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Abstract

We propose a new method for smooth isotonic regression analysis. Unlike most existing

methods for isotonic regression, the proposed method is akin to parametric regression with-

out order restriction. To account for smoothness and isotonicity simultaneously, we exploit

the flexible class of semi-nonparametric densities to model isotonic regression functions. Un-

der this framework, the full range of inference techniques for parametric regression models

become applicable for model estimation and model validation in isotonic regression.

Keywords: Cross validation; Linearity; Semi-nonparametric (SNP).
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1 Introduction

Due to physical considerations, it is often assumed in regression models that the mean of a response

is a monotone function of a predictor. Examples includes models for growth curves, those in dose-

response analysis, and models arise in reliability theory. Imposing monotonicity in regression

analysis when it is scientifically well justified can enhance the efficiency of statistical inference

and the interpretability of inference results.

The majority of existing methods for isotonic regression are nonparametric in nature. Among

early developments, the most well-known algorithm is the pool-adjacent-violator algorithm (PAVA)

(Robertson, Wright, and Dykstra, 1988), which yields a piecewise linear isotonic function as the es-

timated regression function. The outcome from PAVA is unsatisfactory when a smooth functional

relationship is desired. To achieve smooth regression functions, methods based on splines and

kernels were proposed (Delecroix and Thomas-Agnan, 2000). Ramsay (1988, 1998), Kelly and

Rice (1990), Mammen and Thomas-Agnan (1999), Wang and Feng (2008), among several oth-

ers, studied smooth splines regression under order constraints. Mammen (1991) realized smooth

isotonic regression analyses in two separate steps successively in two different orders, which are

an isotonizing step through PAVA and a smoothing step via kernel estimation. Hall and Huang

(2001) proposed a method to adjust the weights in a kernel estimator to satisfy the monotonicity

constraint. Dette, Neumeyer, and Pilz (2006) avoided constrained optimization by combining un-

constrained regression and density estimation, which requires users to specify two kernels and two

bandwidths. In general, the strategies that exploit smoothing splines or kernels entail choice of

knots and tuning parameter for smoothness penalty or choice of kernel and bandwidth. Recently,

Wang (2011) modeled the regression function using Bernstein polynomials, with constraints im-

posed on the coefficients associated with the Bernstein polynomial basis vectors to achieve mono-

tonicity of the regression function. Under the Bayesian framework, Bornkamp and Ickstadt (2009)

proposed nonparametric isotonic regression, where they used a mixture of shifted and scaled para-
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metric probability distribution functions to model the regression function. Meyer, Hackstadt, and

Hoeting (2011) modeled smooth isotonic regression functions using quadraticB-spline basis func-

tions, and developed a reversible-jump Markov chain Monte Carlo (MCMC) algorithm to allow

for free knots. A battery of statistical inference techniques for nonparametric isotonic regression

have been developed by Bartholomew (1959), Barlow, et al. (1972), Banerjee and Wellner (2001),

Banerjee, Biswas, and Ghosh (2006), Banerjee (2007), and Pal and Banerjee (2008), among many

others.

In this article we propose a new method that achieves smoothness and isotonicity simultane-

ously in one modeling step based on a class of semi-nonparametric (SNP) densities defined by

Gallant and Nychka (1987). The proposed method does not involve choice of knots, smoothing

penalty, or bandwidth, although, as discussed in Section 3, it requires one to choose a quantity that

controls the flexibility of the regression function being modeled. The idea behind the new method

is first motivated by the elementary concept that a valid cumulative distribution function (cdf) is

nondecreasing. Hence one can construct an isotonic function based on a cdf. To attain smoothness

and flexibility, we use the cdf of a flexible smooth distribution family and relax constraints required

for the validity of a cdf, such as ranging from zero to one, to model the regression function. The

use of SNP representation for the regression function greatly simplifies follow-up inference pro-

cedures such as parameter estimation, standard error estimation, and model validation. In effect,

the proposed method sets isotonic regression, traditionally treated nonparametrically, back in the

parametric framework without order restriction and makes the full range of parametric inferential

techniques applicable.

Because the SNP representation is the backbone of the proposed method, we devote Section

2 to introducing the particular family of SNP used in this article and reviewing existing relevant

works that employ SNP. We then present the new approach for isotonic regression in Section 3.

A test for linearity of the regression function is also developed in this section. Section 4 presents

simulation studies to illustrate the implementation and performance of the proposed methods. In
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Section 5, these methods are applied to a real data example. In Section 6, we point out future

research that refine the current proposal and make further use of SNP in regression analyses.

2 Semi-nonparametric representation

Gallant and Nychka (1987) defined a class of flexible probability density functions (pdf) termed as

semi-nonparametric densities. The construction of SNP densities involves Sobolev norm, which

is reviewed next. For a functionf (z) on the support ofd-dimensional real space,Rd, the Sobolev

norm with respect to a weight functionw(z) is defined by

|| f ||m,p,w =









∑

|λ|≤m

∫
|Dλ f (z)|pw(z)dz





1/p

if 1 ≤ p < ∞

max
|λ|≤m

sup
z∈Rd

|Dλ f (z)|w(z) if p = ∞,

(1)

where

Dλ f (z) =



∂λ1

∂zλ1
1


 . . .



∂λd

∂zλd
d


 f (z)

is the partial derivative off (z), λ = (λ1, . . . , λd), and|λ| =
∑d

k=1 λk. The class of SNP densities is

defined by

H =
{
h(z) : h(z) = f 2(z) + ε0h0(z)

}
, (2)

whereε0 is some small positive number,h0(z) is a strictly positive density function that satisfies

||h0||m0,2,w0 < B0 for some positive boundB0, m0 > d/2, w0(z) = (1 + zTz)δ0, δ0 > d/2, and f (z)

also satisfies|| f ||m0,2,w0 < B0. The effect of setting an upper boundB0 on || f ||m0,2,w0 and ||h0||m0,2,w0

is to impose certain degree of smoothness restriction onh(z). Adding ε0h0(z) in h(z) is to force a

lower bound to avoid zero density. Assuming the true density,h∗(z), belongs toH , Gallant and

Nychka (1987) showed that the number of derivatives ofh∗(z) that can be estimated consistently

via maximum likelihood ism0−d/2. In practice,ε0h0(z) is usually omitted inh(z) without causing
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noticeable numerical effect. In most existing SNP literature,f 2(z) is approximated by the following

truncated Hermite series,




∑

|λ|<K

aλ(R−1z)λ




2

R−1 exp
(
−zTR−TR−1z/2

)
, (3)

which satisfies

lim
K→∞

∥∥∥∥ f (z) −
∑

|λ|<K

aλ(R−1z)λ
√

R−1 exp
(
−zTR−TR−1z/2

)∥∥∥∥
m0−d/2,∞,w0

= 0,

where{aλ, |λ| < K} are a series of coefficients constrained so that (3) integrates to one over the

support ofz, R−T denotes the transpose ofR−1, and for t ∈ Rd, tλ =
∏d

l=1 tλl
l . Simply put,

∑
|λ|<K aλ(R−1z)λ is a polynomial inz of order K. Noticing thatR−1 exp

(
−zTR−TR−1z/2

)
is the

kernel of a normal distribution with mean zero and variance-covariance matrixRTR, a variant of

(3) is given by

{
PK(R−1z)

}2
R−1φ(R−1z), (4)

wherePK(t) is a polynomial oft ∈ Rd of orderK, andφ(∙) denotes thed-dimensional standard

normal pdf.

To recap, the class of SNP densities for practical use contains pdf members whose format is

given by (4). The structure of a polynomial (quantity squared) multiplying a normal pdf leads to

both mathematical and computational convenience, which makes SNP a popular tool for model-

ing distributions, especially when one wishes to avoid restrictive distributional assumptions. For

example, Davidian and Gallant (1993) modeled random effects in nonlinear mixed models using

SNP; Zhang and Davidian (2001) utilized SNP densities to model random effects in linear mixed

models; Chen, Zhang, and Davidian (2002) applied SNP to random effects in generalized linear

mixed models; Song, Davidian, and Tsiatis (2002a,b) employed SNP densities for random effects

in joint models; Zhang and Davidian (2008) adopted SNP representation for time-to-event to al-

low arbitrarily censoring patterns; Irincheeva, Cantoni, and Genton (2012) used SNP to specify
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the distribution of latent variables in generalized linear latent variable models. In contrast to these

works, where SNP representation is exclusively used for distribution construction, our use of SNP

as the basis of formulating smooth isotonic functions is a new contribution. The flexibility and

smoothness of SNP pdf are inherited in the resulting isotonic regression functions.

Besides convenience in numerical implementation, using SNP to approximate density functions

and regression functions also has solid theoretical justification. Gallant and Nychka (1987) showed

that, if h∗(z) ∈ H , letting n be the sample size and̂h(z) be the estimated density obtained via

maximum likelihood when (3) is used to approximateh∗(z), then limn→∞ ||ĥ − h∗||m0−d/2,∞,w0 = 0

almost surely when limn→∞ Kn = ∞. In other words,̂h is consistent in the notion of Sobolev norm

for appropriately chosenKn. Here,Kn is K in (3), with a subscript to stress its dependence onn

when studying asymptotics. Fenton and Gallant (1996a) further showed that, in order to achieve

consistent̂h, the rate at whichKn approaches infinity asn→ ∞ should depend on the highest order

of derivative one assumes forh∗(z). Moreover, a direct consequence of this consistency is that

functionals ofh∗(z), such as
∫

g(z)h∗(z)dz, can also be estimated consistently in the same notion,

for some functiong(z). This property is especially important for our study because, assuming

d = 1, we will base the construction of an isotonic function on the particular functional ofh∗(z)

given byH∗(z) =
∫ z

zL
h∗(t)dt, wherezL is the lower bound of the support of interest. Because an

isotonic function may not range from zero to one, as a cdf does, the constraint on the coefficients,

aλ, in (3) is relaxed. More specifically, we define a rich class of flexible smooth isotonic functions

as follows,

G =

{

H(z) : H(z) =
∫ z

zL

{
PK(R−1t)

}2
R−1φ(R−1t)dt+ s, s ∈ R, K = 1,2, . . . .

}

,

where the constraint onaλ in PK(∙) required in (3) is removed, ands(= H(zL)) is a location pa-

rameter (noting thatH∗(zL) = 0). If the true isotonic function falls in this rich SNP class, then the

isotonic function can be estimated consistently via maximum likelihood as long as one chooses

K appropriately. Relating to theI -splines used to model monotone regression functions, e.g., in
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Ramsay (1988) and Meyer (2008), the construction ofH∗(z)(=
∫ z

zL
h∗(t)dt) is similar to that of the

I -splines, which integrate overM-splines.

3 SNP isotonic regression

3.1 Model and estimation

Suppose that the observed data,{(Yi ,Xi), i = 1, . . . , n}, are independent and identically distributed

(i.i.d.) realizations of the following regression model,

Y = θ(X) + ε, (5)

whereθ(X) is a smooth isotonic function, andε is the random error independent ofX. The central

interest is to estimateθ(∙). For ease in exposition, we consider a scalarX for the majority of this

article. If one assumes that the true regression function,θ∗(x), belongs toG, thenθ∗(x) can be

formulated as the integral of a truncated Hermite series for someK plus a shift,

θ∗K(x) =
∫ x

xL

{PK(t)}2 e−t2/2dt+ s, (6)

wheres= θ∗(xL) andxL denotes the lower bound of the support ofX,X. By the general SNP theory

reviewed in Section 2, ifθ∗(∙) ∈ G, then applying the maximum likelihood method to the resultant

parametric model leads to an estimated regression functionθ̂(∙) that is consistent in the following

sense,

lim
n→∞

sup
x∈X
|θ̂(x) − θ∗(x)|(1+ x2) = 0 asK → ∞. (7)

Elaborating and translating the arguments in Section 2 in the current context, forθ∗(∙) ∈ G, its

derivativeθ∗
′
(x) behaves likef 2(∙) in (2), except for the integrate-to-one constraint. And thus,

parallel to the condition onf (∙) following (2), θ∗(∙) ∈ G implies that

∫

X
θ∗
′
(x)(1+ x2)dx+ 0.25

∫

X

{
θ∗
′′
(x)

}2

θ∗′(x)
(1+ x2)dx< C, (8)
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for some positive constantC, whereθ∗
′′
(x) is the second derivative ofθ∗(x). In plain language,

in order to achieve (7) for the estimated regression function resulting from maximum likelihood

method, the underlying true regression function needs to be sufficiently smooth. Regression func-

tions that violate (8) include those with abrupt jumps, sudden kinks, or oscillatory behaviors within

X, as these behaviors can cause the integrals in (8) blow up.

It is straightforward to program the regression function in (6) for anyK because of the follow-

ing easily derived recursive formulas. Denote byΦ(∙) the standard normal cdf. DefineγK(x) =
∫ x

xL
{PK(t)}2 e−t2/2dt andIK(x) =

∫ x

xL
tKe−t2/2dt, for K = 0,1, . . .. Thenθ∗K(x) = γK(x) + s, where

γ0(x) = a2
0I0(x),

γK(x) = γK−1(x) + a2
KI2K(x) + 2aK

K−1∑

j=0

aj I j+K(x), for K > 0, in which

I1(x) = exp
(
−x2

L/2
)
− exp

(
−x2/2

)
, and

IK(x) = xK−1
L exp

(
−x2

L/2
)
− xK−1 exp

(
−x2/2

)
+ (K − 1)IK−2(x), for K > 1.

Substitutingθ(x) in (5) with θ∗K(x) yields an explicit parametric form. Defineτ = (a0,a1, . . . , aK , s)T ,

and letσε be the unknown parameter(s) in the distribution ofε. ThenΩ = (τT , σε)T is the col-

lection of unknown parameters in a parametric model as an SNP representation of (5). Onceτ is

estimated, an explicit estimated regression function becomes available for prediction and for use in

other inference procedures, which is one advantage of the new method compared to spline-based

and kernel-based methods. This appealing feature is underscored by Fenton and Gallant (1996b),

who stated that SNP estimators “compress the information in the data to a set of coefficients whose

number is a fractional power of the sample size” whereas estimators from methods using spline

or kernel “must be recreated afresh from the data at every use.” They also provided results to sup-

port that SNP estimators are “both quantitatively and asymptotically similar to the kernel estimator

which is optimal”. The advantages of the SNP method compared to kernel and spline methods

in modeling regression functions are discussed in greater details in Eastwood and Gallant (1991).
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The key message delivered in their article is that, with very similar statistical properties for the

final inference results, the SNP method is more convenient in many aspects of implementation.

Such advantages carry over to modeling isotonic regression functions.

If εi ∼ N(0, σ2
ε ), thenYi |Xi ∼ N(θ(Xi; τ), σ2

ε ), for i = 1, . . . , n. The maximum likelihood

estimator (MLE) forτ, denoted bŷτ, is equivalent to the least squares estimator,

τ̂ = arg min
τ∈Rpτ

n∑

i=1

{
Yi − θ

∗
K(Xi; τ)

}2 ,

wherepτ is the dimension ofτ. An estimator forσ2
ε is given by the residual sum of squares adjusted

by the degrees of freedom,

σ̂2
ε = (n− pτ)

−1
n∑

i=1

{
Yi − θ

∗
K(Xi; τ̂)

}2 . (9)

Equivalently, estimatingΩ for a fixedK is to solve the following system of estimating equations

for Ω,

n∑

i=1

ψ(Yi ,Xi;Ω) =
n∑

i=1




ψτ(Yi ,Xi; τ)

ψσ2
ε
(Yi ,Xi;Ω)



=

n∑

i=1




−n−1 {
Yi − θ

∗
K(Xi; τ)

} ∂θ∗K(Xi; τ)

∂τ

n−1σ2
ε − (n− pτ)

−1 {
Yi − θ

∗
K(Xi; τ)

}2



= 0. (10)

The Jacobian corresponding to (10) is given by

A =




n∑

i=1

n−1

[
∂θ∗K(Xi; τ)

∂τ

∂θ∗K(Xi; τ)

∂τT
−

{
Yi − θ

∗
K(Xi; τ)

} ∂2θ∗K(Xi; τ)

∂τ∂τT

]

0

n∑

i=1

2(n− pτ)
−1 {

Yi − θ
∗
K(Xi; τ)

} ∂θ∗K(Xi; τ)

∂τT
1




. (11)

Based on (10) and (11), both of which can be derived explicitly, one can compute the sandwich

variance estimator for̂Ω according to theM-estimation theory. An estimator for the variance of

θ̂(x0) = θ∗K(x0; τ̂) can also be obtained via the Delta method for any particular value of interest,x0,

within a plausible range. Also, confidence intervals for functionals ofθ∗(x) are readily available.

All these inference procedures are equally straightforward if one assumes a different error model

for εi, such as a heteroscedastic error model with variance depending onXi. Both weighted least

squares method and maximum likelihood method can be carried out without extra complication.
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3.2 ChoosingK

The preceding inference procedure assumes a pre-specified (fixed)K. In practical implementation,

one needs to choose aK first and the quality of the follow-up inference depends on this choice.

Too small of aK can result in an estimated regression function not flexible enough to capture the

shape ofθ∗(x), and an unnecessarily largeK causes inefficiency loss. In the sequel,θ̂K(x) denotes

the estimated regression function whenθ∗K(x) in (6) is used to modelθ(x).

Fenton and Gallant (1996a) derived the rate at whichKn tends to infinity asn increases in order

to achieve a desired convergence notion ofθ̂Kn(x) to θ∗(x). In particular, if it is assumed that the

true density inH is second order differentiable, thenKn ≈ n1/5 is needed to achieve consistency.

Fenton and Gallant (1996b) found that using a deterministic rule, such asKn ≈ n1/5 , is inferior

to using an adaptive rule, according to whichK is chosen adaptively based on information criteria

such as the Akaike information criterion (AIC). Davidian and Gallant (1993) compared use of

AIC, Schwarz information criterion (BIC), and Hannan-Quinn criterion (HQ) to chooseK, and

suggested use of HQ because it often chooses a value ofK that lies between those chosen by AIC

and BIC. Zhang and Davidian (2001), Chen, Zhang, and Davidian (2002), Zhang and Davidian

(2008), and Irincheeva, Cantoni, and Genton (2012) also considered AIC, BIC, and HQ as three

model selection criterion and reached very similar conclusions as those in Davidian and Gallant

(1993). Coppejans and Gallant (2002) explored the method of cross-validation (CV) to chooseK.

Eastwood (1991) proposed anF test to compare goodness of fit resulting from two choices ofK.

His test is valid only if the candidateK’s are large enough to begin with.

We investigated all the aforementioned methods for choosingK in our context and found that

the K chosen by information criteria tends to be larger than what is chosen by CV. To strive for

parsimony without sacrificing flexibility, we propose to combine CV and Eastwood’sF test to

chooseK as described next. Firstly, one employs anr-fold CV. More specifically, one partitions

the observed data randomly intor subsets, as equal sized as possible. Then, for each candidateK,
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the model is fittedr times, each time thejth subset (j = 1, . . . , r) is kept as the validation data set,

and the remainingr −1 subsets form the testing data set used to fit the SNP (of orderK) regression

model. After each model fitting, the mean squared error (MSE) is calculated using the validation

data and the average of theser MSE’s for each candidateK is calculated. Denote byK0 the K

where the first abrupt drop in the average MSE occurs or where the average MSE is the smallest,

whichever comes first. Now one usesθ∗K0
(x) to fit the regression model based on the entire data

set. Denote by ˆσ2
ε,0 the estimatedσ2

ε resulting from this fit. Secondly, one repeats the estimation

based onθ∗K1
(x), whereK1 = K0+c, for some positive integerc (usually set at one). Denote by ˆσ2

ε,1

the estimates forσ2
ε from this round of model fitting. Lastly, one computes Eastwood’sF statistic

defined by

F =
(n− pτ,0)σ̂2

ε,0 − (n− pτ,1)σ̂2
ε,1

c(n− pτ,0)σ̂2
ε,0

, (12)

where pτ,0 and pτ,1 are the dimension ofτ when K is equal toK0 and K1, respectively. TheF

statistic is compared with the critical point of anF(c,n− pτ,0) distribution to decide whether or not

SNP of orderK1 gives a significantly better fit than SNP of orderK0. In this procedure, one uses

CV to chooseK0 first to reduce the chance of applying Eastwood’sF test with insufficiently large

K, which, as pointed out earlier, can invalidate the test.

3.3 Test for linearity

In nonlinear regression, it is often of interest to justify if a nonlinear regression function is indeed

necessary as opposed to a linear regression function. In this subsection, we propose a simple test

for linearity of θ(x) based on the SNP representation.

The proposed test is motivated by the simple fact that, assumingθ(x) is second-order differen-

tiable, if θ(x) is a linear function ofx, thenθ′′(x) = 0 for all x, whereθ′′(x) is the second derivative

of θ(x). Hence, an empirical indicator of (non)linearity can be constructed based onθ̂′′K(x), which

can be easily derived, thanks to the SNP presentation. Formally, we propose to testH0 : θ′′(x) = 0
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versusH1 : θ′′(x) , 0 for testing linearity. A natural statistic for this test is given by

QK = n−1
n∑

i=1

{
θ̂′′K(Xi)

}2
. (13)

Note that, provided thatK is chosen appropriately,QK is degenerate at zero underH0. This pro-

hibits one from obtaining a critical point with whichQK compares to make a testing decision in

the traditional ways. To obtain an empiricalp-value for this statistic, we exploit the method pro-

posed by Ḧardle, Mammen, and M̈uller (1998) and implement a parametric bootstrap procedure

as follows.

Step 1: Fit the SNP regression model with an appropriately chosenK. ComputeQK.

Step 2: Fit a linear regression model,Y = β0 + β1X + ε, under the constraint thatβ1 ≥ 0. Denote

by β̂ = (β̂0, β̂1) the estimate forβ = (β0, β1), and byσ̂2∗
ε,0 the estimate forσ2

ε .

Step 3: For b = 1, . . . , B,

(i) Generate thebth set of artificial data,Yi,b = β̂0 + β̂1Xi + σ̂
∗
ε,0ε
∗
i,b, for i = 1, . . . , n, where

{ε∗i,b}
n
i=1 are i.i.d. random errors with mean zero and variance one (such as fromN(0,1)).

(ii) Fit the SNP regression model as in step 1 using thebth artificial data set,{(Yi,b,Xi)}ni=1.

Denote byθ̂K,b(x) the estimated regression function.

(iii) ComputeQK,b = n−1 ∑n
i=1

{
θ̂′′K,b(Xi)

}2
.

Step 4: The empiricalp-value associated withQK is defined byB−1 ∑B
b=1 I {QK ≤ QK,b}.

The choice ofK adopted in step 1 is crucial especially for power consideration. UnderH0, it is

likely that a smallK is chosen by the procedure described in Section 3.2 and linearity is often well

preserved bŷθK(x). Even with aK slightly higher than necessary, the size of the test usually will

not inflate noticeably because the redundant coefficients amongaλ’s are expected to be estimated

as close to zero. But underH1, if one chooses aK not high enough to capture the curvature in
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θ∗(x), QK can lack power to detect nonlinearity; and if one chooses an unnecessarily largeK, the

efficiency loss can also compromise the power ofQK. Note that tests for concavity/convexity of

θ(x) are readily available by changing the above test to a one-sided test. One can also test for

constant regression functions by definingH0 : θ′(x) = 0, then revisingQK accordingly. In fact,

it is possible to take the advantage of the explicit parametric form ofθ∗K(x) to formulateH0 and

reviseQK in different ways to test many functional features ofθ(x).

4 Simulation studies

In this section we present five examples designed to provide empirical evidence for the quality of

SNP estimation, the operating characteristics of the proposed method to chooseK, and the test for

linearity. The first three examples have the following common simulation settings. For each of 300

Monte Carlo (MC) replicates, a random sample of sizen = 200 is generated according to a model

specified in each example, and the model errors,{εi}200
i=1, are i.i.d. N(0, σ2

ε ), whereσ2
ε = 0.25. To

find the empiricalp-value forQK, we setB = 300 in the procedure described in Section 3.3. The 5-

fold CV is employed to findK0. After aK is chosen from CV combing with anF test, we conduct

the test for linearity ofθ(x). For notational convenience, defineFst as theF statistic for testing

K = s versusK = t, where 1≤ s < t. The significance level for all tests is 0.05. To pictorially

compare the estimated regression function and the true function, we compute the MC average of

300 sets of̂τ and use this average as the parameter values plugged into the SNP representation for

θ(x), resulting in an estimated regression function, denoted byθ̃K(x). In contrast, the estimated

regression function from one MC replicate is denoted byθ̂K(x). The fourth example presents a

comparative simulation study, where the fit for the regression function using the proposed method

is compared with the fits when three existing methods developed for smooth isotonic regression

are used. Lastly, the fifth example considers bivariate isotonic regression.
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Example 1[Linearθ∗(x)]: The true regression model is,Yi = 2Xi + εi, for i = 1, . . . , n, where{Xi}ni=1

are generated from uniform(0, 1). The CV process choosesK = 1, associated with the average

MSE smaller than those associated withK = 2, 3, and 4. TheF test comparingK = 1 versus

K = 2 yields a rejection rate of 6% across 300 MC replicates. This suggests that, with one data

set, one would most likely fail to rejectK = 1. The test for linearity based on the test statisticQ1

results in a rejection rate of 4% across 300 MC replicates. This provides empirical evidence that

the proposed test for linearity confers the right size. In plot (a) of Figure 1 we compareθ∗(x) = 2x

(solid line) with θ̃1(x) (dashed line) and twôθ1(x) from the two randomly chosen MC replicates

(dotted lines). All three latter curves exhibit close agreement with the true linear function.

Example 2[Strongly nonlinearθ∗(x)]: The true regression model is,Yi = X3
i + εi, for i = 1, . . . , n,

where{Xi}ni=1 are generated from uniform(−2, 2). The CV process shows that changingK from one

to two leads to an abrupt drop in the average MSE and it levels off for K ≥ 2. The statistic,F23,

used to testK = 2 versusK = 3, has an empirical rejection rate of 6% across 300 MC replicates. In

contrast, the rejection rate associated withF12 is 100%. Hence, with one data set, it is most likely

that F23 is insignificant, suggesting thatK = 3 does not yield sufficient improvement in fitting

the true regression function than whenK = 2; whereasF12 is highly significant, providing strong

evidence thatK = 2 leads to a much better fit forθ(x) than whenK = 1. Fixing K at 2, the test

for linearity based onQ2 also has a 100% rejection rate. This provides empirical evidence thatQK

has high power to detect nonlinearity ofθ(x) in this case. Plot (b) in Figure 1 depictsθ∗(x) = x3

(solid line), θ̃1(x) (dashed line),̃θ2(x) (dash-dotted line), and̃θ3(x) (long dashed line). The two

higher-order curves,̃θ2(x) andθ̃3(x), nearly overlap with each other and show nearly perfect fit for

the true function. In contrast,θ̃1(x) fails to capture the curvature in the region aroundx = −1 and

x = 1.

In this example we also summarize the parameter estimates whenK = 1 andK = 2 in Table 1.

The MC averages of the estimated standard errors based on sandwich construction are compared
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with the MC standard deviation of the parameter estimates. Note that whenK = 1, σ̂2
ε is sub-

stantially biased upwards. This is expected as a great amount of variability due to the underlying

θ(x) is not capture bŷθ1(x) and is instead counted as model error. WhenK = 2, the accuracy of

σ̂2
ε is greatly improved and it seems to only account for the real model error instead of the lack

of fit for θ(x). This phenomenon also reflects the rationale behind Eastwood’sF test. Moreover,

the sandwich estimates for the standard errors are also much more reliable whenK = 2 than when

K = 1.

Furthermore, we explore the partially linear model,Yi = βZi + X3
i + εi, whereZi is another co-

variate andβ is a regression coefficient. Even with an additional linear part in the regression model,

βZi, we do not observe noticeable change in the operating characteristics of the procedures used

to chooseK and the test for linearity compared to the phenomena described above. Additionally,

whenK = 2, the MLE forβ, β̂, is also satisfactory, so is the sandwich standard error forβ̂.

Example 3[Mildly curved θ∗(x)]: In this example we consider a less dramatically nonlinearθ(x)

than that in Example 2. Consider the modelYi = eXi + εi, where we design two settings with the

first has a milder nonlinearity than the second: (i)Xi ∼ uniform(0, 1); (ii) Xi ∼ uniform(1, 2). For

K = 1, 2, 3, besidesΩ, we also estimate the value ofθ(x) at the 25th, 50th, and 75th percentile of

the support ofX under each setting, denoted byθ̂25, θ̂50, andθ̂75, respectively. These results, along

with the rejection rates of theF test and test for linearity are summarized in Table 2.

WhenX ∼ uniform(0, 1), the nonlinearity is very mild and, consequently, CV combining with

the F test suggestK = 2 may not be needed to modelex over this range ofx. The statisticQ1

has moderate power to detect nonlinearity of the true regression function. Note that if one sets

K = 2 under the first setting,Q2 has a very low power to detect the nonlinearity. This indicates that

unnecessarily highK can compromise the power ofQK. Similar phenomenon is observed under

the second setting, even thoughF12 rejectsK = 1 more often than under the first setting, reflecting

the increased curvature ofex over the range of [1, 2]. Under both settings,F tests provide little
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evidence thatK as high as 3 is needed.

Plot (c) in Figure 1 depictŝθ1(x) from one randomly chosen MC replicate (dotted line),θ̃1(x)

(dashed line), and̃θ2(x) (dash-dotted line), compared withθ∗(x) = ex for x ∈ [0,1] (solid line).

In this rage ofx, it appears from the plot thatθ̃1(x) matchesθ∗(x) better thañθ2(x) does. Plot (d)

showsθ̃1(x) andθ̃2(x) in contrast to the truth over the range of [1, 2]. Here,θ̃2(x) appears to have a

slightly better fit. This pictorial impression is also reflected in the quality ofθ̂25, θ̂50, andθ̂75.

Example 4[Compare with other methods]: In this example, we generateX from uniform(0, 1)

and setσ2
ε = 0.25, n = 100 or 200, for each of 2000 MC replicates. Three existing methods are

compared with the proposed method, with two spline-based and one kernel-based. One spline-

based method is implemented in the R function,pcls, which realizes a penalized cubic spline

with monotonicity constraint (Woods, 1994) with 5 or 10 knots evenly spread over [0, 1]. Another

spline-based method is based on nondecreasing piecewise quadratic splines (Meyer, 2013) with

2 or 4 knots (adopting the recommendation in Meyer (2008)) evenly spread over [0, 1], imple-

mented in Meyer’s R function,mspl (http://www.stat.colostate.edu/∼meyer/msplh.R).

The kernel-based method is the nonparametric method proposed by Dette, Neumeyer, and Pilz

(2006) and implemented in the R function,monreg. Their method involves a local linear regression

step and a density estimation step. For each step, one needs to specify a kernel and a bandwidth.

In our simulation study, as done in Dette, Neumeyer, and Pilz (2006), we set both kernels to be

the Epanechnikov kernel and the bandwidth in the local linear regression step to behr = (σ̂2/n)1/5,

where

σ̂2 =
1

2(n− 1)

n−1∑

i=1

(Y[i+1] − Y[i] )
2,

in which {Y[i]}ni=1 denote the responses sorted by the covariate values. With the so-chosenhr ,

we consider two settings for the bandwidth used in the density estimation step, denoted byhd.

In one setting,hd = h3
r , and in the other setting,hd = 0.5hr , both of which are considered in

Dette, Neumeyer, and Pilz (2006). Lastly, instead of using the plug-in method to obtainhr as
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above, we use the R functionmonreg.wrapper to choosehr via 5-fold CV, followed by which

this function setshd = h2
r and implementsmonreg with these bandwidths. We compare these four

methods in terms of the mean absolute error (MAE), defined as MAE= n−1 ∑n
i=1 |θ

∗(Xi) − θ̂K(Xi)|.

Four regression functions are considered:θ∗(x) = log(2x + 1), θ∗(x) = x3, θ∗(x) = e2x, and

θ∗(x) = I (x ≤ 0.6)10x/6 + I (x > 0.6). Using the method described in Section 3.2 to chooseK

for the SNP regression, we settle withK = 1 for the first regression function andK = 2 for the

remaining three functions. The summary of MAE resulting from four methods is presented in

Table 3.

As evident in Table 3, the SNP method performs competitively with relatively stable perfor-

mance across different regression functions. Both spline-based methods can be sensitive to the

number of knots. The method implemented inmonreg can be sensitive to the choice of bandwidths,

and the added CV procedure inmonreg.wrapper does not consistently improve the performance.

Figure 2 depicts the estimated regression functions from the SNP method,pcls with 10 knots, and

monreg with hd = h3
r for each regression function from one randomly selected MC replicate. As

shown in plot (a), the spline-based method implemented inpcls can oscillate, trying to capture

local features, which is a typical phenomenon for spline-based methods. The SNP method seems

to be able to capture the underlying curvature ofθ∗(x) more accurately, except for the nonsmooth

regression function in plot (d), where all three estimates fail to reflect the sharp turn atx = 0.6.

This is expected since these methods are developed to fit smooth regression functions. Overall,

the empirical evidence suggest that the SNP method, combined with the proposed procedure of

choosingK, performs at least as satisfactorily as the three existing methods in comparison.

Example 5[Bivariate isotonic regression]: Different from the first four examples, where univariate

covariates are considered, here we consider bivariate covariates, motivated by applications where

the regression functionθ(∙) is constrained to be monotone in each of the two covariates of interest.

As in the univariate case, the SNP presentation of a nondecreasing (in each of the two coordinates)
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function,θ∗K(x) = γK(x) + s, can be straightforwardly derived and coded using recursive formulas

similar to those in Section 3.1. More specifically, now withγK(x) =
∫ x2

x2L

∫ x1

x1L
{PK(t)}2 exp{−(t21 +

t22)/2}dt1dt2, wheret = (t1, t2)T , PK(t) =
∑

0≤ j+ j′≤K aj j ′ t
j
1t

j′

2 , x = (x1, x2)T , andx`L is the lower bound

of the range ofx`, for ` = 1,2, the recursive formulas become

γ0(x) = a2
00I0(x1)I0(x2),

γK(x) = γK−1(x) + a2
K0I2K(x1)I0(x2) + 2aK0

K−1∑

j=0

I j+K(x1)
K− j∑

j′=0

aj j ′ I j′(x2), for K > 0,

where, for̀ = 1,2,

I0(x`) =
√

2π {Φ(x`) − Φ(x`L)} ,

I1(x`) = exp
(
−x2

`L/2
)
− exp

(
−x2
`/2

)
, and

IK(x`) = xK−1
`L exp

(
−x2

`L/2
)
− xK−1

` exp
(
−x2
`/2

)
+ (K − 1)IK−2(x`), for K > 1.

For illustration purpose, in this example, we assume the true regression function to beθ(x) =

x1+exp(0.5x2)+x1x2, wherex = (x1, x2)T ∈ [0,1]×[0,1]. For each of 2000 MC replicates, we gen-

erate a random sample of sizen = 400 according to the true regression model, withεi ∼ N(0,0.25),

andX1,i independent ofX2,i, both generated from uniform(0, 1), fori = 1, . . . , 400. Using the pro-

cedure described in Section 3.2, more than 75% of the timeK is chosen to be 1 or 2. WithK = 1,2,

the resultant estimated responses give MAE 0.404 (0.352) and 0.400 (0.352), respectively, with the

corresponding 103× standard error of the MC average in parentheses. For comparison, we imple-

mented an existing bivariate isotonic regression algorithm described in Dykstra and Robertson

(1982) using the R function,biviso (Bril et al., 1984), which uses successive one-dimensional

smoothing subject to isotonic constraint. Across 2000 MC replicates, this algorithm produces

estimated responses with MAE 0.539, and 103× standard error being 0.417.
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5 Application to indomethacin data

We now consider isotonic regression analyses using a data set from a study of the pharmacokinetics

of indeomethacin following bolus intravenous injection (Davidian and Gallant, 1995, Section 2.1).

The data include plasma concentrations of indomethacin measured at eleven time points for each

of the six subjects participating the study. It is reasonable to assume that the plasma concentration

(Y) is a nonincreasing function of time (X). For illustration purposes, suppose that the model

in (5) with homoscedastic model error is a reasonable model for the association between plasma

concentration and time for some nonincreasingθ(x). Next, we use the methods under comparison

in Section 4 excludingmspl to fit the regression function. We excludemspl in this example

because it requires distinct predictor values, which is not the case for this data.

For the proposed method, we first chooseK using the strategy described in Section 3.2. In the

5-fold CV, the first abrupt drop in MSE occurs whenK is raised from 1 to 2. We then compute

Eastwood’sF statistic,F23, and the associatedp-value is 0.021. This implies thatK = 3 is likely

to provide a better fit for the current data. When we raise toK = 4, theF statistic,F34, gives a

p-value of 0.739. Hence, using SNP of order four may not provide a significant improvement in

the fit compared to using SNP of order three. The fitted model using SNP of order 3 is plotted

in Figure 3, along with the other two fitted curvs frompcls (with 10 knots) andmonreg (with

hd = h3
r ). Pictorially it appears that the first two methods yield comparable results, and the fit

from monreg is potentially problematic (with a negative fittedY in the end). The MAE, now

defined asn−1 ∑n
i=1 |Yi − Ŷi |, associate with three methods are 0.121, 0.110, and 0.144 for SNP,

pcls, andmonreg, respectively. According to this numerical comparison along with the pictorial

comparison, it appears that SNP method finds a nice balance between overfitting (likely observed

for pcls) and underfitting (seemingly observed formonreg). Finally, the test for linearity results

in an empiricalp-value of 0.012, providing strong evidence of the nonlinearity of the regression

function, as evident from the plot.
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6 Discussion

We propose to use a class of SNP densities as the basis to model smooth isotonic regression func-

tions flexibly. The mathematical representation of this class gives great advantages in achieving

smoothness and isotonicity simultaneously in one simple step. We develop an adaptive procedure

to choose the order of SNP to attain a parsimonious model that is flexible enough to yield a sat-

isfactory fit for the underlying true regression function. We also construct a test for linearity of

the regression function. The performance of the adaptive procedure and the test for linearity are

satisfactory for both nonlinear models and partially linear models.

Considering the model formulation, the proposed method involves ingredients similar to exist-

ing semi-/non-parametric methods, withK playing the role parallel to a smoothing/tuning param-

eter in these literature, and the Hermite polynomials in the SNP formulation somewhat mimicking

the base functions. From the numerical point of view, the R function,optim, is used to maximize

the likelihood in the proposed method without any numerical difficulty in our simulation studies

for K as high as eight whend = 1 and forK as high as four whend = 2, which is more than enough

for the simulated examples and other real data applications we have looked into. It is possible that,

for a very largeK, more sophisticated algorithms are needed for more efficient optimization (espe-

cially whend is also not small). Among the four methods considered in Example 4 in Section 4,

mspl is the least time-consuming and the other three methods are comparable in computing time.

The normal pdf in (4) is one choice of the base density when constructing an SNP density

and other choices of pdf are also valid and will yield different classes of flexible pdf’s. We have

focused on the normal base density for the convenience in analytic derivation of the corresponding

cdf. A minor drawback of this representation is lack of interpretation for the coefficients,aλ’s, in

(3), which is a common pitfall among most flexible modeling methods. But because it is such a

flexible class of functions, one can compare the SNP regression function with a particular regres-

sion function one may have in mind, of which the interpretation is scientifically more meaningful,
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to see how close these two functions are. In other words, the SNP estimation can be used as a

reference, which is supposed to represent the truth very well with an adequately chosenK. If a

scientifically meaningful posited model provides similar fit as the SNP model, then one gains more

confidence in the posited model.

We have not compared our method with the existing methods in the Bayesian framework,

such as those proposed by Bornkamp and Ickstadt (2009) and Meyer, Hackstadt, and Hoeting

(2011). One glitch of the proposed method is that inference procedures outlined in Section 3.1

assume a pre-specifedK and thus ignore the uncertainty in choosingK. Even though we did

not observe sufficient numerical evidence of the tampering effect of ignoring this uncertainty on

standard error estimation in the examples, it is desirable to account for this extra uncertainty.

Solutions to this problem may lie within the Bayesian framework. For instance, the reversible-jump

MCMC described in Meyer, Hackstadt, and Hoeting (2011) gives one a hint on how to incorporate

the variability due to selectingK. There has been little work on SNP from a Bayesian perspective.

Imposing a prior distribution onK was once brought up in Davidian and Gallant (1993) but has

never been explored. It is of interest to look into this avenue of Bayesian SNP modeling and then

compare the Bayesian SNP method with the other Bayesian isotonic regression methods.

Following the theoretical development in Fenton and Gallant (1996a,b), we conjecture that,

with K → ∞ at the right rate, the SNP estimator of the regression function has similar asymptotic

properties as those from kernel-based or spline-based methods (Banerjee, 2007; Pal and Woodroffe,

2007). Noticing that Mammen, et al. (2001) also uses Sobolev norm as a measure of the distance

between two functions and to impose smoothness penalty, we believe that the projection framework

formulated in Mammen, et al. (2001) can be useful hints for us to study the asymptotic properties

of our proposed methods more thoroughly. This theoretical consideration has been on the top of

our follow-up research agenda.

Since SNP has been mostly used to model distributions of variables whose distribution may

not be in a familiar family, it is natural to consider keeping this tradition while adding the new use
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of SNP proposed in this article. We have started to apply both ideas to regression models with

random effects and also contain isotonic component in the regression functions. We propose to use

SNP densities to model the random effects to avoid stringent distributional assumptions on them,

and at the same time, use SNP cdf to model the isotonic component in a regression function. With

two flexible modeling combined in the same regression model, one faces the identifiability issue.

Theories behind this double flexibility strategy and how to tackle the identifiability issue are topics

worth further investigation.
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Table 1: Averages of parameter estimates across 300 MC replicates in Example 2 in Section 4.
Entries in parentheses next to the parameter estimates are corresponding MC standard deviations.
Entries in parentheses next to the sandwich standard errors are (100× MC standard error) of the
averages of sandwichestimates.

K = 1 K = 2
Parameter estimates Sandwich std. err. Parameter estimates Sandwich std. err.

a0 0.012 (0.021) 0.034 (0.010) 0.295 (0.058) 0.059 (0.034)
a1 2.576 (0.017) 0.030 (0.011) 0.004 (0.021) 0.022 (0.010)
a2 (NA) (NA) 1.957 (0.046) 0.048 (0.026)
s −6.127 (0.102) 0.183 (0.094) −7.643 (0.148) 0.149 (0.122)
σ2
ε 0.574 (0.047) 0.060 (0.041) 0.256 (0.027) 0.026(0.020)
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Table 2: Simulation results from Example 3 in Section 4. The upper half of the table includes MC
averages of the estimated quantities from the simulation, followed by (10× MC standard error)
in parentheses. True values of the five quantities being estimated, (s, σ2

ε , θ25, θ50, θ75), are (1, 0.25,
1.284, 1.649, 2.117) whenX ∼ uniform(0, 1), and they are (2.718, 0.25, 3.490, 4.482, 5.755) when
X ∼ uniform(1, 2). Entries following the row titles,F12, F23, andQK, are rejection rates of the test
statistics across 300 MCreplicates.

X ∼ uniform(0, 1) X ∼ uniform(1, 2)
K = 1 K = 2 K = 1 K = 2

ŝ 1.028 (0.062) 0.990 (0.075) 2.838 (0.064) 2.678 (0.087)
σ̂2
ε 0.250 (0.015) 0.250 (0.015) 0.255 (0.015) 0.251 (0.015)
θ̂25 1.275 (0.029) 1.286 (0.037) 3.431 (0.028) 3.499 (0.037)
θ̂50 1.645 (0.031) 1.646 (0.032) 4.485 (0.029) 4.480 (0.028)
θ̂75 2.131 (0.029) 2.121 (0.036) 5.829 (0.029) 5.763 (0.036)
F12 0.050 0.340
F23 0.043 0
QK 0.457 0.067 1 0.107
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Table 3: MC averages of MAE across 2000 replicates from four methods compared in Example 4
in Section 4. Numbers in parentheses are (103× MC standard error) of the averages. “pcsl5” and
“pcsl10” denote the method implemented bypcsl with 5 and 10 knots, respectively. “mspl2” and
“mspl4” denote the method implemented bymspl with 2 and 4 knots, respectively. “monreg1” and
‘monreg2” denote the method implemented bymonreg with hd = h3

r andhd = 0.5hr , respectively,
wherehr = (σ̂2/n)1/5. “monreg3” denotes the method implemented bymonreg.wrapper, which
implements 5-fold cross validation to choosehr and then setshd = h2

r .

θ∗(x) = log(2x+ 1) θ∗(x) = x3 θ∗(x) = e2x θ∗(x) = I (x ≤ 0.6)10x
6

+I (x > 0.6)
n = 100

SNP 0.067 (0.647) 0.073 (0.654) 0.078 (0.662) 0.074 (0.616)
pcsl5 0.065 (0.584) 0.072 (0.656) 0.083 (0.621) 0.075 (0.621)
pcsl10 0.068 (0.601) 0.076 (0.659) 0.088 (0.657) 0.076 (0.622)
mspl2 0.074 (0.577) 0.072 (0.614) 0.084 (0.629) 0.074 (0.597)
mspl4 0.081 (0.576) 0.078 (0.585) 0.098 (0.617) 0.080 (0.616)

monreg1 0.068 (0.588) 0.073 (0.670) 0.186 (0.910) 0.073 (0.587)
monreg2 0.065 (0.596) 0.076 (0.639) 0.187 (0.902) 0.079 (0.537)
monreg3 0.076 (0.625) 0.077 (0.736) 0.108 (0.753) 0.083 (0.607)
n = 200

SNP 0.048 (0.463) 0.051 (0.461) 0.055 (0.455) 0.054 (0.445)
pcls5 0.050 (0.418) 0.052 (0.469) 0.061 (0.424) 0.056 (0.455)
pcls10 0.051 (0.425) 0.054 (0.475) 0.064 (0.452) 0.056 (0.455)
mspl2 0.056 (0.419) 0.053 (0.443) 0.060 (0.448) 0.055 (0.423)
mspl4 0.061 (0.405) 0.058 (0.422) 0.070 (0.446) 0.059 (0.420)

monreg1 0.051 (0.425) 0.052 (0.462) 0.152 (0.616) 0.054 (0.429)
monreg2 0.049 (0.431) 0.055 (0.448) 0.153 (0.610) 0.060 (0.379)
monreg3 0.057 (0.461) 0.060 (0.454) 0.080 (0.543) 0.062(0.433)
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Figure 1: Estimated regression functions in the examples in Section 4. Solid lines are for the truth;
dotted lines are for estimate from a single MC replicate; dashed lines are forθ̃1(x); dash-dotted
lines are for̃θ2(x); long-dashed lines are forθ̃3(x).
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Figure 2: Estimated regression functions from one MC replicate resulting from three methods.
Solid lines are for the truth; dashed lines are for the SNP estimation; dash-dotted lines are for pcls;
dotted lines are for monreg.
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Figure 3: Fitted regression lines for the indomethacin data resulting from three methods: SNP with
K = 3 (dashed line), pcls (dot-dashed line), and monreg (dotted line).
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