . . , f

2θ
ini
), and ξ = (σ 2, θ)T. One further assumes the inter-

cluster model to be

βi1 = β1 + bi1, βi2 = β2, βi3 = β3, i = 1, . . . ,m, (19)

where β = (β1, β2, β3)T is the vector of fixed effects and the random effect bi1 ∼ N(0, σ 2σ 21 ).

Before considering model misspecification, we first check the size of the tests. We generate 200 Monte Carlo data sets
from the model specified in (18) and (19), with m = 400, ni = 12, tij = j, for i = 1, . . . , 400, j = 1, . . . , 12, and θ = 0
so that ξ = σ 2. The true parameter values are β1 = 1, β2 = 5, β3 = 2, σ 2 = 1, and σ 21 = 1.5. For the coarsened data,
we form ACD and MCD by first partitioning each cluster into three groups of equal size, yielding Gi = 3 and kig = 4, for
i = 1, . . . , 400, g = 1, 2, 3. In order to reduce information loss during coarsening, each cluster is partitioned according to
the sorted time points so that the ratio of the between-group variance of the time points over the within-group variance of
the time points is maximized. Under the assumed model, the closed-form expressions of (7) and (10), that is, the densities
of Yi and Y(a)i , can be easily derived. Closed-form expression for the density of Y

(b)
i in (11) is generally not available. In

the simulation presented in this subsection, we use 50-point Gauss–Hermite quadrature to approximate the integral in
(11).
For each Monte Carlo replicate, we compute �̂, �̂

(a)
c , �̂

(b)
c , and the test statistics, t1, F1, t2, and F2. The Monte Carlo

averages of the estimates from this simulation are summarized in the upper-left block of Table 1. The proportion of Monte
Carlo replicates that reject H0 for each test statistic is presented in the top portion of Table 2. As expected, when the model
for the observed data is correct, none of the three sets of MLEs show noticeable bias. With all rejection rates around the
nominal 0.05 significance level, these results suggest that the test statistics confer the correct size.
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Table 2
Rejection rates of the test statistics across 200 Monte Carlo replicates in Example 1 in Section 4.2. Rejection rates higher than 0.30 are in italic. The most
significant tests for the fixed effects in the two cases with true models being heteroscedastic mixed models are underlined.

t1 F1 t2 F2
(β1 β2 β3 σ 2 σ 21 ) (β1 β2 β3 σ 2 σ 21 )

[Correct model]

ACD 0.05 0.05 0.06 0.04 0.04 {0.04} 0.07 0.05 0.03 0.04 0.04 {0.03}
MCD 0.03 0.04 0.04 0.07 0.05 {0.05} 0.04 0.05 0.03 0.07 0.06 {0.06}

[(C1) with θ = 0]

ACD 0.04 0.05 0.04 0.06 0.05 {0.04} 0.06 0.05 0.05 0.06 0.06 {0.07}
MCD 0.04 0.02 0.03 0.05 0.03 {0.06} 0.07 0.06 0.07 0.03 0.04 {0.06}

[(C1) with θ = 0.5, heteroscedastic mixed model]

ACD 0.72 0.06 0.08 0.99 0.98 {1.00} 0.58 0.09 0.16 0.40 0.03 {1.00}
MCD 0.32 0.05 0.03 0.27 0.27 {1.00} 0.66 0.24 0.40 0.51 0.40 {1.00}

[(C2) missing bi2 , heteroscedastic mixed model]

ACD 0.03 0.58 0.02 1.00 0.99 {1.00} 0.04 0.41 0.08 0.69 0.10 {1.00}
MCD 0.13 0.22 0.04 0.09 0.51 {0.98} 0.21 0.57 0.05 0.73 0.50 {0.98}

[(C3) missing bi2 and bi3 , with σ 23 = 1.5]

ACD 0.08 0.09 0.05 0.86 0.88 {0.78} 0.07 0.09 0.05 0.88 0.07 {0.66}
MCD 0.44 0.04 0.22 0.37 0.31 {0.37} 0.49 0.10 0.08 0.28 0.08 {0.36}

[(C3) missing bi2 and bi3 , with σ 23 = 2]

ACD 0.07 0.14 0.06 0.99 0.99 {0.96} 0.08 0.09 0.05 1.00 0.05 {0.92}
MCD 0.68 0.03 0.24 0.47 0.42 {0.61} 0.76 0.10 0.08 0.36 0.06 {0.59}

Next we empirically investigate the power of the tests. Simulated data sets are generated from the following three (true)
models.

(C1) The true inter-cluster model is as in (19), with bi1 ∼ 0.2N(2, 0.4σ 2)+0.8N(−0.5, 0.54σ 2), yielding var(bi1) = 1.5σ 2.
In the intra-cluster model that is common for the true model and the assumed model, we first set θ = 0, resulting in
a homoscedastic mixed model; then, we raise θ to 0.5, producing a heteroscedastic mixed model.

(C2) Set θ = 0.5 for both assumed and true models. The true inter-cluster model is

β1i = β1 + bi1, β2i = β2 + bi2, β3i = β3, i = 1, . . . ,m, (20)

where bi = (bi1, bi2)T ∼ N(0, σ 26b), and the elements in 6b are 6b[1, 1] = σ 21 = 1.5,6b[2, 2] = σ 22 = 1, and
6b[1, 2] = 6b[2, 1] = 0.8.

(C3) Set θ = 0 for both assumed and true models. The true inter-cluster model is

βi1 = β1 + bi1, βi2 = β2 + bi2, βi3 = β3 + bi3, i = 1, . . . ,m, (21)

where bi = (bil, bi2, bi3)T ∼ N{0, σ 2diag(σ 21 , σ
2
2 , σ

2
3 )}, with σ

2
1 = 1.5, σ

2
2 = 1, and σ

2
3 = 1.5 or 2. The true model

with σ 23 = 2 represents a further deviation of the assumed model from the true model than when σ
2
3 = 1.5.

The estimates, �̂, �̂
(a)
c , �̂

(b)
c , and the test statistics are computed using the simulated data from (C1)–(C3), respectively, based

on the assumedmodel defined in (18) and (19). TheMonte Carlo averages of the estimates and the rejection rates of the test
statistics are tabulated in Tables 1 and 2.
Under (C1), the only assumption violated in the assumed model is the distribution for the random effect bi1. From

Table 1, when θ = 0, that is, the true model, as the assumed model, is a homoscedastic NLMM, the MLEs are robust to the
distributional assumption on the only random effect bi1. This is a reminiscence of the robustness of MLEs in LMM. Verbeke
and Lesaffre (1997) showed that MLEs for the fixed effects and variance components in LMM are consistent even when the
random-effects distribution is misspecified. In fact, the proof for the consistency of MLE in homoscedastic LMM in Verbeke
and Lesaffre (1994) also applies to homoscedastic NLMM when the response is linear in the random effects, as in (C1).
Therefore, the robustness evidence observed in (C1) with θ = 0 is expected. The rejection rates in Table 2 under (C1) with
θ = 0 reinforce that the size of the test statistics is well controlled. However, the proof in Verbeke and Lesaffre (1994) does
not carry over to heteroscedastic mixed models, even when the response is linear in the random effects, as in (C1) with
θ = 0.5. There, the deterioration of the MLEs is clearly shown in Table 1. The corresponding test statistics in Table 2 show
promising power. Most notably, the tests for β1, withwhich themisspecified random effect bi1 is associated, tend to bemore
significant than the tests for the other fixed effects. This phenomenon bears an obvious resemblance to the previous finding
in GLMM that the pattern of the individual tests is related to the source of misspecification.
The intriguing dependence of the individual tests on the source of model misspecification is also present under (C2).

There, the assumed model excludes the random effect associated with β2. As a result, t1(β2) and t2(β2) stand out as being
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Table 3
Rejection rates of the test statistics across 300 Monte Carlo replicates in Example 2 in Section 4.2. Rejection rates higher than 0.30 are in italic.

(D1) (D2) (D3)
G = 3 G = 4 G = 3 G = 4 G = 3 G = 4

t1(β1) 0.07 0.06 0.89 0.92 0.09 0.04
t1(β2) 0.06 0.09 0.05 0.04 0.08 0.06
t1(β3) 0.05 0.06 0.89 0.87 0.08 0.04
t1(σ 2) 0.68 0.58 0.09 0.05 1 1
t1(σ 21 ) 0.77 0.63 0.07 0.05 1 1
t1(σ 22 ) 0.74 0.60 0.06 0.05 (NA) (NA)
t1(ρ) 0.04 0.06 0.07 0.08 (NA) (NA)
F1 0.65 0.42 1 1 1 1

most significant among the tests for the fixed effects. This association between the individual test statistics and the source
of model misspecification is not evident for homoscedastic mixed models such as (C3). However, results from (C3) clearly
demonstrate that the magnitude of the bias in most of MLEs increases as the assumed model deviates further from the true
model (with σ 23 increasing from 1.5 to 2). Both overall tests based on F1 and F2 have moderate to high power, so do many of
the individual tests. The power increases as misspecification becomes more severe.

Example 2 (One-Compartment Model). A one-compartment model, considered in Hartford and Davidian (2000), is suitable
in characterizing the plasma concentration of a subject after the subject is given a drug as an intravenous bolus. Suppose
the true intra-subject model is Yij = DiU−1i exp

(
−CitijU−1i

)
+ εij, where tij is the time when the jth measurement of plasma

concentration for subject i is taken, Di denotes the dose for subject i, Ci represents the clearing distribution of subject i,Ui is
the subject-specific volume of distribution, and εi ∼ N(0,Ri(βi, σ 2)), for i = 1, . . . ,m, j = 1, . . . , ni. The true inter-subject
model for βi = (Ci,Ui)

T is

Ci = exp
(
β1 +

ai
100

β2 + bi1
)
, Ui = exp(β3 + bi2), i = 1, . . . ,m, (22)

where β = (β1, β2, β3)
T is the vector of fixed effects, bi = (bi1, bi2)T is the vector of random effects, and ai is a covariate

associated with subject i.

We use three simulation settings as follows.

(D1) In the true model, bi follows a bivariate mixture normal distribution,

0.9N
{(
0.01
0

)
, σ 2

(
0.046 0.052
0.052 0.086

)}
+ 0.1N

{(
−0.09
0

)
, σ 2

(
0.046 0.052
0.052 0.086

)}
.

This yields var(bi) equal to

σ 2
(
0.046 0.052
0.052 0.086

)
. (23)

In the assumedmodel, bi follows a bivariate normal distribution. In both true and assumedmodels, Ri(βi, σ 2) = σ 2Ini .
(D2) The true model and the assumed model are identical to those in (D1) except that Ri(βi, σ 2) = diag(σ 2f 2i1, . . . , σ

2f 2ini).
(D3) In the true model, bi ∼ N(0, σ 2Σb), where σ 2Σb is equal to (23). In the assumed model, bi2 in (22) is excluded and

bi1 ∼ N(0, σ 2σ 21 ).

Common settings in (D1)–(D3) are m = 100, β1 = 0.223, β2 = 0.6, β3 = 2.303, σ 2 = 0.023,Di = 100, ni = 12, and
ti = (0.25, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24)T, and ai is generated from N(70, 202), for i = 1, . . . , 100. The number of Monte
Carlo replications is 300.
In this simulation, we focus on ACD as coarsened data, where each cluster is partitioned into Gi = G(=3 or 4) groups of

equal size, i = 1, . . . , 100. We vary the value of G to explore the effect of group size on the tests. Closed-form expression
for the integrals in (7) and (10) are not available. We employ Laplacian approximation (Pinheiro and Bates, 1995; Hartford
and Davidian, 2000) to compute the integrals. The rejection rates of the first set of test statistics are summarized in Table 3.
The MLEs (not tabulated due to space limitation) for the fixed effects are not noticeably affected when the model is

homoscedastic, as in (D1) and (D3), but those for the variance components are severely biased. The low rejection rates
associated with the tests for the fixed effects and the high rejection rates associated with those for the variance components
for these two cases are in agreement with these findings. But for a heteroscedastic model, as in (D2), the MLEs for β1 and β2
are obviously biased and the test statistics associatedwith them also suggest the existence of bias. The bias and the rejection
rates also depend on G. These findings concur with those in Section 2.2 for GLMM, where it is demonstrated that the bias in
MLEs can depend on both G and the source of misspecification.
Because NLMM is such a rich class of models and there are many factors contributing to the hierarchical modeling, it is

impossible to summarize the effect of different types ofmodelmisspecification onMLEs for different parameters. Our hope is
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Table 4
Maximum likelihood estimates for the parameters in the assumed models for soybean growth data. Numbers in parentheses are the estimated standard
errors.

Assume a normal random effect bi1

β̂1 β̂2 β̂3 σ̂ 2 σ̂ 21 θ̂ α̂

Observed data
17.66 5.19 −1.33 0.06 20.06 0.94 0.22
(0.421) (0.059) (0.023) (0.006) (1.638) (0.023) (0.046)
ACD
18.07 5.27 −1.28 0.06 20.62 0.95 0.22
(0.475) (0.069) (0.028) (0.010) (2.083) (0.055) (0.125)

Assume a mixture normal random effect bi1

β̂1 β̂2 β̂3 σ̂ 2 σ̂ 21 θ̂ α̂ µ̂11 δ̂

Observed data
17.47 5.19 −1.32 0.06 3.99 0.92 0.22 7.62 0.18
(0.062) (0.062) (0.024) (0.006) (1.472) (0.026) (0.042) (0.721) (0.057)
ACD
17.93 5.30 −1.27 0.07 2.98 0.88 0.26 7.64 0.17
(0.067) (0.076) (0.033) (0.014) (1.685) (0.062) (0.100) (0.742) (0.056)

to detect the existence ofmisspecification and narrow down to themost likely source ofmisspecification using the proposed
method. The reported simulation studies provide strong evidence of achieving this goal, especially for heteroscedasticmixed
effects models where the individual tests show potential to identify the source of misspecification.

5. Application to soybean growth data

We now apply the diagnostic method to a soybean growth data set in Davidian and Giltinan (1995, Chapter 11, Section
11.2). In this study, from each of m = 48 plots of soybean, the average leaf weight per plant is collected at different time
points after planting. Let Yij denote the average leaf weight per plant in plot i at time tij, for i = 1, . . . , 48 and j = 1, . . . , ni,
where ni varies between 8 and 10. We posit the following growth model,

Yij =
βi1

1+ exp
{
βi3(tij/10− β2i)

} + εij, i = 1, . . . ,m, j = 1, . . . , ni,

where βi = (βi1, βi2, βi3)
T is the vector of plot-specific parameters. Following Davidian and Giltinan (1995), the intra-plot

variance–covariance structure is

Ri(βi, ξ) = σ
2L1/2i (βi, θ)0i(α)L

1/2
i (βi, θ),

where L1/2i (βi, θ) = diag(|f
θ
i1|, . . . , |f

θ
ini
|), and

0i(α) =


1 α α2 · · · αni−1

α 1 α · · · αni−2

...
...

. . .
...

...

αni−1 αni−2 αni−3 · · · 1

 .
Unlike the analysis presented in Davidian and Giltinan (1995), which takes into account the soybean genotype and growing
season, we aggregate these effects and consider only the growth pattern over time.
We apply the proposed diagnostic method to the assumed models with different inter-plot models, such as those in

(19)–(21), with different distributional assumptions on the random effect(s). For the coarsened data, we use ACD with
Gi = 4 or 5 to retain two to three observations per group per plot. For illustration purposes, we present the results for
two relatively simple assumed models using the first set of test statistics. The simplest candidate model is (19), in which
bi1 is assumed normal. The overall test in (2) gives F1 = 4.80 with p-value 0.0005, providing strong evidence of model
misspecification. The individual t tests associated with all three fixed effects are significant. We then consider revising the
assumed model for bi1 to be a location mixture normal with density δN(µ11, σ 21 )+ (1− δ)N{−µ11δ/(1− δ), σ

2
1 }. For this

assumed model, F1 = 1.97 with p-value 0.07, indicating some evidence of model misspecification, but not enough at the
0.05 significance level. This indicates some improvement in the second assumed model over the first one. The parameter
estimates for these two assumedmodels are given in Table 4. Note that, even though there are more parameters to estimate
in the second assumed model than the first one, the estimated standard errors of �̂ in the second model are still mostly
similar to those in the first model, except for the standard errors of β̂1 and σ̂ 21 , which are much lower in the second model.
This reconciles the general belief that model misspecification (in the first assumed model) can compromise efficiency. For
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the second assumed model, we find t1(β2) and t1(β3) border-line significant at 0.05 level. But the results from individual
tests need to be interpretedwith cautious because using all individual tests simultaneously to testH0 is a process ofmultiple
testing. Therefore, the critical value for these individual tests should be adjusted accordingly to set family-wise type I error at
0.05. We do not pursue further the issue of multiple testing here, while acknowledging that there may be more appropriate
assumed models for β2i and β3i than the current assumed models.

6. Discussion

We revisit the method for diagnosing random-effects model misspecification in GLMM for binary response proposed by
Huang (2009) and further explore the theoretical driven force of the method. We then extend the method to a much richer
class of mixed effects models for non-binary response and show that, using coarsened data, one can reveal random-effects
modelmisspecification. For heteroscedastic mixed effectsmodels, onemay be able to identify the source ofmisspecification
from the pattern of the individual test statistics. This is the main advantage of our method over most existing diagnostic
methods and deserves further investigation in more general context of model selection.
We have focused on misspecification on the random-effects part of the models assuming absence of other source

of misspecification in this study to avoid the untestable issue pointed out by Verbeke and Molenberghs (submitted for
publication). It is of interest to investigate the operating characteristics of the proposed tests when other parts of the model
are misspecified, for example, the fixed-effects part of the model or the intra-cluster variance–covariance structure. To
develop diagnostic methods that can disentangle multiple sources of model misspecification in mixed effects models and
pinpoint each source is a challenging avenue for future research.

Appendix. Derivation of variance estimator V̂2

Denote byψ(Yi;�) the normal score function associated with the observed data in cluster i. Define

A(�) = lim
m→∞

m−1
m∑
i=1

E
{
−∂ψ(Yi;�)/∂�T

}
, Â(�) = −m−1

m∑
i=1

∂ψ(Yi;�)/∂�T,

Ac(�) = lim
m→∞

m−1
m∑
i=1

E
{
−∂ψc(Y

∗

i ;�)/∂�
T} , Âc(�) = −m−1

m∑
i=1

∂ψc(Y
∗

i ;�)/∂�
T.

Under H0 : �̃ = �̃c , a first-order Taylor expansion ofm−1/2
∑m
i=1ψc(Y

∗

i ; �̂) around �̃ yields

m−1/2
m∑
i=1

ψc(Y
∗

i ; �̂) (24)

l m−1/2
m∑
i=1

ψc(Y
∗

i ; �̃)+m
−1/2

m∑
i=1

∂

∂�T
ψc(Y

∗

i ;�)

∣∣∣∣
�=�̃

(
�̂− �̃

)
l m−1/2

m∑
i=1

ψc(Y
∗

i ; �̃)−m
1/2Ac(�̃)

(
�̂− �̃

)
(25)

l m−1/2
m∑
i=1

ψc(Y
∗

i ; �̃)−m
−1/2Ac(�̃)A−1(�̃)

m∑
i=1

ψ(Yi; �̃) (26)

= m−1/2
m∑
i=1

{
ψc(Y

∗

i ; �̃)− Ac(�̃)A−1(�̃)ψ(Yi; �̃)
}
, (27)

where the approximation in (26) is based on an approximation of �̂− �̃ in (25) with the influence function.
Denote byηi = ψc(Y∗i ; �̃)−Ac(�̃)A−1(�̃)ψ(Yi; �̃). Based on the approximation in (27), a variance–covariance estimator

for (24) is the sample variance–covariance of {ηi, i = 1, . . . ,m}. Becauseηi depends on theunknown �̃,A(�̃), andAc(�̃), we
define an estimator for the variance–covariance matrix of (24), V̂2, as the sample variance–covariance of {ηi, i = 1, . . . ,m}
with �̃ replaced by �̂, A(�̃) replaced by Â(�̂), and Ac(�̃) replaced by Âc(�̂).
Now that under H0, (24) can be approximated by the sum of independent quantities,m−1/2

∑m
i=1 ηi, of which the sample

variance–covariance is estimated by V̂2, by Corollary 3.5.1.1 in Mardia et al. (1979),{
m−1/2

m∑
i=1

ψc(Y∗i ; �̂)

}T
V̂−12

{
m−1/2

m∑
i=1

ψc(Y
∗

i ; �̂)

}
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has the form of a Hotelling’s T 2 statistic. It follows that

m− p
p(m− 1)

{
m−1/2

m∑
i=1

ψc(Y
∗

i ; �̂)

}T
V̂−12

{
m−1/2

m∑
i=1

ψc(Y
∗

i ; �̂)

}
,

which is equal to F2 in (17), follows F(m,m− p) asymptotically under H0. By the construction of t2 in (16), it is obvious that
t2(γ ) follows a Student’s t distribution withm− p degrees of freedom asymptotically under H0.
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