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Abstract: We propose novel methods to assess assumptions on random effects in

linear mixed models. A key ingredient to the proposed methods involves creating

missing data strategically from the observed data in order to detect multiple sources

of misspecification on random effects. Random-effects assumptions traditionally

tested separately by tests for variance components and tests for normality can now

be assessed simultaneously using the proposed methods. The rationale underlying

the new methods is applicable to other types of mixed effects models.

Key words and phrases: Ignorable missingness, missingness mechanism, model mis-

specification, nonignorable missingness, random effects.

1. Introduction

Mixed effects models are routinely used to model correlated data that nat-

urally arise in a broad range of applications. Including random effects in a

statistical model yields a practically meaningful and mathematically elegant way

to characterize various correlation structures in data such as repeated measure-

ments from longitudinal studies, spatially correlated data in geostatistics, and

multivariate observations. In this article, we restrict attention to linear mixed

models (LMM) for methodological development, but the underlying idea is ap-

plicable to other types of mixed effects models. Verbeke and Molenberghs (2000)

give a comprehensive survey on application and inference based on LMM.

A major concern in drawing inference based on mixed effects models lies

in the assumptions on random effects. In particular, one often faces two ques-

tions regarding random effects: (i) which predictor should have a random effect

associated with it; (ii) whether or not the random effect normally distributed.

Statisticians have developed diagnostic tests to address these questions, usually

separately. To tackle the first problem, tests on variance components have been

developed that are nonstandard testing problems in that the null space (zero

variance) is on the boundary of the parameter space. Self and Liang (1987) and

Stram and Lee (1994) used a mixture of chi-squares as the null distribution of

the likelihood ratio when testing a variance component, which is shown to be

the asymptotic null distribution of the test statistic. There has been empirical
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evidence suggesting that finite-sample performance of this test can be unsat-

isfactory. For more general data structures than that considered in these two

articles, Crainiceanu and Ruppert (2004) proposed an algorithm to simulate the

finite sample null distribution of the likelihood ratio based on spectral decompo-

sition. This algorithm is developed for models with only one variance component.

To allow multiple variance components, Crainiceanu (2008) discussed use of the

parametric bootstrap and two other less computationally demanding algorithms

to approximate the null distribution of the likelihood ratio. Saville and Herring

(2009) proposed to use the Bayes factor to test a variance component. Under-

lying the development of the aforementioned tests is the normality of random

effects. Operating characteristics of these tests when the normality assumption

is violated are unclear.

Suppose random effects are appropriately allocated in the model and the

attention is on the second question. Verbeke and Lesaffre (1994, 1997) showed

that the maximum likelihood estimators (MLE) for the fixed effects in an LMM

remain consistent and asymptotically normal even when the random-effects dis-

tribution is misspecified. They also pointed out that the sandwich variance es-

timator should be used in replace of the inverse Fisher information for more

reliable standard error estimation. However, it was found that, when the true

random-effects distribution deviates from normal, such as when the truth is a

lognormal (Litière (2007)), it often requires an impractically large sample un-

til the asymptotics kick in to produce a reasonably accurate sandwich variance

estimator. Poor standard error estimation can compromise hypotheses testing

and confidence intervals (Litière, Alonso, and Molenberghs (2007, 2008)). More-

over, the convergence rate of MLE can depend heavily on the shape of the true

random-effects distribution. Finally, in studies such as surrogate marker eval-

uation and psychometric properties evaluation, distributional characteristics of

random effects are the research focal points, and thus the second question is of

direct interest.

Nonparametric and semiparametric approaches have been proposed to es-

timate random-effects distributions. Nonparametric approaches for random ef-

fects (Laird (1978)) rarely yield a continuous or smooth estimation. Verbeke

and Lesaffre (1996) used mixtures of normals to model random effects, resulting

in the so-called heterogeneity model. Zhang and Davidian (2001) proposed a

flexible semiparametric distribution family for random effects. These non-/semi-

parametric approaches are useful when a random effect may not follow a famil-

iar distribution. But before falling back on these potentially computationally

intensive options, parsimonious parametric models for random effects are more

appealing provided the validity of such models can be justified. Such justification

calls for effective model diagnostic tools.
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To the best of our knowledge, none of the existing methods tackle both prob-

lems simultaneously in a unified framework. The new methods presented in this

article can achieve this. The idea stems from the results, shown in later sec-

tions, that in the presence of model misspecification, likelihood inference based

on the observed data can disagree with the counterpart inference drawn from

an induced incomplete data set. Realization of the discrepancy between these

two sets of inferences depends on a user-designed mechanism according to which

missing data are created. Statistical tests based on a cleverly designed missing-

ness mechanism can solve both problems at the same time. The idea of using

the discrepancy between two sets of inferences to detect model misspecification

bares a slight resemblance with the specification tests for regression models in

econometrics discussed in Hausman (1978), and the test for a certain type of gen-

eralized linear mixed model (GLMM) proposed by Tchetgen and Coull (2006).

In both articles the authors compared two estimators for a parameter of interest,

with one sensitive to the model assumption in question and the other robust to

it. Test statistics were constructed based on the difference between these two

estimators with adjustment for variation, with a significant difference indicating

violation of model assumptions. Two pitfalls of these tests are in first, finding

an estimator robust to model misspecification can be difficult depending on the

model settings and assumptions, and second, deriving a variance estimator for the

difference between two estimators can also be challenging. Tchetgen and Coull

(2006) were able to overcome both difficulties for a special type of GLMM, but

such luck does not carry over to more general contexts. Our proposed strategy

circumvents both obstacles by comparing two (possibly biased) MLEs, one de-

rived from the raw data and the other derived from the induced incomplete data.

A variance estimator for the difference between them can be easily constructed

based on influence functions associated with two MLEs. Hence, calculating the

proposed test statistics only involves routine maximum likelihood calculations.

Verbeke and Molenberghs (2010) underscored the unverifiable nature of

random-effects assumptions in a mixed effects model without assuming the other

parts of the hierarchical modeling correct. We do not intend to test the uniden-

tifiable part of a mixed effects model. Rather, we strive for more informative

diagnostic procedures with fewer assumptions on the other parts of the model

than those needed in the existing methods. Even when we cannot conclude

whether or not a random-effects assumption is appropriate for the current data,

we look to find out if the likelihood inference enjoys certain desirable robust

features under the assumed model.

To set the stage for theoretical developments, we first formulate LMM for

the observed data and the induced model for the incomplete data in Section 2.

Test statistics used in the proposed diagnostic procedures are also defined in this
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section. In Section 3 we investigate different types of missingness mechanisms to

facilitate testing for a random intercept and its distributional assumption. The

parallel results for testing random slopes are derived in Section 4. In Section 5

we illustrate the implementation and performance of the proposed methods via

simulation studies and application to a data set. Lastly, discussions on the im-

plication of the underlying ideas, connections with existing methods, and future

research are given in Section 6.

2. Models and Test Statistics

2.1. Models for complete data

Let Yi = (Yi1, . . . , Yini)
t be the ith observed response vector, for i = 1, . . . ,m.

An LMM consists of two component models. The first component model is a

conditional model of Yi given the covariates, the fixed effects, and the random

effects,

Yi = Xiβ + Zibi + ϵi, (2.1)

where β is the p-dimensional fixed effects, bi is the q-dimensional random effects,

Xi and Zi are the ni×p and ni×q design matrices for the fixed effects and random

effects, respectively, and it is assumed throughout that ϵi ∼ N(0ni×1, Σi), inde-

pendent of bi, with ni ×ni variance-covariance matrix Σi that depends on i only

through the dimension, but not through the parameters in the matrix. In order

to focus on the two problems regarding random effects raised in Section 1, we as-

sume that Σi = σ2ϵ Ini , where Ini is an ni×ni identity matrix and, for most of the

article, we assume the fixed-effects part of (2.1) is correctly specified. The second

component model is a model for bi, with density fb(bi; Σb), where Σb includes the

variance components and other parameters in the random-effects model if needed.

Let Ω be the r×1 parameter vector that includes all unknown parameters in the

two component models. Combining the models, one has the likelihood of the ith

observed response vector as fY (Yi; Ω) =
∫
fY |b(Yi|bi; Ω)fb(bi; Σb) dbi.

2.2. Models for incomplete data

A common thread running through the article is missing data strategically

created from the raw data. Incomplete data due to missingness is an example

of coarsened data. Before we consider induced missingness per se, it is instruc-

tive to first introduce the generic notion of coarsened data. Let (∆i, Y
∗
i ) be the

ith data vector in the coarsened data set, where ∆i is the coarsening variable,

Y ∗
i = C∆i

(Yi) is the coarsened response, and C∆i
(Yi) is a many-to-one coarsen-

ing function that maps Yi to Y ∗
i . Designing a coarsening mechanism includes

specifying a probability model for ∆i indexed by parameters λ, f∆|Y (∆i|Yi;λ),
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and defining a coarsening function C∆i
(·). Besides incomplete data due to miss-

ingness, examples of coarsened data include grouped data collected in pooled
testing, and censored data considered in survival analysis. For the incomplete
data of interest, ∆i refers to missingness indicators. Denote by Yobs,i and Ymis,i

the observed subvector and the missing subvector of Yi, respectively, so Y
∗
i = Yi

if there is no missingness, and Y ∗
i = Yobs,i otherwise.

In the missing data literature there is an important distinction between
ignorable missingness and nonignorable missingness (Little and Rubin (2002,
Sec. 15.1)). For ignorable missingness, ∆i is independent of Ymis,i. If ∆i is also
independent of Yobs,i, then the data are missing completely at random (MCAR);
otherwise, the data are called missing at random (MAR). When the missingness
is ignorable, either MCAR or MAR, Ω and λ are distinct (Little and Rubin (2002,
Def. 6.4)), which may not be true for nonignorable missingness. For nonignorable
missingness, also referred to as “not missing at random” (NMAR), ∆i depends
on Ymis,i. In the proposed methods, we specify the missingness mechanism and
thus λ, known to us, is necessarily distinct from the unknown Ω. This elimi-
nates the notorious issue of nonidentifiability in NMAR (Little and Rubin (2002,
Chap. 15)).

The likelihood of (∆i, Y
∗
i ), denoted by f∆, Y ∗(∆i, Y

∗
i ; Ω, λ), can be easily

derived based on f∆|Y (∆i|Yi;λ) and fY (Yi; Ω), where the former cannot be mis-
specified as it is user-designed, but the latter may be a wrong model for Yi due
to inadequate assumptions on random effects. Likelihood inference based on the
two likelihood functions, fY (Yi; Ω) and f∆, Y ∗(∆i, Y

∗
i ; Ω, λ), leads to two sets of

estimators for Ω. Denote by Ω̂ and Ω̂∗ the MLE for Ω based on the complete
data and the estimator based on the incomplete data, respectively, and by Ω̃ and
Ω̃∗ their limiting counterparts as m tends to infinity with max1≤i≤m ni bounded.
These estimators are the basis of the test statistics we define for model diagnosis.
The (limiting) MLE of a parameter in Ω is denoted following the same notational
convention. For concise notations, the dependence of likelihood functions on the
known λ is suppressed in the sequel.

2.3. Test statistics

Let θ be a parameter in Ω and consider testing the null hypothesis, H0,θ :
θ̃∗ = θ̃. Under regularity conditions, the MLEs are consistent and H0,θ is true
when all models are correctly specified. In the presence of model misspecification,
we aim at designing a missingness mechanism so that θ̃∗ differs from θ̃. With a
strategically designed missingness mechanism, violations on model assumptions
can be revealed by the discrepancy between θ̂∗ and θ̂. In light of this reasoning,
we define a test statistic that assesses the significance of the discrepancy between
two estimators as

t1,θ = (θ̂∗ − θ̂)ν̂−1, (2.2)
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where ν̂ is an estimator for the standard error of θ̂∗ − θ̂, constructed based on

influence functions as elaborated in Huang (2009). There it is shown that t1,θ
follows a t distribution with m−r degrees of freedom asymptotically under H0,θ.

When missingness is severe, the numerical procedure used to obtain Ω̂∗ can

be unstable. To avoid estimating Ω using incomplete data, another test statistic

is constructed based on mismatching the estimator and the estimating equations

as

t2 =
{
m−1/2

m∑
i=1

ψ(∆i, Y
∗
i ; Ω̂)

}
⊙

√
vecdiag(V̂ −1

2 ),

where ψ(∆i, Y
∗
i ; Ω) = (∂/∂Ω) log f∆, Y ∗(∆i, Y

∗
i ; Ω) is the score function associ-

ated with the incomplete data, V̂2 is an estimator for the variance-covariance

of m−1/2
∑m

i=1 ψ(∆i, Y
∗
i ; Ω̂), of which the derivation is given in Huang (2011),

and ⊙ is the elementwise multiplication operator. By the definition of Ω̃∗,

limm→∞m−1
∑m

i=1E0{ψ(∆i, Y
∗
i ; Ω̃

∗)} = 0, where E0(·) is the expectation with

respect to the true model with Ω evaluated at its true value denoted by f. Con-
sequently, if Ω̃∗ = Ω̃, then limm→∞m−1

∑m
i=1E0{ψ(∆i, Y

∗
i ; Ω̃)} = 0. If t2,θ is

the element in t2 associated with θ, then t2,θ is expected to be close to zero

under H0,θ, and a significant deviation from zero signals violation of model as-

sumptions. Huang, Stefanski, and Davidian (2009) showed that the second test

statistic is asymptotically equivalent to the first one. Henceforth, tθ is used to

refer to either one of the two test statistics associated with θ when we do not

distinguish these two.

With the test statistics constructed, the remaining task is to design a miss-

ingness mechanism that can separate Ω̃∗ from Ω̃ in the presence of model mis-

specification on the random intercept or/and random slopes in LMM. This task

is tackled in the following two sections, where we compare Ω̃∗ with Ω̃ when ig-

norable missingness mechanisms and nonignorable missingness mechanisms are

used, respectively, to generate missing data.

3. Testing for a Random Intercept

Consider a one-way analysis-of-variance model with m levels and ni obser-

vations at level i, M2 : Yij = µ + bi0 + ϵij , and a null model without the ran-

dom subject effect bi0, M1 : Yij = µ + ϵij , where µ is the overall mean, for

i = 1, . . . ,m, j = 1, . . . , ni. Suppose M1 is the assumed model and M2 is the

true model for the observed data.

Denote by f = (µ̌, v0, vϵ)
t the true parameter values under M2, where µ̌ =

E0(Yij), v0 = Var(bi0), and vϵ = Var(ϵij). It is straightforward to show that

Ω̃ = (µ̌, σ̃2ϵ )
t, where σ̃2ϵ = vϵ + v0. We next investigate likelihood inference based

on incomplete data generated according to different missingness mechanisms.
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The goal is to find a mechanism that leads to at least one element in Ω̃∗ different

from its counterpart in Ω̃ when certain model assumptions in M1 are violated.

To obtain a more tractable incomplete-data likelihood, we define a scalar

missingness indicator, ∆i = I(Yi is not fully observed), where I(·) is the indica-

tor function, with the missingness mechanism characterized by P (∆i = 1|Yi).
Moreover, when ∆i = 1, the index set, {j : 1 ≤ j ≤ ni and Yij is missing}, is
the same across i = 1, . . . ,m, and Ymis,i is s × 1, for i = 1, . . . ,m. In the next

two subsections, we show that an ignorable missingness mechanism always yields

Ω̃∗ = Ω̃ regardless of the true model for bi0, but it is not the case for a nonig-

norable missingness mechanism. More importantly, we show that using different

nonignorable missingness mechanisms can reveal different sources of misspecifi-

cation on bi0. When it is not feasible to derive Ω̃∗ or Ω̃ explicitly, the strategy

often used to compare Ω̃∗ with Ω̃ is to check if Ω̃ also solves the score equations

associated with the incomplete data. In the sequel, it is assumed that the root

to a set of normal score equations is unique.

3.1. Ignorable missingness mechanisms

The essence of the proposition proved next is that an ignorable missingness

mechanism does not interact with model misspecification on bi0 to result in Ω̃∗ ̸=
Ω̃. Henceforth, “A ⊥ B” means that A is independent of B.

Proposition 1. If ∆i ⊥ Ymis,i for i = 1, . . . ,m, then Ω̃∗ = Ω̃ regardless of the

true model for bi0 in M2.

Proof. Let li = log fY (Yi; Ω), li1 = log fY (Yobs,i; Ω), and li2 = log fY (Ymis,i; Ω).

Under M1, because {Yij , j = 1, . . . , ni} are independent and identically dis-

tributed (i.i.d.), E0(∂li1/∂Ω) ∝ E0(∂li2/∂Ω) ∝ E0(∂li/∂Ω). By the definition of

Ω̃, E0(∂li/∂Ω|Ω̃) = 0, and thus

E0

(
∂li1
∂Ω

∣∣∣
Ω̃

)
= E0

(
∂li2
∂Ω

∣∣∣
Ω̃

)
= 0. (3.1)

For the incomplete data, the likelihood under M1 is given by

f∆, Y ∗(∆i, Y
∗
i ; Ω)

= {P (∆i = 0|Yobs,i)fY (Yi; Ω)}1−∆i {P (∆i = 1|Yobs,i)fY (Yobs,i; Ω)}∆i ,

and the corresponding log likelihood, denoted by l∗i , is

log f∆, Y ∗(∆i, Y
∗
i ; Ω) = (1−∆i) {logP (∆i = 0|Yobs,i) + li}

+∆i {logP (∆i = 1|Yobs,i) + li1} .
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It follows that the score function associated with the incomplete data is

∂l∗i
∂Ω

= (1−∆i)
∂li
∂Ω

+∆i
li1
∂Ω

=
∂li1
∂Ω

+ (1−∆i)
∂li2
∂Ω

.

Because ∆i ⊥ Ymis,i and by (3.1),

E0

(
∂l∗i
∂Ω

∣∣∣
Ω̃

)
= E0

(
∂li1
∂Ω

∣∣∣
Ω̃

)
+ E0(1−∆i)E0

(
∂li2
∂Ω

∣∣∣
Ω̃

)
= 0.

Hence, Ω̃∗ = Ω̃.

Proposition 1 suggests that neither MAR nor MCAR is useful for testingM1

versus M2, and this motivates us to consider NMAR for diagnostic purposes.

3.2. Nonignorable missingness mechanisms

Proposition 2. If P (∆i = 1|Yi) = P (∆i = 1|Ymis,i) for i = 1, . . . ,m, then

Ω̃∗ = Ω̃ if and only if

E0(∆i)E

(
∆i
∂li2
∂Ω

∣∣∣
Ω̃
; Ω̃

)
= E(∆i; Ω̃)E0

(
∆i
∂li2
∂Ω

∣∣∣
Ω̃

)
, (3.2)

where E(·; Ω̃) is the expectation with respect to the assumed model with Ω = Ω̃.

Proof. The incomplete-data log likelihood is

l∗i = (1−∆i) {logP (∆i = 0|Ymis,i) + li}

+∆i

{
log

∫
P (∆i = 1|Ymis,i)fY (Ymis,i; Ω)dYmis,i + li1

}
.

Assuming interchangeability of differentiation and integration, the score function

is

∂l∗i
∂Ω

= (1−∆i)
∂li
∂Ω

+∆i

{
∂li1
∂Ω

+

∫
P (∆i = 1|Ymis,i)

∂
∂ΩfY (Ymis,i; Ω)dYmis,i∫

P (∆i = 1|Ymis,i)fY (Ymis,i; Ω)dYmis,i

}
.

Therefore,

E0

(
∂l∗i
∂Ω

∣∣∣
Ω̃

)
= −E0

(
∆i

∂li2
∂Ω

∣∣∣
Ω̃

)
+ E0(∆i)

E

(
∆i
∂li2
∂Ω

∣∣∣
Ω̃
; Ω̃

)
E(∆i; Ω̃)

. (3.3)

Setting (3.3) equal to zero gives the sufficient and necessary condition for Ω̃∗ = Ω̃,

as in (3.2).
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Denote by gY (·; Ω) the density of Y under the true model. A close examina-
tion of (3.2) reveals that a sufficient condition for Ω̃∗ = Ω̃ to hold is

gY (Ymis,i;f) = fY (Ymis,i; Ω̃). (3.4)

As a case of particular interest, if bi0 ∼ N(0, σ2b0) in M2, then

(i) if s = 1, then the densities in (3.4) are both of N(µ̌, σ̃2ϵ ), and thus Ω̃∗ = Ω̃;

(ii) if s > 1, then (3.4) is violated because the correlation among the elements
in Ymis,i under the true model is ignored in fY (Ymis,i; Ω̃). In most practical
situations, σ̃2∗ϵ ̸= σ̃2ϵ is expected in this case.

On the other hand, if bi0 is not normally distributed, then (3.4) is not satisfied
regardless of the size of s since gY (Ymis,i;f) is no longer a normal density but
fY (Ymis,i; Ω̃) still is. Even though mathematically not impossible, it is expected
in most practical situations that Ω̃∗ does not coincide with Ω̃ when (3.4) is not
satisfied. Additionally, following a similar proof as above, one can show that if
∆i also depends on Yobs,i besides Ymis,i, then Ω̃∗ ̸= Ω̃ even when bi0 is normal
and s = 1.

Based on Proposition 2 and the follow-up remarks, we propose a three-step
procedure to test the variance component σ2b0 and the normality assumption on
bi0 simultaneously.

Step 1: Create missing data according to a mechanism that depends only on a
scalar Ymis,i, that is, s = 1.

Step 2: Compute tσ2
ϵ
to test H0,σ2

ϵ
: σ̃2∗ϵ = σ̃2ϵ . If H0,σ2

ϵ
is rejected, then one finds

sufficient evidence to support M2 with a nonnormal random intercept.
If the test result is insignificant, it can be interpreted as lack of evidence
to reject M1 or some evidence of M2 being the true model with a normal
bi0. To tell which is more plausible for the current observed data, one
proceeds to Step 3.

Step 3: Create missing data according to another mechanism, such as, P (∆i =
1|Yi) = P (∆i = 1|Ymis,i) with s > 1, or P (∆i = 1|Yi) = P (∆i =
1|Ymis,i, Yobs,i). Repeat the test in Step 2. If the test result is signifi-
cant, then the current observed data supportsM2 with a normal random
intercept. Otherwise, there is insufficient evidence to reject M1.

It is worth noting that this testing strategy kills two birds with one stone
if the test at Step 2 yields a significant result, because one detects σ2b0 ̸= 0
and the nonnormality of bi0 simultaneously, two tasks traditionally being tackled
separately. If the normality assumption seems appropriate, Step 3 still gives
one a chance to detect a random intercept. If one is not concerned about the
distributional assumption and is merely interested in whether or not σ2b0 = 0, then
one just needs to implement Step 3, with a significant test supporting σ2b0 ̸= 0.
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4. Testing for Random Slopes

Now consider testing, for i = 1, . . . ,m, j = 1, . . . , ni,

M3 : Yij = β0 + β1Xij + ϵij , versus

M4 : Yij = β0 + (β1 + bi1)Xij + ϵij ,

where bi1 is a random slope with variance σ2b1, β = (β0, β1)
t is the vector of fixed

effects, and Xij is the covariate, assumed to be a scalar for ease of exposition.

Let Xi = (Xi1, . . . , Xini)
t, for i = 1, . . . ,m. Suppose M3 is the assumed model

andM4 is the true model with true parameter values f = (β̌0, β̌1, v1, vϵ)
t, where

v1 = Var(bi1). Parallel with the development in Section 3, we compare Ω̃∗ with Ω̃

when ignorable missingness and nonignorable missingess is created, respectively,

from the raw data. To further simplify notations, we assume ni = n and set

Ymis,i = Yin for i = 1, . . . ,m.

4.1. Ignorable missingness mechanisms

We focus on the simplest MCAR in this subsection, a case in which Ω̃∗ can

be derived analytically.

Proposition 3. If P (∆i = 1|Yi) = λ, where λ ∈ (0, 1) is fixed for all Yi, i =

1, . . . ,m, then Ω̃∗ = Ω̃ if and only if

E(X2
1n) =

1

n− 1

n−1∑
j=1

E(X2
1j). (4.1)

When Ω̃∗ ̸= Ω̃, the discrepancy lies only in the estimators for σ2ϵ .

Proof. With P (∆i = 1|Yi) = λ, the incomplete-data likelihood under M3 is

f∆, Y ∗(∆i, Y
∗
i |Xi; Ω) = (1− λ)1−∆iλ∆i (2πσ2ϵ )

−(ni−1)/2

× exp

{
−
∑ni−1

j=1 (Yij − β0 − β1Xij)
2

2σ2ϵ

}

×
[
(2πσ2ϵ )

−1/2 exp

{
−(Yini − β0 − β1Xini)

2

2σ2ϵ

}]1−∆i

,

and the corresponding log likelihood function is

l∗i =(1−∆i) log(1− λ) + ∆i log λ− ni − 1

2
log(2πσ2ϵ )

− 1

2σ2ϵ

ni−1∑
j=1

(Yij−β0−β1Xij)
2+(1−∆i)

{
−1

2
log(2πσ2ϵ )−

(Yini−β0−β1Xini)
2

2σ2ϵ

}
.
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It follows that the score vector, (∂/∂Ω)l∗i , has three elements,

∂l∗i
∂β0

=
1

σ2ϵ

{ n∑
j=1

(Yij − β0 − β1Xij)−∆i(Yin − β0 − β1Xin)
}
, (4.2)

∂l∗i
∂β1

=
1

σ2ϵ

{ n∑
j=1

(Yij − β0 − β1Xij)Xij −∆i(Yin − β0 − β1Xin)Xin

}
, (4.3)

∂l∗i
∂σ2ϵ

=
1

2σ4ϵ

{ n∑
j=1

(Yij − β0 − β1Xij)
2 −∆i(Yin − β0 − β1Xin)

2
}

− 1

2σ2ϵ
(n−∆i). (4.4)

Because E0(Yi|Xi) = β̌0 + β̌1Xi and ∆i ⊥ Yi, (4.2) and (4.3) imply β̃∗ = β̌. By

(4.4),

E0

( ∂l∗i
∂σ2ϵ

∣∣∣Xi

)
=
n− λ

2σ2ϵ

( vϵ
σ2ϵ

− 1
)
− v1

2σ4ϵ

(
λX2

in −
n∑

j=1

X2
ij

)
. (4.5)

Solving limm→∞m−1
∑m

i=1E0(∂l
∗
i /∂σ

2
ϵ |Xi) = 0 for σ2ϵ yields

σ̃2∗ϵ = vϵ +
v1

n− λ

{ n∑
j=1

E(X2
1j)− λE(X2

1n)
}
. (4.6)

Now that Ω̃∗ is derived, Ω̃ can be obtained by setting ∆i = 0 in (4.2) and (4.3)

and evaluating (4.6) at λ = 0, which yields Ω̃ = (β̌t, σ̃2ϵ )
t, where

σ̃2ϵ = vϵ +
v1
n

n∑
j=1

E(X2
1j). (4.7)

Equating (4.6) to (4.7) reveals that σ̃2∗ϵ = σ̃2ϵ if and only if (4.1) holds.

Remark 1. Proposition 3 still holds ifM3 andM4 involve extra covariates which

no random slopes are associated with, i.e., M3 : Yij = β0 + β1Xij + βt2Wij + ϵij
and M4 : Yij = β0 +(β1 + bi1)Xij + βt2Wij + ϵij , where β2 is the (vector of) fixed

effect(s) and Wij is a (vector of) covariate(s).

Remark 2. Besides extra covariates, if some of them also have random slopes

associated with them inM4, then one still has β̃∗ = β̃ = β̌, but the sufficient and

necessary condition for σ̃2∗ϵ = σ̃2ϵ is no longer (4.1). For example, with a scalar β2
andM3 given in Remark 1, butM4 as Yij = β0+(β1+bi1)Xij+(β2+bi2)Wij+ϵij ,

where Var(bi2) = v2 and Cov(bi1, bi2) = v12 (true parameter values), then the

new condition replacing (4.1) is

v1E
(
X2

1n

)
+ v2E

(
W 2

1n

)
+ 2v12E (X1nW1n)
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=
1

n− 1

n−1∑
j=1

{
v1E

(
X2

1j

)
+ v2E

(
W 2

1j

)
+ 2v12E (X1jW1j)

}
. (4.8)

Clearly, (4.1) is a special case of (4.8) when v2 = v12 = 0.

Remark 3. Under M3 and M4 as in Remark 2, considering a scalar Wij as an

example, one can show that

σ̃2ϵ = vϵ +
1

n

n∑
j=1

{
v1E

(
X2

1j

)
+ v2E

(
W 2

1j

)
+ 2v12E (X1jW1j)

}
. (4.9)

As one would expect, (4.7) is a special case of (4.9) with v2 = v12 = 0. According

to (4.9), σ̃2ϵ depends on the second moments of a covariate if and only if this

covariate has a random slope associated with it. This result suggests a way to

detect random slope for one covariate at a time without generating missing data.

The idea is to create two subsets of data from the observed data. Both subsets

have m experimental units (or clusters) but they differ in the covariates values

(and also probably the size of a cluster). If X is the covariate of interest in

terms of testing for a random slope, then the subsets are created to satisfy the

following: two subsets have the same value of
∑

j E(W 2
1j) and also agree in the

value of
∑

j E(X1jW1j), but disagree in
∑

j E(X2
1j). Now one has two estimates

of σ2ϵ based on the two subsets. These two should be similar if v1 = 0, and are

expected to differ (at least in limit) if v1 ̸= 0. A test similar to those defined in

Section 2.3 can be used to quantify the discrepancy between two estimates. Of

course, controlling the moment conditions of the covariates is more convenient

to implement at the design stage than after data are collected. An example

illustrating this strategy is given in the Supplementary Materials (Part I).

All discussions in this subsection are free on the distributional assumption on

bi1. Except for the specific forms of f∆, Y ∗(∆i, Y
∗
i |Xi; Ω) and l

∗
i , the proof carries

over to MAR. In order to test the distributional assumption on the random slope,

we turn to NMAR.

4.2. Nonignorable missingness mechanisms

Proposition 4. If P (∆i = 1|Yi) = P (∆i = 1|Ymis,i) for i = 1, . . . ,m, then

Ω̃∗ = Ω̃ if and only if

lim
m→∞

m−1
m∑
i=1

E0

(
∆i
∂li2
∂Ω

∣∣∣
Ω̃

)
= lim

m→∞
m−1

m∑
i=1

E0(∆i)

E

(
∆i
∂li2
∂Ω

∣∣∣
Ω̃
; Ω̃

)
E(∆i; Ω̃)

, (4.10)
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where E0(·) is the expectation with respect to the true model of Yi given Xi with

Ω = f, and E(·; Ω̃) is the expectation with respect to the assumed model of Yi
given Xi with Ω = Ω̃. Moreover, a sufficient condition for (4.10) is

gY (Ymis,i|Xi;f) = fY (Ymis,i|Xi; Ω̃). (4.11)

The proof is very similar to the one for Proposition 2 and thus is omitted.

Even though the sufficient condition in (4.11) is in the same spirit as (3.4),

now that covariates are involved, (4.11) is actually a more stringent condition

than (3.4). Consequently, the three-step testing procedure in Section 3.2 is not

applicable for testing a random slope, and a new procedure for diagnosing model

assumptions on bi1 is needed. This is elaborated upon next.

If bi1 ∼ N(0, v1) in the true model and Ymis,i = Yin for i = 1, . . . ,m, then

gY (Ymis,i|Xi;f) =
1

√
vYin

ϕ

(
Yin − µ̌Yin√

vYin

)
, (4.12)

fY (Ymis,i|Xi; Ω̃) =
1

σ̃ϵ
ϕ

(
Yin − µ̌Yin

σ̃ϵ

)
, (4.13)

where ϕ(·) denotes the standard normal density function, µ̌Yin
= β̌0 + β̌1Xin,

vYin
= vϵ + X2

inv1, and σ̃2ϵ is given as (4.7). Clearly, if vYin
= σ̃2ϵ , then (4.12)

coincides with (4.13) and Ω̃∗ = Ω̃ follows. However, comparing vYin
with σ̃2ϵ

makes it evident that (4.11) is generally not satisfied even with a normal random

slope. A special case in which (4.12) and (4.13) agree is when the design points

are fixed, that is, Xij = X1j for i = 1, . . . ,m, j = 1, . . . , n, and

X2
1n =

1

n− 1

n−1∑
j=1

X2
1j . (4.14)

If design points are random and (4.1) is satisfied, then (4.12) and (4.13) agree

almost surely.

We now zoom in on a particular nonignorable missingness mechanism under

which (4.10) can be elaborated on further. Suppose that the true model for bi1
is normal and one generates missing data among {Yin}mi=1 according to

P (∆i = 1|Yin) = Φ(λ0 + λ1Yin), (4.15)

where Φ(·) denotes the standard normal distribution function. Assuming {Xi}mi=1

i.i.d, and by the Weak Law of Large Numbers, limm→∞m−1
∑m

i=1 h(Xin) =

E{h(X1n)}, where h(·) is a generic function and E(·) is the expectation with

respect to the distribution ofX1n. Now (4.10) can be simplified and made explicit

for each element in Ω. In what follows, the necessary and sufficient condition for
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each element in Ω̃∗ to agree with its counterpart in Ω̃ is given. To attain concise

notations, for a = vYin
or σ̃2ϵ , let

D(a) =
√

1 + λ21a, R(a) =
λ0 + λ1µ̌Yin

D(a)
.

Now one has β̃∗0 = β̃0 if and only if

λ1E

[
1

D(vYin
)

vYin

σ̃2ϵ
ϕ {R(vYin

)}
]
= λ1E

[
1

D(σ̃2ϵ )

Φ {R(vYin
)}

Φ {R(σ̃2ϵ )}
ϕ
{
R(σ̃2ϵ )

}]
. (4.16)

It is obvious from (4.16) that λ1 = 0 leads to β̃∗0 = β̃0, which is expected according

to Proposition 3 as λ1 = 0 corresponds to MCAR.

We have β̃∗1 = β̃1 if and only if

λ1E

[
1

D(vYin
)

vYin

σ̃2ϵ
Xinϕ {R(vYin

)}
]
= λ1E

[
1

D(σ̃2ϵ )

Φ {R(vYin
)}

Φ {R(σ̃2ϵ )}
Xinϕ

{
R(σ̃2ϵ )

}]
.

(4.17)

This condition differs from (4.16) only in the extra multiplicative factor Xin

within the expectations. Naturally, λ1 = 0 leads to β̃∗1 = β̃1. Moreover, Xin ≡ 0

also results in β̃∗1 = β̃1. Therefore, it does not help model diagnosis to choose the

component in Yi as the potentially missing component if the covariate associated

with it is fixed at zero.

As well, σ̃2∗ϵ = σ̃2ϵ if and only if

λ21E

[
1

D(vYin
)

v2
Yin

σ̃4ϵ

R(vYin
)

D(vYin
)
ϕ {R(vYin

)}

]
− 1

σ̃4ϵ
E
[(
vYin

− σ̃2ϵ
)
Φ {R(vYin

)}
]

= λ21E

[
1

D(σ̃2ϵ )

Φ {R(vYin
)}

Φ {R(σ̃2ϵ )}
R(σ̃2ϵ )

D(σ̃2ϵ )
ϕ
{
R(σ̃2ϵ )

}]
. (4.18)

Unlike the conditions in (4.16) and (4.17), now λ1 = 0 does not suffice to yield

σ̃2∗ϵ = σ̃2ϵ , which is also expected according to Proposition 3. In fact, when

λ1 = 0, (4.18) can be simplified to (4.1).

With the conditions explicitly spelled out in (4.16)–(4.18), it becomes evident

that vYin
= σ̃2ϵ guarantees all three conditions to hold. In summary, we have the

following conclusions regarding the comparison between Ω̃∗ and Ω̃ when the true

model contains a normal random slope and the missingness mechanism is given

by (4.15).

(L1) If λ1 = 0, then β̃∗ = β̃ = β̌, but σ̃2∗ϵ ̸= σ̃2ϵ unless (4.1) is true. This is

consistent with Proposition 3.

(L2) If λ1 ̸= 0, then the sufficient and necessary conditions for Ω̃∗ = Ω̃ are given

in (4.16)-(4.18), which mainly depends on the distribution of Xin.
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(L3) If the design points are fixed and (4.14) is satisfied, then Ω̃∗ = Ω̃. In this

case the missingness mechanism in (4.15) cannot reveal the existence of a

normal random slope even if λ1 ̸= 0.

If the random slope does not follow a normal distribution, then (4.11) is

immediately violated since (4.12) is no longer true even though (4.13) still holds.

Although, mathematically, (4.11) is not a necessary condition for Ω̃∗ = Ω̃, for

most practical situations it is virtually impossible to have Ω̃∗ = Ω̃ when (4.11) is

violated. In other words, a nonnormal random slope practically assures that Ω̃∗

disagrees with Ω̃. This claim, along with (L3), suggests the following two-step

procedure for simultaneously testing the variance component σ2b1 and assessing

the normality assumption on bi1.

Step 1: Transform the design points, if necessary, so that (4.14) holds. Generate

missing data according to (4.15) and calculate tσ2
ϵ
. A significant value of

tσ2
ϵ
at this step suggests a nonnormal random slope. If it is insignificant,

it can be due to a normal random slope in the true model or to lack of

evidence to reject M3. To decide which is more plausible for the current

data, one proceeds to Step 2.

Step 2: Reset the design points so that (4.14) is violated. Repeat the test in Step

1. A significant value of tσ2
ϵ
at this step provides evidence of a normal

random slope in the true model. An insignificant value suggests lack of

evidence to reject M3.

Like the three-step procedure in Section 3.2, only Step 2 in this two-step proce-

dure is needed if one just wants to test the variance component. In Step 1, when

a transformation on design points is needed, it can be shown that the following

transformed points satisfy (4.14),

X∗
1j = X1j −

X2
1n −

∑n−1
j=1 X

2
1j/(n− 1)

2
{
X1n −

∑n−1
j=1 X1j/(n− 1)

} , j = 1, . . . , n,

assuming that X1n ̸=
∑n−1

j=1 X1j/(n− 1). Under the same assumption, it is just

as easy to reset the design points in Step 2 to violate (4.14) when needed. For

instance, a non-zero constant shift applied to {X1j , j = 1, . . . , n} will do. If it so

happens that X1n =
∑n−1

j=1 X1j/(n− 1), then one can create missingness among

{Yij′ , i = 1, . . . ,m} instead of {Yin, i = 1, . . . ,m}, where j′ ∈ {1, . . . , n − 1}
satisfies X1j′ ̸=

∑n
j=1,j ̸=j′ X1j/(n−1). Such j′ always exists unless all the design

points within a cluster are equal, a very unnatural setting in practice.

4.3. Additional random effects and fixed effects

We have focused on testing for a random intercept only (without considering

random slopes) or testing for random slopes only (without a random intercept in
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either assumed or true models) in order to highlight the rationale of using missing

data to develop diagnostic tests. Once the rationale is well understood, one can

certainly consider other assumed and true model combinations that include both

random intercept and random slopes in one or both models. As an example, we

have looked into the null and alternative models, M5 : Yij = β0+bi0+β1Xij+ϵij
and M6 : Yij = β0 + bi0 + (β1 + bi1)Xij + ϵij . Discussions parallel to those in

Section 3 and Section 4 are given in the Supplementary Materials (Part II). The

procedure used to test M3 versus M5 is essentially identical to those described

in Section 3 and thus is omitted here.

Lastly, all the above considered pairs of assumed and true models have the

same fixed-effects structure. In the Supplementary Materials (Parts III and IV),

focusing on testing for bi1, we study the limiting MLEs in the presence of ad-

ditional covariates that may be excluded or misspecified in the assumed model.

Also included in the Supplementary Materials is empirical evidence of the ef-

fects of such extra misspecification on the proposed tests. An overall impression

gained from the empirical evidence is that the proposed tests are usually fairly

robust to fixed-effects misspecification, especially when the additional covari-

ates are identically distributed across i = 1, . . . ,m, j = 1, . . . , n. But, through

some exploration, we do realize that the power of the tests for bi1 can increase

or lessen depending on how random-effects misspecification interacts with fixed-

effects misspecification. The comforting news is that it requires very specific

covariate-parameter configurations (see details in the Supplementary Materials),

a coincidence rarely expected in practice, for such interaction to occur in a way

to negate the power of the test to zero.

5. Numerical Evidence

5.1. Three examples

In this subsection, the results of two sets of simulation studies are presented

to empirically justify the theoretical development in Section 3 and Section 4, and

to demonstrate the operating characteristics of the test statistics. We also apply

the methods to data from a longitudinal study.

Example 1 (Testing M1 versus M2). For each of 2,000 Monte Carlo (MC)

replicates, a data set {(Yi1, . . . , Yini)}mi=1 was generated from M2 with µ = 1,

σ2ϵ = 1, σ2b0 = 0.5 or 1, m = 50, 100, 200, or 300, and {ni}mi=1 generated from a

Poisson distribution with mean 10, among which any simulated ni falling below

two was replaced by two. Realizations of bi0 were generated from

(i) (C1) N(0, σ2b0);

(ii) (C2) a skewed distribution with mean zero and variance σ2b0 obtained by

shifting and scaling a gamma distribution with shape parameter 1.5.
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Table 1. Averages of MLEs across 2,000 MC replicates from Example
1 with m = 200. True parameter values are (µ, σ2

ϵ ) = (1, 1). Average
missing rate under each setting is given by r. Numbers in parentheses are
MC standard errors associated with the averages. Incomplete-data MLEs
that are expected to converge to the same limits as their complete-data
counterparts are underlined.

µ σ2
ϵ µ σ2

ϵ

(C1) bi0 ∼ N(0, σ2
b0) σ2

b0 = 0.5 σ2
b0 = 1

Complete-data Limiting MLE 1 1.5 1 2

Complete-data MLE 1.000 (0.001) 1.497 (0.002) 1.000 (0.002) 1.994 (0.003)

Incomplete-data MLE

P (∆i = 1|Yi) = Φ(−6Yi1Yini) 1.002 (0.001) 1.505 (0.002) 1.004 (0.002) 2.011 (0.003)

[r = 0.271] [r = 0.255]

P (∆i = 1|Yi) = Φ(6Yi1Yini) 0.997 (0.001) 1.486 (0.002) 0.996 (0.002) 1.972 (0.003)

[r = 0.729] [r = 0.745]

P (∆i = 1|Yi) = 0.5 1.000 (0.001) 1.497 (0.002) 1.000 (0.002) 1.993 (0.003)

[r = 0.501] [r = 0.500]

P (∆i = 1|Yi) = Φ(−2Yini) 1.002 (0.001) 1.497 (0.002) 0.999 (0.002) 1.997 (0.003)

[r = 0.224] [r = 0.252]

(C2) bi0 ∼ shifted gamma σ2
b0 = 0.5 σ2

b0 = 1

Complete-data Limiting MLE 1 1.5 1 2

Complete-data MLE 1.001 (0.001) 1.496 (0.002) 1.002 (0.002) 1.996 (0.004)

Incomplete-data MLE

P (∆i = 1|Yi) = Φ(−6Yi1Yini) 1.003 (0.001) 1.507 0.002) 1.005 (0.002) 2.020 (0.004)

[r = 0.295] [r = 0.305]

P (∆i = 1|Yi) = Φ(6Yi1Yini) 0.998 (0.001) 1.483 (0.002) 0.996 (0.002) 1.969 (0.004)

[r = 0.705] [r = 0.694]

P (∆i = 1|Yi) = 0.5 1.001 (0.001) 1.496 (0.002) 1.002 (0.002) 1.997 (0.004)

[r = 0.500] [r = 0.500]

P (∆i = 1|Yi) = Φ(−2Yini) 1.000 (0.001) 1.506 (0.002) 0.995 (0.002) 2.012 (0.004)

[r = 0.225] [r = 0.256]

When implementing the proposed diagnostic procedures, missing data were cre-

ated among {Yini}mi=1. Under each of (C1) and (C2), the following missingness

mechanisms were considered, P (∆i = 1|Yi) = Φ(λ1Yi1Yini) with λ1 = −6, 0, 6,

and P (∆i = 1|Yi) = Φ(−2Yini), all of which lead to NMAR except for the one

with λ1 = 0 that corresponds to MCAR, as now the missingness mechanism is

simply P (∆i = 1|Yi) = 0.5. In each setting, we computed Ω̂, Ω̂∗, t1θ, and t2θ.

Results summarizing the MLEs when m = 200 are presented in Table 1. The

empirical power of t1,σ2
ϵ
is shown in Figure 1. The picture for t2,σ2

ϵ
is very similar

and thus is omitted here.
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Figure 1. Empirical power of t1,σ2
ϵ
versus sample size m in Example 1.

Upper panel is for (C1): bi0 ∼ N(0, σ2
b1); lower panel is for (C2): bi0 ∼

shifted gamma. Four curves within each grid correspond to the missing-
ness mechanisms P (∆i|Yi) = Φ(λ1Yi1Yini) (solid lines, with squares and
circles for λ1 = −6 and 6, respectively), P (∆i|Yi) = 0.5 (dotted lines), and
P (∆i|Yi) = Φ(−2Yini) (dashed lines).

As stated in Proposition 1, when the missingness is MCAR (see dotted lines

in Figure 1, even though both σ̂2ϵ and σ̂2∗ϵ are biased for σ2ϵ , both Ω̂ and Ω̂∗ are

consistent for Ω̃, and consequently the t1,σ2
ϵ
are mostly insignificant at the 0.05

significance level. More interestingly, as proved in Section 3.2, Ω̂ and Ω̂∗ are

still consistent for Ω̃ when the missingness is NMAR as long as bi0 is normally
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distributed and ∆i only depends on Yini (see dashed lines in the upper panel of

Figure 1). However, if the nonignorable missingness also depends on Yi1, then Ω̂∗

is biased for Ω̃ and substantial deviation from Ω̂ emerges (see solid lines in the

upper panel of Figure 1). In this case, the test statistics show moderate to high

power to detect the discrepancy between Ω̂∗ and Ω̂, with power increasing as

the misspecification in M1 becomes more severe (as σ2b0 increases). In contrast,

if bi0 is not normally distributed, Ω̃∗ ̸= Ω̃ is expected when the missingness

is NMAR, and t1,σ2
ϵ
exhibits promising power to detect a nonnormal random

intercept (see solid lines and dashed lines in the lower panel of Figure 1). The

observed phenomena in this example reinforce the results of Section 3.

As for existing methods, we consider the likelihood ratio test (LRT) in Self

and Liang (1987) and the LRT in Crainiceanu and Ruppert (2004), with the

latter providing a more accurate approximation for the null distribution of LRT

than the former. Let SL-LRT and CR-LRT denote these methods. Because

ni varies across i = 1, . . . ,m, the condition of identically distributed Yi’s (i =

1, . . . .m) required for SL-LRT is not satisfied, hence their test is not included for

comparison under this particular simulation setting. In other simulation settings

with the ni fixed that we looked into (not reported here), SL-LRT usually has

higher power in detecting existence of a random intercept. Like our test, CR-

LRT is applicable whether ni varies across i = 1, . . . ,m, or not. The empirical

power of their test reaches one much faster as m grows even when σ2b0 = 0.5.

Both LRTs are very robust to the normality assumption. This robustness is a

virtue of these methods especially when identifying a random effect is of main

interest and its distributional assumption is secondary. But if the distributional

assumption is also of interest, our test has the advantage in detecting deviations

from normal.

Example 2 (TestingM3 versusM4). For each of 2,000 MC replicates, a data set

of size m = 50, 100, or 200 was generated from M4 with β0 = 0, β1 = 1, σ2ϵ = 1,

and σ2b1 ranging from 0 to 0.5. The missingness mechanism used to create missing

data among {Yin}mi=1 was defined by P (∆i = 1|Yi) = Φ(λ1Yin) with λ1 = −2, 0,

2. Varying the true distribution of bi1 and the value of Xi, we considered four

settings. For i = 1, . . . ,m,

(D1) bi1 ∼ N(0, σ2b1) and Xi = (1, 2);

(D2) bi1 follows the shifted gamma distribution described in (C2) and Xi =

(1, 2);

(D3) bi1 ∼ N(0, σ2b1) and Xi = (1, 2,
√
2.5);

(D4) bi1 follows the shifted gamma distribution described in (C2) and Xi =

(1, 2,
√
2.5).
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In (D3) and (D4), Xi3 was chosen to satisfy (4.14). Table 2 summarizes Ω̂ and

Ω̂∗ when m = 100. Figure 2 presents the empirical power of t1,σ2
ϵ
under (D1) and

(D2) when λ1 = −2, 0, and 2. Figure 3 depicts the empirical power of t1,σ2
ϵ
and

t2,σ2
ϵ
when λ1 = −2 and 2. Also included in Figure 2 are the empirical power of

SL-LRT, CR-LRT, and the score test proposed by Lin (1997), which considers

a two-sided test (of no random slope) with a test statistic following a chi-square

distribution under the null. Unlike the two LRTs, the derivation of Lin’s test

only depends on assumptions on the first two moments of the random effects

and does not require a normality assumption. As in the previous example, both

LRTs have higher empirical power across the considered range of σ2b1 > 0, but

t1,σ2
ϵ
quickly catches up in power as m or σ2b1 increases (see solid lines crossing

circles in Figure 2). The power of Lin’s test is much lower when n = 2 (see dash-

dotted lines in Figure 2) but gains much more power when n = 3 (though not

plotted in Figure 3). This observation is in line with Lin’s comment (Lin (1997,

p.322)) that the critical value of her test statistic can be less accurate when the

cluster size is small.

Under (D1) and (D2), the operating characteristics of all tests considered are

very robust to the normality assumption on bi1 (comparing the upper and lower

panels of Figure 2). Such robustness is retained for the three existing methods

under (D3) and (D4) (though not plotted in Figure 3), but not for our method.

As observed in Figure 3, with Xi satisfying (4.14), the power of t1,σ2
ϵ
and t2,σ2

ϵ

remains mostly lower or around 0.05 when bi1 ∼ N(0, σ2b1) (see the upper panel of

Figure 3); when bi1 is not normally distributed (see the lower panel of Figure 3),

both tests reject H0 more often, with empirical power increasing as m or σ2b1
increases. Such sensitivity of the proposed tests to the random-slope distribution

allows one to not only detect a random slope but also assess its normality assump-

tion, which is an intriguing feature not possessed by the other three methods.

Finally, as stated in Section 2.3, t1,σ2
ϵ
and t2,σ2

ϵ
are asymptotically equivalent, and

Figure 3 provides empirical evidence for this statement (comparing lines crossing

squares with lines crossing circles in Figure 3.

In summary, the empirical evidence in this example concurs with the theoret-

ical development in Section 4. We also investigated the scenarios when {Xi}mi=1

were randomly generated with mean equal to the fixed values in (D1)–(D4), and

observed similar patterns to those in Table 2, Figure 2, and Figure 3.

Example 3 (Rat data). We now consider a data set from an experiment designed

to investigate the effect of Decapeptyl, an inhibitor for testosterone production,

in male Wistar rats on their craniofacial growth (Verdonck et al. (1998)). This

data set consists of the distance (in pixels) between well-defined points on X-ray

pictures of the skull of each rat, a measurement scheduled to be collected after
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Table 2. Averages of MLEs across 2,000 MC replicates from Exam-
ple 5.2 with m = 100 and σ2

b1 = 0.2, 0.5. True parameter values are
(β0, β1, σ

2
ϵ ) = (0, 1, 1). Missingness is created among {Yin}mi=1 according to

P (∆i = 1|Yi) = Φ(λ1Yin). Average missing rate under each setting is given
by r. Numbers in parentheses are MC standard errors associated with the
averages. Incomplete-data MLEs that are expected to converge to the same
limits as their complete-data counterparts are underlined.

Complete-data Incomplete-data MLE

Limiting MLE MLE λ1 = −2 λ1 = 0 λ1 = 2

(D1) bi1 ∼ N(0, σ2
b1), Xi = (1, 2)

σ2
b1 = 0.2 [r = 0.081] [r = 0.500] [r = 0.919]

β0 0 −0.008 (0.005) −0.019 (0.005) −0.008 (0.006) 0.313 (0.007)

β1 1 1.002 (0.003) 1.013 (0.003) 1.002 (0.005) 0.682 (0.006)

σ2
ϵ 1.5 1.483 (0.004) 1.457 (0.004) 1.374 (0.004) 1.217 (0.004)

σ2
b1 = 0.5 [r = 0.134] [r = 0.500] [r = 0.867]

β0 0 −0.002 (0.005) −0.034 (0.005) −0.004 (0.006) 0.557 (0.006)

β1 1 0.999 (0.003) 1.031 (0.003) 1.001 (0.005) 0.440 (0.005)

σ2
ϵ 2.25 2.235 (0.006) 2.139 (0.006) 1.974 (0.006) 1.620 (0.005)

(D2) bi1 ∼ shifted gamma, Xi = (1, 2)

σ2
b1 = 0.2 [r = 0.070] [r = 0.501] [r = 0.930]

β0 0 −0.000 (0.005) 0.004 (0.005) 0.003 (0.006) 0.197 (0.008)

β1 1 1.000 (0.003) 0.996 (0.003) 0.997 (0.004) 0.803 (0.007)

σ2
ϵ 1.5 1.492 (0.004) 1.503 (0.004) 1.384 (0.004) 1.193 (0.004)

σ2
b1 = 0.5 [r = 0.112] [r = 0.499] [r = 0.888]

β0 0 0.001 (0.005) 0.020 (0.005) −0.001 (0.006) 0.386 (0.007)

β1 1 0.999 (0.004) 0.980 (0.004) 1.001 (0.005) 0.614 (0.006)

σ2
ϵ 2.25 2.229 (0.008) 2.286 (0.009) 1.971 (0.008) 1.480 (0.005)

(D3) bi1 ∼ N(0, σ2
b1), Xi = (1, 2,

√
2.5)

σ2
b1 = 0.2 [r = 0.116] [r = 0.501] [r = 0.884]

β0 0 0.009 (0.005) 0.009 (0.005) 0.009 (0.005) 0.009 (0.005)

β1 1 0.996 (0.003) 0.996 (0.003) 0.996 (0.003) 0.996 (0.003)

σ2
ϵ 1.5 1.489 (0.003) 1.489 (0.003) 1.489 (0.003) 1.487 (0.003)

σ2
b1 = 0.5 [r = 0.159] [r = 0.501] [r = 0.841]

β0 0 −0.002 (0.005) −0.002 (0.005) −0.001 (0.005) −0.003 (0.005)

β1 1 1.002 (0.003) 1.002 (0.003) 1.003 (0.003) 1.002 (0.003)

σ2
ϵ 2.25 2.238 (0.005) 2.239 (0.005) 2.238 (0.005) 2.234 (0.005)

(D4) bi1 ∼ shifted gamma, Xi = (1, 2,
√
2.5)

σ2
b1 = 0.2 [r = 0.109] [r = 0.499] [r = 0.890]

β0 0 0.000 (0.005) −0.001 (0.005) 0.000 (0.005) 0.004 (0.005)

β1 1 1.000 (0.003) 0.999 (0.003) 1.000 (0.003) 1.002 (0.003)

σ2
ϵ 1.5 1.482 (0.004) 1.498 (0.004) 1.481 (0.004) 1.456 (0.004)

σ2
b1 = 0.5 [r = 0.148] [r = 0.498] [r = 0.853]

β0 0 0.003 (0.005) −0.003 (0.005) 0.003 (0.005) 0.013 (0.005)

β1 1 0.997 (0.004) 0.993 (0.004) 0.997 (0.004) 1.003 (0.004)

σ2
ϵ 2.25 2.237 (0.008) 2.298 (0.008) 2.234 (0.008) 2.156 (0.007)
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Figure 2. Empirical power of tests for a random slope versus σ2
b1 for (D1)

and (D2) with m = 50, 100, 200. Upper panel is for (D1): bi1 ∼ N(0, σ2
b1);

lower panel is for (D2): bi1 ∼ shifted gamma. Six curves within each grid
are SL-LRT (dotted lines), Lin’s test (dash-dotted lines), CR-LRT (dashed
lines), and ours based on t1,σ2

ϵ
(solid lines, with squares, triangles, and circles

for λ1 = −2, 0, and 2, respectively).
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Figure 3. Empirical power of t1,σ2
ϵ
and t2,σ2

ϵ
versus σ2

b1 for (D3) and (D4)
with m = 50, 100, 200. Upper panel is for (D3): bi1 ∼ N(0, σ2

b1); lower
panel is for (D4): bi1 ∼ shifted gamma. Four curves within each grid are
for λ1 = −2 (dotted lines) and λ1 = 2 (solid line), with squares and circles
symbolizing t1,σ2

ϵ
and t2,σ2

ϵ
, respectively.
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Table 3. Maximum likelihood estimates for the parameters in the null
model (M3) and the alternative model (M5) in Example 5.3, along with the
values of test statistics and the associated p-values. The standard errors
(s.e.) are estimated according to the sandwich variance estimation.

β0 β11 β12 β13 σ2
b0 σ2

ϵ

Assume M3, P (∆i = 1|Yi) = Φ(Yi1Yi2/6000)
Observed data 68.742 7.643 6.493 7.175 (NA) 4.630

(s.e.) (0.356) (0.370) (0.324) (0.311) (NA) (0.871)
Incomplete date 68.329 8.345 5.862 8.295 (NA) 3.028

(s.e.) (0.376) (0.263) (0.342) (0.829) (NA) (0.526)
t1,θ 1.967 -1.707 1.759 -1.3672 (NA) 2.391

p-value 0.056 0.095 0.086 0.179 (NA) 0.022

Assume M5, P (∆i = 1|Yi) = Φ(0.005Yi1)
Observed data 68.665 7.502 6.855 7.303 3.372 1.427

(s.e.) (0.319) (0.164) (0.250) (0.203) (0.788) (0.133)
Incomplete data 68.991 7.272 6.613 7.172 3.645 1.412

(s.e.) (0.407) (0.226) (0.298) (0.259) (0.839) (0.142)
t1,θ -1.789 1.422 1.606 0.971 -1.541 0.322

p-value 0.081 0.163 0.116 0.338 0.131 0.749

the rat was anesthetized every ten days starting at the age of 50 days. Each rat

was randomly assigned to one of three groups, control group, a low-dose group,

and a high-dose group. For the latter two groups, treatment started at the age of

45 days. Some rats did not survive anesthesia and the number of measurements

collected from a rat before it dropped out ranged from one to seven (see Verbeke

and Molenberghs (2000, Table 2.1) for a summary of the data information). To

facilitate missing response generation, we excluded four rats (out of a total of

50) that only had one measurement in the experiment, leaving data from 46 rats

for analyses. Verbeke and Lesaffre (1999) and Verbeke and Molenberghs (2000,

2003) analyzed the observed data set with 50 rats using LMM. The model they

considered was, for i = 1, . . . ,m, j = 1, . . . , ni,

Yij = β0 + bi0 +Xij(β1 + bi113) + ϵij , (5.1)

where β1 = (β11, β12, β13)
t, 13 is a 3 × 1 vector of ones, Yij is the response

of rat i on the jth occasion, Xij = (Litij , Hitij , Citij), with Li, Hi, and Ci

being the indicators that take value one if the rat was in the low-dose group,

the high-dose group, and the control group, respectively, and tij = log{1 +

(ageij − 45)/10}. To illustrate the proposed diagnostic method, we first assumed

a model without random effects, M3 : Yij = β0+Xijβ1+ ϵij . A relatively simple

alternative model considered as a potential improved model whenM3 is in doubt

is M5 : Yij = β0 + bi0 + Xijβ1 + ϵij . To test M3 versus M5, we adopted a
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missingness mechanism such that, for rat i (i = 1, . . . , 46), only Yi1 was missing

with probability Φ(0.005Yi1), resulting in around 54% missing rate. Following

the three-step testing procedure described in Section 3.2, we computed t1,σ2
ϵ
to

find t1,σ2
ϵ
= 1.82 with a p-value of 0.08, insignificant at the 0.05 significance level.

The result from this test could imply that M3 is an appropriate model for the

current data or that M5 with a normal bi0 is more adequate. To explore further,

we created missing data using a different mechanism according to which Yi1 was

missing with probability Φ(Yi1Yi2/6, 000), leading to a missing rate of around

72%. Using this mechanism and repeating the same test, we found t1,σ2
ϵ
= 2.39,

corresponding to a p-value of 0.02. The second significant test result provides

evidence that the model with a normal random intercept is more preferred than

M3. Lastly, we considered whether the data provide sufficient evidence to support

including a random slope as in (5.1). That is, we tested M5 versus (5.1). Using

the first missingness mechanism again to create missing data, we found that the

tests associated with all parameters were insignificant at the 0.05 significance

level. Hence, the observed data do not provide sufficient evidence that a random

slope in necessary. This is also the conclusion reached by the analyses in Verbeke

and Molenberghs (2003), when normal random effects were assumed throughout.

The results from the latter two tests and the parameter estimates are given in

Table 3.

5.2. Practical considerations

Now we are in the position to make some practical remarks on two issues,

one about designing missingness mechanisms, and the other regarding multiple

testing. If one focuses on the mechanism defined by (4.15), then the first issue
boils down to the choice of λ there. It is theoretically desirable to choose λ so

that |Ω̃∗− Ω̃| is large when the model is misspecified, which usually leads to tests

with high power provided data information is not too scarce. However, because

|Ω̃∗− Ω̃| rarely happens to be a trivial or monotone function of λ, it is unrealistic

to expect one to know how to tune λ to increase this discrepancy, not to mention
that it also depends on the unknown true model. In practice, the best one can do

is to try various λ to attain several different missing rates, while bearing in mind

that, first, the power of the test is typically not monotone in missing rate, and

second, too large a missing rate can result in unreliable inference based on the
incomplete data. A conservative rule of thumb we took from extensive simulation

study is to conduct the test with a missing rate of 10% ∼ 20%, then repeat the

test with a missing rate of 80% ∼ 90%, except when sacrificing this much data

yields incomplete data with too little information, in which case one can lower
the missing rate. If the test does not reject the null hypothesis at either missing

rate, then the current data do not provide sufficient evidence against the null.
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Otherwise, the data suggest some evidence against the null. One may certainly

consider any missingness mechanisms other than (4.15), but we believe it overkill

to consider too many (seemingly) different mechanisms. An overloaded toolbox

can put one in an unnecessarily difficult situation where one does not know

which tool to pick for a particular task. With the theoretical support provided

in Sections 3 and 4, we recommend a simpler and lighter toolbox. The recipe for

doing this is the following. First, choose one fixed index to be the index of the

potentially missing response within each cluster; second, use results proved in

Sections 3 and 4 as guidelines to decide on MCAR, MAR, or NMAR, depending

on the goal of a test; third, set the parameter(s) in the mechanism chosen in the

previous step to attain certain missing rate(s) following the aforementioned rule

of thumb.

Turning to the second issue of multiple testing, even though we computed tθ
for all parameters in Ω in the above examples, we only reported results associated

with tσ2
ϵ
, which sufficed for those problems. When the model under testing is more

complex and one wishes to assess more model assumptions, information from tests

associated with other parameters can be useful. In that case, adjustment for

multiplicity in testing is the right thing to pursue. But not doing the right thing

may be less disastrous here than in other statistical analyses, such as in some

variable selection procedures. The reason is that the relative significance of the

tθ associated with different parameters may already contain useful information

regarding the source of misspecification.

6. Discussion

We propose a novel diagnostic method to assess random-effects assumptions

in LMM. The novelty of our proposal lies in the use of strategically created incom-

plete data. The incompleteness of the user-generated data is relative to the raw

observed data set, which itself can be incomplete data due to missingness dur-

ing the data collecting process, as in Example 5.3 where many rats missed some

measurements due to early drop-out. Unwise as it appears, sacrificing some data

and making inference based on incomplete data can reveal valuable information

that is hard to discover when only the raw data are used. An important lesson

we have learned from this research is that combing multiple sets of potentially

inconsistent inference, or, combing multiple sets of “wrong-model analyses”, can

reveal more useful information than one set of (potentially-)wrong-model anal-

yses. The use of wrong-model analyses (repeatedly) distinguishes our method

from those in Hausman (1978) and Tchetgen and Coull (2006), which require

some form of consistent inference robust to the model assumption being tested.

Not relying on some form of consistent inference actually allows more flexibility

in developing diagnostic methods.
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Although the context of the theoretical development in this article is LMM
for responses that can be partitioned into independent subvectors, the underly-
ing idea of using missing data to detect model misspecification is applicable in a
wide range of models and to aspects of model selection other than random effects.
We have experimented on several other data coarsening strategies for more com-
plex models. These experiments produce empirical evidence that the patterns of
changes in estimators before and after data coarsening are closely related to the
source of misspecification. Analytic explanations of these phenomena are then
more involved. One possible direction that can lead to some theoretical insight
is to explore the dependence of some “distance” between two sets of inferences
on the “distance” between the assumed model and the true model.

If the raw observed data are not as complete or rich as one would like, we
plan to explore the enrichment of data as opposed to the coarsening of data.
This opposite direction is related to the idea of imputation for model checking
presented in Gelman et al. (2005). We conjecture that, when additional data
generated according to a user-designed mechanism are added to the observed
data, inference based on the enriched data can differ from inference based on the
raw observed data in a way that is informative for model diagnosis.
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