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Abstract

We propose a new method for smooth isotonic regression analysis. Unlike most existing
methods for isotonic regression, the proposed method is akin to parametric regression with-
out order restriction. To account for smoothness and isotonicity simultaneously, we exploit
the flexible class of semi-nonparametric densities to model isotonic regression functions. Un-
der this framework, the full range of inference techniques for parametric regression models

become applicable for model estimation and model validation in isotonic regression.
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1 Introduction

Due to physical considerations, it is often assumed in regression models that the mean of a response
is a monotone function of a predictor. Examples includes models for growth curves, those in dose-
response analysis, and models arise in reliability theory. Imposing monotonicity in regression
analysis when it is scientifically well justified can enhance tfiiency of statistical inference

and the interpretability of inference results.

The majority of existing methods for isotonic regression are nonparametric in nature. Among
early developments, the most well-known algorithm is the pool-adjacent-violator algorithm (PAVA)
(Robertson, Wright, and Dykstra, 1988), which yields a piecewise linear isotonic function as the es-
timated regression function. The outcome from PAVA is unsatisfactory when a smooth functional
relationship is desired. To achieve smooth regression functions, methods based on splines and
kernels were proposed (Delecroix and Thomas-Agnan, 2000). Ramsay (1988, 1998), Kelly and
Rice (1990), Mammen and Thomas-Agnan (1999), Wang and Feng (2008), among several oth-
ers, studied smooth splines regression under order constraints. Mammen (1991) realized smooth
isotonic regression analyses in two separate steps successively infigverdiorders, which are
an isotonizing step through PAVA and a smoothing step via kernel estimation. Hall and Huang
(2001) proposed a method to adjust the weights in a kernel estimator to satisfy the monotonicity
constraint. Dette, Neumeyer, and Pilz (2006) avoided constrained optimization by combining un-
constrained regression and density estimation, which requires users to specify two kernels and two
bandwidths. In general, the strategies that exploit smoothing splines or kernels entail choice of
knots and tuning parameter for smoothness penalty or choice of kernel and bandwidth. Recently,
Wang (2011) modeled the regression function using Bernstein polynomials, with constraints im-
posed on the cdicients associated with the Bernstein polynomial basis vectors to achieve mono-
tonicity of the regression function. Under the Bayesian framework, Bornkamp and Ickstadt (2009)

proposed nonparametric isotonic regression, where they used a mixture of shifted and scaled para-

ACCEPTED MANUSCRIPT
2



ACCEPTED MANUSCRIPT

metric probability distribution functions to model the regression function. Meyer, Hackstadt, and
Hoeting (2011) modeled smooth isotonic regression functions using quaBspiine basis func-

tions, and developed a reversible-jump Markov chain Monte Carlo (MCMC) algorithm to allow

for free knots. A battery of statistical inference techniques for nonparametric isotonic regression
have been developed by Bartholomew (1959), Barlow, et al. (1972), Banerjee and Wellner (2001),
Banerjee, Biswas, and Ghosh (2006), Banerjee (2007), and Pal and Banerjee (2008), among many
others.

In this article we propose a new method that achieves smoothness and isotonicity simultane-
ously in one modeling step based on a class of semi-nonparametric (SNP) densities defined by
Gallant and Nychka (1987). The proposed method does not involve choice of knots, smoothing
penalty, or bandwidth, although, as discussed in Section 3, it requires one to choose a quantity that
controls the flexibility of the regression function being modeled. The idea behind the new method
is first motivated by the elementary concept that a valid cumulative distribution function (cdf) is
nondecreasing. Hence one can construct an isotonic function based on a cdf. To attain smoothness
and flexibility, we use the cdf of a flexible smooth distribution family and relax constraints required
for the validity of a cdf, such as ranging from zero to one, to model the regression function. The
use of SNP representation for the regression function greatly simplifies follow-up inference pro-
cedures such as parameter estimation, standard error estimation, and model validatitact,Iin e
the proposed method sets isotonic regression, traditionally treated nonparametrically, back in the
parametric framework without order restriction and makes the full range of parametric inferential
techniques applicable.

Because the SNP representation is the backbone of the proposed method, we devote Section
2 to introducing the particular family of SNP used in this article and reviewing existing relevant
works that employ SNP. We then present the new approach for isotonic regression in Section 3.
A test for linearity of the regression function is also developed in this section. Section 4 presents

simulation studies to illustrate the implementation and performance of the proposed methods. In

ACCEPTED MANUSCRIPT
3



ACCEPTED MANUSCRIPT

Section 5, these methods are applied to a real data example. In Section 6, we point out future

research that refine the current proposal and make further use of SNP in regression analyses.

2 Semi-nonparametric representation

Gallant and Nychka (1987) defined a class of flexible probability density functions (pdf) termed as
semi-nonparametric densities. The construction of SNP densities involves Sobolev norm, which
is reviewed next. For a functiof(z) on the support ofl-dimensional real spac&¢, the Sobolev

norm with respect to a weight function(z) is defined by

1/p
Z fID”f(z)|pw(z)dz} ifl<p<oo

I fllmpw = {Mlsm

maxsup|D* f (2)|w(z) if p= oo,
=M zepd

(1)

where

PP R I A
D f(z)_(azil)...(azngf(z)

is the partial derivative of (2), A = (14,...,14q), and|d| = Zﬂzl/lk. The class of SNP densities is
defined by

H ={h(2) : h(2) = F*(2) + &ho(2)} 2)

whereg, is some small positive numbéiy(z) is a strictly positive density function that satisfies
INollme.2we < Bo for some positive bound,, my > d/2, wo(z) = (1 + 2'2)%, 6o > d/2, andf(2)
also satisfieq f|ln, 2w, < Bo. The dfect of setting an upper boursh on || flm, 2w, and|lNollmy2w,

is to impose certain degree of smoothness restriction(gn Adding esho(2) in h(z) is to force a
lower bound to avoid zero density. Assuming the true deniity), belongs toH, Gallant and
Nychka (1987) showed that the number of derivativeb*¢f) that can be estimated consistently

via maximum likelihood isng —d/2. In practice g5ho(2) is usually omitted irh(z) without causing
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noticeable numericalect. In most existing SNP literaturé?(z) is approximated by the following

truncated Hermite series,

2
{Z aA(R‘lz)”} R exp(—zTR‘TR‘lz/Z), (3)
[A|<K
which satisfies
i _ -1\4 -1 _STR-TR-1 —
;!'I&Hf(z) l%aA(R 2) \/R exp(-z"R-TR z/2)”nb_d/2’m’wo_0,

where{a,, |1] < K} are a series of cdicients constrained so that (3) integrates to one over the
support ofz, R™T denotes the transpose Bf, and fort € RY, t* = ], t". Simply put,
Yk a(R™12)* is a polynomial inz of orderK. Noticing thatR™ exp(—zTR‘TR‘lz/Z) is the
kernel of a normal distribution with mean zero and variance-covariance nidtRx a variant of

(3) is given by
(PR} RM$(R2), @

whereP,(t) is a polynomial oft € RY of orderK, and#(-) denotes thel-dimensional standard
normal pdf.

To recap, the class of SNP densities for practical use contains pdf members whose format is
given by (4). The structure of a polynomial (quantity squared) multiplying a normal pdf leads to
both mathematical and computational convenience, which makes SNP a popular tool for model-
ing distributions, especially when one wishes to avoid restrictive distributional assumptions. For
example, Davidian and Gallant (1993) modeled randdigces in nonlinear mixed models using
SNP; Zhang and Davidian (2001) utilized SNP densities to model randl@ct®in linear mixed
models; Chen, Zhang, and Davidian (2002) applied SNP to randiaute in generalized linear
mixed models; Song, Davidian, and Tsiatis (2002a,b) employed SNP densities for rafidci® e
in joint models; Zhang and Davidian (2008) adopted SNP representation for time-to-event to al-

low arbitrarily censoring patterns; Irincheeva, Cantoni, and Genton (2012) used SNP to specify
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the distribution of latent variables in generalized linear latent variable models. In contrast to these
works, where SNP representation is exclusively used for distribution construction, our use of SNP
as the basis of formulating smooth isotonic functions is a new contribution. The flexibility and
smoothness of SNP pdf are inherited in the resulting isotonic regression functions.

Besides convenience in numerical implementation, using SNP to approximate density functions
and regression functions also has solid theoretical justification. Gallant and Nychka (1987) showed
that, if h"(z) € H, letting n be the sample size ar‘ft(z) be the estimated density obtained via
maximum likelihood when (3) is used to approximétéz), then lim,_,, ||h — h*[lmo—-d/2.c0mp = O
almost surely when lim,., K, = . In other wordsh is consistent in the notion of Sobolev norm
for appropriately choseK,,. Here,K, is K in (3), with a subscript to stress its dependencaon
when studying asymptotics. Fenton and Gallant (1996a) further showed that, in order to achieve
consistent, the rate at whict,, approaches infinity as — oo should depend on the highest order
of derivative one assumes fbr(z). Moreover, a direct consequence of this consistency is that
functionals ofh*(z), such asf d(z)h*(2)dz, can also be estimated consistently in the same notion,
for some functiong(z). This property is especially important for our study because, assuming
d = 1, we will base the construction of an isotonic function on the particular functioni(f
given byH*(2) = fzf h*(t)dt, wherez_is the lower bound of the support of interest. Because an
isotonic function may not range from zero to one, as a cdf does, the constraint on fihaemts,

a,, in (3) is relaxed. More specifically, we define a rich class of flexible smooth isotonic functions
as follows,
G = {H(z) ' H@@) = fZ{PK(R‘lt)}Z R (R M)dt+s seR, K=12,... }
Z
where the constraint oa, in P(:) required in (3) is removed, arng{= H(z))) is a location pa-
rameter (noting thatl*(z.) = 0). If the true isotonic function falls in this rich SNP class, then the
isotonic function can be estimated consistently via maximum likelihood as long as one chooses

K appropriately. Relating to thiesplines used to model monotone regression functions, e.g., in
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Ramsay (1988) and Meyer (2008), the constructiorl i) (= fzf h*(t)dt) is similar to that of the

I-splines, which integrate ovéM-splines.

3 SNP isotonic regression

3.1 Model and estimation

Suppose that the observed ddty;, X;), i = 1,...,n}, are independent and identically distributed

(i.i.d.) realizations of the following regression model,
Y =6(X) + €, (5)

wheref(X) is a smooth isotonic function, ards the random error independentXf The central
interest is to estimaté(-). For ease in exposition, we consider a scaldor the majority of this
article. If one assumes that the true regression functitx), belongs tog, theng*(x) can be

formulated as the integral of a truncated Hermite series for $0mleis a shift,

O (X) = f X{PK(t)}ze‘tz/de s, (6)

XL
wheres = 6*(x_) andx_denotes the lower bound of the suppor¥eiX. By the general SNP theory
reviewed in Section 2, #*(-) € G, then applying the maximum likelihood method to the resultant
parametric model leads to an estimated regression funétipthat is consistent in the following

sense,

m supld(x) — #°(X)|(1 + x?) = 0 asK — oo. (7)

li

n—oo xeX

Elaborating and translating the arguments in Section 2 in the current contegt(-Joe G, its
derivative 6 (x) behaves likef?(-) in (2), except for the integrate-to-one constraint. And thus,

parallel to the condition offi(-) following (2), 6*(-) € G implies that

)

LO*/(X)(1+ X?)dx + O.25fx e (1+ x*)dx < C, (8)
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for some positive consta®, whereg*'(x) is the second derivative @f(x). In plain language,
in order to achieve (7) for the estimated regression function resulting from maximum likelihood
method, the underlying true regression function needs to fiieismtly smooth. Regression func-
tions that violate (8) include those with abrupt jumps, sudden kinks, or oscillatory behaviors within
X, as these behaviors can cause the integrals in (8) blow up.

It is straightforward to program the regression function in (6) for Knyecause of the follow-
ing easily derived recursive formulas. Denotedfy) the standard normal cdf. Defing(x) =

Jo AP e/2dtandl () = [ t“e™/2dt, for K = 0,1,.... Thendj(X) = y«(x) + S, where

vo(¥) = &lo(X),
K-1
y(¥) = yk-a(X) + aklxk(X) + 2ak Z ajljk(X), for K > 0, in which
=0
L(X) = exp(—xf/z) - exp(—x2/2), and
Ik(X) = xf‘lexp(—xf/z) - xK1 exp(—x2/2) + (K — Dlg_a(x), for K > 1.

Substitutingd(x) in (5) with 6; () yields an explicit parametric form. Defire= (ag, ay, . .., a, )",

and leto. be the unknown parameter(s) in the distributioreofThenQ = (7, 0.)" is the col-

lection of unknown parameters in a parametric model as an SNP representation of (5k i®nce
estimated, an explicit estimated regression function becomes available for prediction and for use in
other inference procedures, which is one advantage of the new method compared to spline-based
and kernel-based methods. This appealing feature is underscored by Fenton and Gallant (1996b),
who stated that SNP estimators “compress the information in the data to a seffieonts whose
number is a fractional power of the sample size” whereas estimators from methods using spline
or kernel “must be recreated afresh from the data at every use.” They also provided results to sup-
port that SNP estimators are “both quantitatively and asymptotically similar to the kernel estimator
which is optimal”. The advantages of the SNP method compared to kernel and spline methods

in modeling regression functions are discussed in greater details in Eastwood and Gallant (1991).
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The key message delivered in their article is that, with very similar statistical properties for the
final inference results, the SNP method is more convenient in many aspects of implementation.
Such advantages carry over to modeling isotonic regression functions.

If & ~ N(O,0?), thenY;|X; ~ N(O(X;7), 0?), fori = 1,...,n. The maximum likelihood

estimator (MLE) forr, denoted byt, is equivalent to the least squares estimator,

n

T = argTrglgpQ 1 Y — 6:.0%; T))%,
i=

wherep; is the dimension of. An estimator fow-? is given by the residual sum of squares adjusted

by the degrees of freedom,

n
§2=(n-p)" > Y- 60X B 9)

i=1
Equivalently, estimating2 for a fixedK is to solve the following system of estimating equations
for Q,

06: (Xi; 1)

n n Y, X T n Y - 0 (X 7))
Sucxiey =3 T | MRS ™5™ 1o ao)
= = P2 X5 Q) = 0o - (n- p) Y - 6506 1))

The Jacobian corresponding to (10) is given by

00O ) a6 (K)o BP0 (K T)
P oo —{Yi —HK(XHT)}W

00 X.,
Zz(n—pf) (Y - O (% T} =S5 QK( 0

n

2.

A= i=1

(11)

Based on (10) and (11), both of which can be derived explicitly, one can compute the sandwich
variance estimator fof2 according to theM-estimation theory. An estimator for the variance of
0(Xo) = 0y (xo; T) can also be obtained via the Delta method for any particular value of intggest,
within a plausible range. Also, confidence intervals for functionalé ©f) are readily available.

All these inference procedures are equally straightforward if one assumferarmti error model

for g, such as a heteroscedastic error model with variance dependiXg 8oth weighted least

squares method and maximum likelihood method can be carried out without extra complication.
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3.2 ChoosingK

The preceding inference procedure assumes a pre-specified ixédpractical implementation,
one needs to choosekafirst and the quality of the follow-up inference depends on this choice.
Too small of aK can result in an estimated regression function not flexible enough to capture the
shape of*(x), and an unnecessarily lar¢fecauses inficiency loss. In the sequélk(x) denotes
the estimated regression function wigiix) in (6) is used to moded(x).

Fenton and Gallant (1996a) derived the rate at wKigtends to infinity as increases in order
to achieve a desired convergence notiom,ofx) to 6*(x). In particular, if it is assumed that the
true density inH is second order dierentiable, therk,, ~ n'/® is needed to achieve consistency.
Fenton and Gallant (1996b) found that using a deterministic rule, suly asn*® , is inferior
to using an adaptive rule, according to whiKhs chosen adaptively based on information criteria
such as the Akaike information criterion (AIC). Davidian and Gallant (1993) compared use of
AIC, Schwarz information criterion (BIC), and Hannan-Quinn criterion (HQ) to chdtsand
suggested use of HQ because it often chooses a valkdldt lies between those chosen by AIC
and BIC. Zhang and Davidian (2001), Chen, Zhang, and Davidian (2002), Zhang and Davidian
(2008), and Irincheeva, Cantoni, and Genton (2012) also considered AIC, BIC, and HQ as three
model selection criterion and reached very similar conclusions as those in Davidian and Gallant
(1993). Coppejans and Gallant (2002) explored the method of cross-validation (CV) to ¢hoose
Eastwood (1991) proposed &ntest to compare goodness of fit resulting from two choicels.of
His test is valid only if the candidat€’s are large enough to begin with.

We investigated all the aforementioned methods for chodsiingour context and found that
the K chosen by information criteria tends to be larger than what is chosen by CV. To strive for
parsimony without sacrificing flexibility, we propose to combine CV and Eastwdedsst to
chooseK as described next. Firstly, one employsraiold CV. More specifically, one partitions

the observed data randomly inteubsets, as equal sized as possible. Then, for each candidate
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the model is fitted times, each time th@gh subset[=1,...,r) is kept as the validation data set,

and the remaining— 1 subsets form the testing data set used to fit the SNP (of &degression

model. After each model fitting, the mean squared error (MSE) is calculated using the validation
data and the average of thes&SE’s for each candidatK is calculated. Denote bif, the K

where the first abrupt drop in the average MSE occurs or where the average MSE is the smallest,
whichever comes first. Now one usgg(X) to fit the regression model based on the entire data
set. Denote bya-io the estimated? resulting from this fit. Secondly, one repeats the estimation
based o (X), whereK; = Ko + ¢, for some positive integer(usually set at one). Denote bf’l“

the estimates fas2 from this round of model fitting. Lastly, one computes Eastwo&d&atistic
defined by

_ (n - pT,O)a-g,o - (n - p'r,l)a-il
c(n = Pro)d2,

: (12)

wherep,o and p,; are the dimension of whenK is equal toK, andK;, respectively. The-
statistic is compared with the critical point of &tfc, n— p. o) distribution to decide whether or not
SNP of orderK; gives a significantly better fit than SNP of ord€y. In this procedure, one uses
CV to chooseK first to reduce the chance of applying Eastwodé st with instficiently large

K, which, as pointed out earlier, can invalidate the test.

3.3 Test for linearity

In nonlinear regression, it is often of interest to justify if a nonlinear regression function is indeed
necessary as opposed to a linear regression function. In this subsection, we propose a simple test
for linearity of 9(x) based on the SNP representation.

The proposed test is motivated by the simple fact that, assu#(u)gs second-order tlieren-
tiable, if 6(x) is a linear function ok, thend”(x) = 0 for all x, whered”(x) is the second derivative
of 8(X). Hence, an empirical indicator of (non)linearity can be constructed basé{@xm which

can be easily derived, thanks to the SNP presentation. Formally, we proposeHg tast(x) = 0
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versusH; : 6”’(x) # O for testing linearity. A natural statistic for this test is given by

n

~ 2

Qe =n Y (o)) (13)

i=1
Note that, provided thaK is chosen appropriatelQx is degenerate at zero unddg. This pro-
hibits one from obtaining a critical point with whidQ« compares to make a testing decision in
the traditional ways. To obtain an empirigavalue for this statistic, we exploit the method pro-
posed by Hrdle, Mammen, and Mler (1998) and implement a parametric bootstrap procedure

as follows.
Step 1: Fit the SNP regression model with an appropriately chdceGomputeQy .

Step 2: Fit a linear regression modét, = By + 81X + €, under the constraint thgg > 0. Denote

by B = (Bo, A1) the estimate fop = (8o, B1), and bys?; the estimate foo2.
Step3: Forb=1,...,B,

(i) Generate théth set of artificial dataYi, = Bo + 1% + 6 o€, fori = 1,....n, where

{€,}, arei.i.d. random errors with mean zero and variance one (such adif@rt)).

(i) Fitthe SNP regression model as in step 1 usingttiheartificial data set{(Y;, X} ;.
Denote by@K,b(x) the estimated regression function.

2

(i) ComputeQqp = " 1L, {# (X))
Step 4: The empiricalp-value associated witf is defined byB* ZE=1 {Qk < Qkp}-

The choice ofK adopted in step 1 is crucial especially for power consideration. UHgelt is

likely that a smalkK is chosen by the procedure described in Section 3.2 and linearity is often well
preserved by (X). Even with aK slightly higher than necessary, the size of the test usually will
not inflate noticeably because the redundantio@ents among,’s are expected to be estimated

as close to zero. But undét,, if one chooses & not high enough to capture the curvature in
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g*(x), Qk can lack power to detect nonlinearity; and if one chooses an unnecessarilK|attoge
efficiency loss can also compromise the powefQpf Note that tests for concavjtonvexity of
6(x) are readily available by changing the above test to a one-sided test. One can also test for
constant regression functions by definidg : 6'(x) = 0, then revisingQx accordingly. In fact,
it is possible to take the advantage of the explicit parametric fordy 0f) to formulateH, and

reviseQ in different ways to test many functional feature9©9).

4 Simulation studies

In this section we present five examples designed to provide empirical evidence for the quality of
SNP estimation, the operating characteristics of the proposed method to ¢hansethe test for
linearity. The first three examples have the following common simulation settings. For each of 300
Monte Carlo (MC) replicates, a random sample of $ize 200 is generated according to a model
specified in each example, and the model errer§?, are i.i.d. N(0, o2), wheres? = 0.25. To

find the empiricap-value forQg, we setB = 300 in the procedure described in Section 3.3. The 5-
fold CV is employed to finKy. After aK is chosen from CV combing with af test, we conduct

the test for linearity oB(x). For notational convenience, defifg; as theF statistic for testing

K = sversuskK = t, where 1< s < t. The significance level for all tests is 0.05. To pictorially
compare the estimated regression function and the true function, we compute the MC average of
300 sets ofr and use this average as the parameter values plugged into the SNP representation for
6(x), resulting in an estimated regression function, denoteéiif¥). In contrast, the estimated
regression function from one MC replicate is denoteddpfx). The fourth example presents a
comparative simulation study, where the fit for the regression function using the proposed method
is compared with the fits when three existing methods developed for smooth isotonic regression

are used. Lastly, the fifth example considers bivariate isotonic regression.
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Example JLineard*(x)]: The true regression model i¥, = 2X; + ¢, fori = 1,...,n, where{X} |

are generated from uniform(0, 1). The CV process cho#ses 1, associated with the average
MSE smaller than those associated with= 2, 3, and 4. Thed test comparing< = 1 versus

K = 2 yields a rejection rate of 6% across 300 MC replicates. This suggests that, with one data
set, one would most likely fail to reje&t = 1. The test for linearity based on the test stati§ic
results in a rejection rate of 4% across 300 MC replicates. This provides empirical evidence that
the proposed test for linearity confers the right size. In plot (a) of Figure 1 we coréiffaye- 2x

(solid line) with 6,(x) (dashed line) and twé,(x) from the two randomly chosen MC replicates

(dotted lines). All three latter curves exhibit close agreement with the true linear function.

Example ZStrongly nonlineas*(x)]: The true regression model i, = X3 + ¢, fori = 1,...,n,
where{X}", are generated from uniformg, 2). The CV process shows that changihfrom one
to two leads to an abrupt drop in the average MSE and it levEéf®oOK > 2. The statisticf 3,
used to tesk = 2 versuK = 3, has an empirical rejection rate of 6% across 300 MC replicates. In
contrast, the rejection rate associated V#this 100%. Hence, with one data set, it is most likely
that F,3 is insignificant, suggesting th& = 3 does not yield dticient improvement in fitting
the true regression function than whién= 2; wheread-1, is highly significant, providing strong
evidence thaK = 2 leads to a much better fit f@x) than whenK = 1. Fixing K at 2, the test
for linearity based o1, also has a 100% rejection rate. This provides empirical evidencthat
has high power to detect nonlinearity &) in this case. Plot (b) in Figure 1 depiatgx) = x3
(solid line), 81(x) (dashed line)@,(X) (dash-dotted line), anék(x) (long dashed line). The two
higher-order curved),(x) andés(X), nearly overlap with each other and show nearly perfect fit for
the true function. In contrasf,(x) fails to capture the curvature in the region around —1 and
x=1

In this example we also summarize the parameter estimateskvheh andK = 2 in Table 1.

The MC averages of the estimated standard errors based on sandwich construction are compared
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with the MC standard deviation of the parameter estimates. Note that Wheri, 52 is sub-
stantially biased upwards. This is expected as a great amount of variability due to the underlying
6(x) is not capture by (x) and is instead counted as model error. WKer 2, the accuracy of
&2 is greatly improved and it seems to only account for the real model error instead of the lack
of fit for 6(x). This phenomenon also reflects the rationale behind Eastw&o#st. Moreover,
the sandwich estimates for the standard errors are also much more reliabl& wh2than when
K=1

Furthermore, we explore the partially linear mod¢l= 8Z; + Xi3 + g, wherez; is another co-
variate angB is a regression cdkcient. Even with an additional linear part in the regression model,
BZ;, we do not observe noticeable change in the operating characteristics of the procedures used
to chooseK and the test for linearity compared to the phenomena described above. Additionally,

whenK = 2, the MLE forg, 3, is also satisfactory, so is the sandwich standard errg.for

Example 3IMildly curved 6*(X)]: In this example we consider a less dramatically nonlirgégy
than that in Example 2. Consider the modfek €% + ¢, where we design two settings with the
first has a milder nonlinearity than the secondi)~ uniform(0, 1); (ii) X; ~ uniform(1, 2). For
K =1, 2, 3, beside€, we also estimate the value €(x) at the 25th, 50th, and 75th percentile of
the support ofX under each setting, denoted @y, 650, andé-s, respectively. These results, along
with the rejection rates of thé test and test for linearity are summarized in Table 2.

WhenX ~ uniform(0, 1), the nonlinearity is very mild and, consequently, CV combining with
the F test suggesK = 2 may not be needed to modei over this range ok. The statisticQ,
has moderate power to detect nonlinearity of the true regression function. Note that if one sets
K = 2 under the first setting, has a very low power to detect the nonlinearity. This indicates that
unnecessarily higik can compromise the power Q. Similar phenomenon is observed under
the second setting, even thougly rejectsK = 1 more often than under the first setting, reflecting

the increased curvature ef over the range of [1, 2]. Under both settingstests provide little
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evidence thaK as high as 3 is needed.

Plot (c) in Figure 1 depictg:(x) from one randomly chosen MC replicate (dotted lirgfx)
(dashed line), ané,(x) (dash-dotted line), compared wigh(x) = e* for x € [0, 1] (solid line).
In this rage ofx, it appears from the plot tha@(x) matches*(x) better tharf,(x) does. Plot (d)
showss(x) andé,(X) in contrast to the truth over the range of [1, 2]. Hek€x) appears to have a

slightly better fit. This pictorial impression is also reflected in the quali#.gffso, andd-s.

Example 4[Compare with other methods]: In this example, we geneXateom uniform(0, 1)

and setr? = 0.25,n = 100 or 200, for each of 2000 MC replicates. Three existing methods are
compared with the proposed method, with two spline-based and one kernel-based. One spline-
based method is implemented in the R functipnls, which realizes a penalized cubic spline

with monotonicity constraint (Woods, 1994) with 5 or 10 knots evenly spread over [0, 1]. Another
spline-based method is based on nondecreasing piecewise quadratic splines (Meyer, 2013) with
2 or 4 knots (adopting the recommendation in Meyer (2008)) evenly spread over [0, 1], imple-
mented in Meyer’'s R functiomspl (http://www.stat.colostate.edu/~meyer/msplh.R).

The kernel-based method is the nonparametric method proposed by Dette, Neumeyer, and Pilz
(2006) and implemented in the R functiamnreg. Their method involves a local linear regression

step and a density estimation step. For each step, one needs to specify a kernel and a bandwidth.
In our simulation study, as done in Dette, Neumeyer, and Pilz (2006), we set both kernels to be
the Epanechnikov kernel and the bandwidth in the local linear regression stepyte [§&2/n)*/>,

where

1 n-1
52 20-1) Z(Y[Hl] - Yi)?,
i1

in which {Yj;;}; denote the responses sorted by the covariate values. With the so-dhpsen

we consider two settings for the bandwidth used in the density estimation step, dendigd by
In one settinghy = h?, and in the other settindyy = 0.5h;, both of which are considered in

Dette, Neumeyer, and Pilz (2006). Lastly, instead of using the plug-in method to dbtas
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above, we use the R functiosonreg.wrapper to chooseh, via 5-fold CV, followed by which

this function sets)y = h? and implementsonreg with these bandwidths. We compare these four
methods in terms of the mean absolute error (MAE), defined as MAE' Y7, |6*(X) — O (%)

Four regression functions are consider@ix) = log(2x + 1), 6*(X) = X3, 6*(x) = €, and

*(X) = I(x < 0.6)10x/6 + I(x > 0.6). Using the method described in Section 3.2 to chd¢se

for the SNP regression, we settle wikh= 1 for the first regression function and = 2 for the
remaining three functions. The summary of MAE resulting from four methods is presented in
Table 3.

As evident in Table 3, the SNP method performs competitively with relatively stable perfor-
mance across flerent regression functions. Both spline-based methods can be sensitive to the
number of knots. The method implementeeémreg can be sensitive to the choice of bandwidths,
and the added CV procedurenionreg . wrapper does not consistently improve the performance.
Figure 2 depicts the estimated regression functions from the SNP mettiadwith 10 knots, and
monreg With hy = h? for each regression function from one randomly selected MC replicate. As
shown in plot (a), the spline-based method implementeaskirs can oscillate, trying to capture
local features, which is a typical phenomenon for spline-based methods. The SNP method seems
to be able to capture the underlying curvatur@dk) more accurately, except for the nonsmooth
regression function in plot (d), where all three estimates fail to reflect the sharp tura &6.
This is expected since these methods are developed to fit smooth regression functions. Overall,
the empirical evidence suggest that the SNP method, combined with the proposed procedure of

choosingK, performs at least as satisfactorily as the three existing methods in comparison.

Example §Bivariate isotonic regression]: Berent from the first four examples, where univariate
covariates are considered, here we consider bivariate covariates, motivated by applications where
the regression functiof(-) is constrained to be monotone in each of the two covariates of interest.

As in the univariate case, the SNP presentation of a nondecreasing (in each of the two coordinates)
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function, 6 (x) = y«k(X) + s, can be straightforwardly derived and coded using recursive formulas

P (b)) expl—(t2 +

X1

similar to those in Section 3.1. More specifically, now with(x) = e f

XoL

t2)/2}dtydty, wheret = (t1, 1), P (t) = Yo<jsjk & Uth, X = (X1, %)T, andx, is the lower bound

of the range ok,, for ¢ = 1, 2, the recursive formulas become

Y0(x) = agolo(xo)lo(X),
K-1 K—j

7O = yia(x) + ol (xa)lo(Xe) + 280 ) 1k (x1) Y ajp15(%g), for K >0,
j=0 j’=0

where, foré = 1, 2,

lo(x) = V21 {®(x) - (X))},
(X)) = exp(—fo/Z)—exp(—xﬁ/Z),and

lk(X) = xﬁf‘lexp(—xi/z) — Xt exp(—x?/z) + (K = Dlg_a(x), for K > 1.

For illustration purpose, in this example, we assume the true regression functiorg(r) be

X1 +€eXp(Q5x,) + X1 X2, Wherex = (X1, Xo)" € [0, 1]x[0, 1]. For each of 2000 MC replicates, we gen-
erate a random sample of siae- 400 according to the true regression model, with N(0O, 0.25),

andX;; independent oKj;, both generated from uniform(0, 1), foe 1,...,400. Using the pro-
cedure described in Section 3.2, more than 75% of thelinsechosen to be 1 or 2. Witk = 1, 2,

the resultant estimated responses give MAE 0.404 (0.352) and 0.400 (0.352), respectively, with the
corresponding 1% standard error of the MC average in parentheses. For comparison, we imple-
mented an existing bivariate isotonic regression algorithm described in Dykstra and Robertson
(1982) using the R functiorhiviso (Bril et al., 1984), which uses successive one-dimensional
smoothing subject to isotonic constraint. Across 2000 MC replicates, this algorithm produces

estimated responses with MAE 0.539, andx6tandard error being 0.417.
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5 Application to indomethacin data

We now consider isotonic regression analyses using a data set from a study of the pharmacokinetics
of indeomethacin following bolus intravenous injection (Davidian and Gallant, 1995, Section 2.1).
The data include plasma concentrations of indomethacin measured at eleven time points for each
of the six subjects participating the study. It is reasonable to assume that the plasma concentration
(Y) is a nonincreasing function of timeX]. For illustration purposes, suppose that the model

in (5) with homoscedastic model error is a reasonable model for the association between plasma
concentration and time for some nonincreasi(g. Next, we use the methods under comparison

in Section 4 excludinguspl to fit the regression function. We exclu@epl in this example
because it requires distinct predictor values, which is not the case for this data.

For the proposed method, we first cho#seasing the strategy described in Section 3.2. In the
5-fold CV, the first abrupt drop in MSE occurs whé&nis raised from 1 to 2. We then compute
Eastwood'sF statistic,F,3, and the associatgatvalue is 0.021. This implies th# = 3 is likely
to provide a better fit for the current data. When we raisK te 4, theF statistic,F34, gives a
p-value of 0.739. Hence, using SNP of order four may not provide a significant improvement in
the fit compared to using SNP of order three. The fitted model using SNP of order 3 is plotted
in Figure 3, along with the other two fitted curvs fragmls (with 10 knots) andnonreg (with
hg = h®). Pictorially it appears that the first two methods yield comparable results, and the fit
from monreg is potentially problematic (with a negative fittédin the end). The MAE, now
defined a3, 1Y — Yi|, associate with three methods are 0.121, 0.110, and 0.144 for SNP,
pcls, andmonreg, respectively. According to this numerical comparison along with the pictorial
comparison, it appears that SNP method finds a nice balance between overfitting (likely observed
for pcls) and underfitting (seemingly observed famreg). Finally, the test for linearity results
in an empiricalp-value of 0.012, providing strong evidence of the nonlinearity of the regression

function, as evident from the plot.
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6 Discussion

We propose to use a class of SNP densities as the basis to model smooth isotonic regression func-
tions flexibly. The mathematical representation of this class gives great advantages in achieving
smoothness and isotonicity simultaneously in one simple step. We develop an adaptive procedure
to choose the order of SNP to attain a parsimonious model that is flexible enough to yield a sat-
isfactory fit for the underlying true regression function. We also construct a test for linearity of
the regression function. The performance of the adaptive procedure and the test for linearity are
satisfactory for both nonlinear models and partially linear models.
Considering the model formulation, the proposed method involves ingredients similar to exist-
ing semifnon-parametric methods, with playing the role parallel to a smoothifigning param-
eter in these literature, and the Hermite polynomials in the SNP formulation somewhat mimicking
the base functions. From the numerical point of view, the R functipnim, is used to maximize
the likelihood in the proposed method without any numericidadilty in our simulation studies
for K as high as eight wheth= 1 and forK as high as four whed = 2, which is more than enough
for the simulated examples and other real data applications we have looked into. It is possible that,
for a very largeK, more sophisticated algorithms are needed for mfiteient optimization (espe-
cially whend is also not small). Among the four methods considered in Example 4 in Section 4,
mspl is the least time-consuming and the other three methods are comparable in computing time.
The normal pdf in (4) is one choice of the base density when constructing an SNP density
and other choices of pdf are also valid and will yiel@felient classes of flexible pdf's. We have
focused on the normal base density for the convenience in analytic derivation of the corresponding
cdf. A minor drawback of this representation is lack of interpretation for théicents,a,’s, in
(3), which is a common pitfall among most flexible modeling methods. But because it is such a
flexible class of functions, one can compare the SNP regression function with a particular regres-

sion function one may have in mind, of which the interpretation is scientifically more meaningful,
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to see how close these two functions are. In other words, the SNP estimation can be used as a
reference, which is supposed to represent the truth very well with an adequately éhoHem
scientifically meaningful posited model provides similar fit as the SNP model, then one gains more
confidence in the posited model.

We have not compared our method with the existing methods in the Bayesian framework,
such as those proposed by Bornkamp and Ickstadt (2009) and Meyer, Hackstadt, and Hoeting
(2011). One glitch of the proposed method is that inference procedures outlined in Section 3.1
assume a pre-specifédl and thus ignore the uncertainty in choosikg Even though we did
not observe diicient numerical evidence of the tamperingeet of ignoring this uncertainty on
standard error estimation in the examples, it is desirable to account for this extra uncertainty.
Solutions to this problem may lie within the Bayesian framework. For instance, the reversible-jump
MCMC described in Meyer, Hackstadt, and Hoeting (2011) gives one a hint on how to incorporate
the variability due to selecting. There has been little work on SNP from a Bayesian perspective.
Imposing a prior distribution o was once brought up in Davidian and Gallant (1993) but has
never been explored. It is of interest to look into this avenue of Bayesian SNP modeling and then
compare the Bayesian SNP method with the other Bayesian isotonic regression methods.

Following the theoretical development in Fenton and Gallant (1996a,b), we conjecture that,
with K — oo at the right rate, the SNP estimator of the regression function has similar asymptotic
properties as those from kernel-based or spline-based methods (Banerjee, 2007; Pal anfi&\Voodro
2007). Noticing that Mammen, et al. (2001) also uses Sobolev norm as a measure of the distance
between two functions and to impose smoothness penalty, we believe that the projection framework
formulated in Mammen, et al. (2001) can be useful hints for us to study the asymptotic properties
of our proposed methods more thoroughly. This theoretical consideration has been on the top of
our follow-up research agenda.

Since SNP has been mostly used to model distributions of variables whose distribution may

not be in a familiar family, it is natural to consider keeping this tradition while adding the new use
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of SNP proposed in this article. We have started to apply both ideas to regression models with
random &ects and also contain isotonic component in the regression functions. We propose to use
SNP densities to model the randofffieets to avoid stringent distributional assumptions on them,
and at the same time, use SNP cdf to model the isotonic component in a regression function. With
two flexible modeling combined in the same regression model, one faces the identifiability issue.
Theories behind this double flexibility strategy and how to tackle the identifiability issue are topics

worth further investigation.
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Table 1: Averages of parameter estimates across 300 MC replicates in Example 2 in Section 4.
Entries in parentheses next to the parameter estimates are corresponding MC standard deviations.
Entries in parentheses next to the sandwich standard errors are (istandard error) of the

averages of sandwiastimates.

K=1

K=2

Parameter estimates Sandwich std. err.

Parameter estimates Sandwich std. err

a  0.012(0.021)
an 2576 (0.017)
a (NA)

s -6.127(0.102)
o2 0.574(0.047)

0.034 (0.010)

0.030 (0.011)
(NA)

0.183 (0.094)

0.060 (0.041)

0.295 (0.058)
0.004 (0.021)

1.957 (0.046)

~7.643 (0.148)
0.256 (0.027)

0.059 (0.034)

0.022 (0.010)
0.048 (0.026)
0.149 (0.122)

0.02®20)
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Table 2: Simulation results from Example 3 in Section 4. The upper half of the table includes MC
averages of the estimated quantities from the simulation, followed by (M standard error)
in parentheses. True values of the five quantities being estimated, ¢.s, 050, 6-5), are (1, 0.25,
1.284,1.649, 2.117) whexX ~ uniform(0, 1), and they are (2.718, 0.25, 3.490, 4.482, 5.755) when
X ~ uniform(Z1, 2). Entries following the row titles;1,, Fo3, andQy, are rejection rates of the test
statistics across 300 Mfeplicates.
X ~ uniform(0, 1) X ~ uniform(Z1, 2)

K=1 K=2 K=1 K=2
§ 1.028(0.062) 0.990 (0.075) 2.838 (0.064) 2.678 (0.087)
&2 0.250 (0.015) 0.250 (0.015) 0.255 (0.015) 0.251 (0.015)
6,5 1.275(0.029) 1.286 (0.037) 3.431 (0.028) 3.499 (0.037)
050 1.645(0.031) 1.646 (0.032) 4.485 (0.029) 4.480 (0.028)
6,5 2.131(0.029) 2.121 (0.036) 5.829 (0.029) 5.763 (0.036)

P 0.050 0.340
Fas 0.043 0
Qx 0.457 0.067 1 0.107
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Table 3: MC averages of MAE across 2000 replicates from four methods compared in Example 4
in Section 4. Numbers in parentheses aréxIRIC standard error) of the averages. “pcsl5” and
“pcsl10” denote the method implementedgms1 with 5 and 10 knots, respectively. “mspl2” and
“mspl4” denote the method implementediypl with 2 and 4 knots, respectively. “monregl” and
‘monreg2” denote the method implementedrwnreg with hy = h® andhy = 0.5h,, respectively,
whereh, = (62/n)Y/°. “monreg3” denotes the method implementeduoyireg . wrapper, which
implements 5-fold cross validation to chodseand then setly = h?.

0°(x) = log(2x+1) (X =x g (x) =€ 6" (x) = 1(x < 0.6)
+1(x> 0.6)
n=100
SNP 0.067 (0.647)  0.073(0.654) 0.078 (0.662)  0.074 (0.616)
pcsl5 0.065(0.584)  0.072 (0.656) 0.083(0.621)  0.075 (0.621)
pcsll0  0.068 (0.601)  0.076 (0.659) 0.088 (0.657)  0.076 (0.622
mspl2 0.074 (0.577)  0.072(0.614) 0.084(0.629)  0.074 (0.597)
mspl4  0.081(0.576)  0.078(0.585) 0.098 (0.617)  0.080 (0.616)
monregl  0.068 (0.588)  0.073(0.670) 0.186 (0.910)  0.073 (0.587
monreg2  0.065(0.596)  0.076 (0.639) 0.187 (0.902)  0.079 (0.537
monreg3  0.076 (0.625)  0.077 (0.736) 0.108 (0.753)  0.083 (0.607
n= 200
SNP 0.048 (0.463)  0.051 (0.461) 0.055(0.455)  0.054 (0.445)
pclss 0.050 (0.418)  0.052 (0.469) 0.061(0.424)  0.056 (0.455)
pcls10  0.051(0.425)  0.054 (0.475) 0.064 (0.452)  0.056 (0.455
mspl2 0.056 (0.419)  0.053(0.443) 0.060 (0.448)  0.055 (0.423)
mspl4 0.061(0.405)  0.058 (0.422) 0.070 (0.446)  0.059 (0.420)
monregl  0.051(0.425)  0.052(0.462) 0.152(0.616)  0.054 (0.429
monreg2  0.049 (0.431)  0.055(0.448) 0.153(0.610)  0.060 (0.379
monreg3  0.057 (0.461)  0.060 (0.454) 0.080 (0.543)  0(06233)
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Figure 1: Estimated regression functions in the examples in Section 4. Solid lines are for the truth;
dotted lines are for estimate from a single MC replicate; dashed lines aég(f)r dash-dotted
lines are fow,(x); long-dashed lines are fég(x).
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Figure 2: Estimated regression functions from one MC replicate resulting from three methods.
Solid lines are for the truth; dashed lines are for the SNP estimation; dash-dotted lines are for pcls;
dotted lines are for monreg.
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Figure 3: Fitted regression lines for the indomethacin data resulting from three methods: SNP with
K = 3 (dashed line), pcls (dot-dashed line), and monreg (dotted line).
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