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Summary. We consider structural measurement error models for a binary response. We show that likelihood-based estimators
obtained from fitting structural measurement error models with pooled binary responses can be far more robust to covariate
measurement error in the presence of latent-variable model misspecification than the corresponding estimators from individual
responses. Furthermore, despite the loss in information, pooling can provide improved parameter estimators in terms of
mean-squared error. Based on these and other findings, we create a new diagnostic method to detect latent-variable model
misspecification in structural measurement error models with individual binary response. We use simulation and data from
the Framingham Heart Study to illustrate our methods.
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1. Introduction
Covariate measurement error is a problem commonly encoun-
tered in epidemiological investigations (Carroll, 2005). One
popular study, cited by numerous authors in the measure-
ment error literature, is the Framingham Heart Study (Kannel
et al., 1986), a study where one of the primary goals is to char-
acterize the relationship between the risk of coronary heart
disease and long-term systolic blood pressure. The true pre-
dictor in this application, long-term systolic blood pressure,
cannot be observed. Instead, systolic blood pressure readings
are collected at periodic clinic visits for each subject and are
viewed as error-contaminated versions of the true predictor.

In this article, we consider structural measurement error
models for a binary response Y, e.g., whether or not evi-
dence of heart disease is detected. In a structural measure-
ment error model, the true predictor can be viewed as a latent
variable with its own distribution. Likelihood-based inference
subsequently depends on this assumed latent-variable model,
and its misspecification can adversely affect inference (Carroll
et al., 2006, Section 5.6.3). This problem is exacerbated by
the fact that diagnosing latent-variable model misspecifica-
tion with the observed data directly is not possible. To address
this issue, Huang, Stefanski, and Davidian (2006) developed
simulation-based remeasurement methods to diagnose latent-
variable model misspecification in structural measurement er-
ror models. Their methods provide a general framework to
assess the adequacy of an assumed latent-variable model and
the robustness of a target estimator to measurement error.

This research expands on the study presented in Huang
et al. (2006) in the context of binary response. First, we
extend the methods proposed in Huang et al. (2006) to in-
vestigate the effects of latent-variable model misspecifica-
tion on likelihood-based estimators in structural measurement

error models with pooled binary response. We show that using
pooled binary response in place of individual binary response
can result in better regression parameter estimates, and it
leads to likelihood-based inference that is much less sensi-
tive to covariate measurement error when the latent-variable
model is misspecified. Second, using the pooled responses, we
propose a new diagnostic method to detect latent-variable
model misspecification with individual response data. This
method possesses attractive properties and avoids the time-
consuming remeasurement technique proposed by Huang
et al. (2006).

2. Structural Measurement Error Models
We first define the structural measurement error model for
individual response, as in Huang et al. (2006), and then extend
its utility to pooled response.

2.1 Individual Response
For the ith individual, let Y i , W i , and X i denote the binary
response, the observed predictor value, and the true predictor
value, respectively, for i = 1, 2, . . . , n. A structural measure-
ment error model consists of three component models. The
first component model is a generalized linear model for Y i ,
conditional on X i , given by Pr(Yi = 1 |Xi ) = h(β0 + β1Xi ),
where h(·) is a known inverse link function. Inference on the
regression parameters θ = (β 0, β 1)T is of central interest. The
second component model is the classical measurement error
model given by W i = X i + U i , where U i is the nondifferen-
tial measurement error (Carroll et al., 2006, Section 2.5) and
U i ∼ N (0, σ2

U ). It follows that W i |X i ∼ N (X i , σ2
U ). The

nondifferentiality of the measurement error implies that given
X i , Y i is independent of W i . The third component model is
the assumed model for X, with density denoted by f

(a )
X (x; τ ),
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where τ is a parameter vector of length t. For individual i,
the joint density of the observed datum, (Y i , W i ), is given by

fY ,W

(
Yi , Wi ; θ, τ , σ2

U

)
=

∫
fY |X (Yi |x; θ)fW |X

(
Wi |x; σ2

U

)
f

(a )
X (x; τ ) dx, (1)

where fY |X (Yi |x; θ) = h(β0 + β1x)Y i {1 − h(β0 + β1x)}1−Y i ,
fW |X (Wi |x; σ2

U ) = σ−1
U φ{σ−1

U (Wi − x)}, and φ(·) denotes
the N (0, 1) probability density function. We assume through-
out that the n individuals are independent so that the log
likelihood of the observed data is

l
(
θ, τ , σ2

U

)
=

n∑
i=1

log

{∫
fY |X (Yi |x; θ)fW |X

(
Wi

∣∣x; σ2
U

)
f

(a )
X (x; τ ) dx

}
.

(2)

The appearance of the primary regression model f Y |X (Y i |x;
θ) and the assumed latent-variable model f

(a )
X (x; τ ) within

the integrand in equation (1) suggests that the choice of the
assumed model for X can affect inference for θ based on equa-
tion (2).

2.2 Pooled Response
Suppose that G pools are formed from the n individuals, and
let ng denote the pool size for pool g, g = 1, 2, . . . , G, so
that

∑G

g =1 ng = n. Denote the individual binary responses
in pool g by (Yg 1, Yg 2, . . . , Yg n g )T and the corresponding
pooled binary response by Y ∗

g = max{Yg 1, Yg 2, . . . , Yg n g }. De-
note the observed and true predictor values in pool g by W∗

g =
(Wg 1, Wg 2, . . . , Wg n g )T and X∗

g = (Xg 1, Xg 2, . . . , Xg n g )T , re-
spectively, and assume, as before, that W g j = X g j + U g j ,
where U g j ∼ N (0, σ2

U ), for all g and j. The major difference in
the structural measurement error model for pooled response
is in the first component model; i.e., the primary regression
model. Here, the primary regression model relates the pooled
response to the associated true predictors and is given by

Pr
(
Y ∗

g = 1 |X∗
g

)
= 1 −

n g∏
j=1

{1 − h(β0 + β1Xg j )}. (3)

Our derivation shows that the joint density of the observed
data for pool g, (Y ∗

g , W∗
g ), can be written as

fY ∗,W∗
(
Y ∗

g ,W∗
g ; θ, τ , σ2

U

)
= Y ∗

g

n g∏
j=1

∫
1

σU

φ

(
Wg j − x

σU

)
f

(a )
X (x; τ ) dx +

(
1 − 2Y ∗

g

)

×
n g∏
j=1

∫
{1 − h(β0 + β1x)} 1

σU

φ

(
Wg j − x

σU

)
f

(a )
X (x; τ ) dx.

Assuming that the G pools are independent, the log likelihood
of the observed data based on the pooled responses is

l∗
(
θ, τ , σ2

U

)
=

G∑
g =1

log
{
fY ∗,W∗

(
Y ∗

g ,W∗
g ; θ, τ , σ2

U

)}
. (4)

Unless otherwise stated, we assume that σ2
U is known. In

practice, σ2
U can be estimated when there are replicate sur-

rogate measurements for each X, and it is straightforward to

revise our approach (see Section 6). For either data structure,
individual or pooled, it is worth emphasizing that if the first
two component models in the structural measurement error
model are correct, likelihood-based inference is consistent if
the latent-variable model is correctly specified or if σ2

U = 0.
In the absence of measurement error, Vansteelandt, Goetghe-
beur, and Verstraeten (2000) considered regression models of
the form in equation (3) for modeling the prevalence of hiv us-
ing pooled responses from group testing. In such applications,
forming pools is a natural and commonly used technique to
reduce testing costs. Our use of pooling in this article is more
general and is not restricted to applications in group testing.

3. Empirical Methods for Assessing Robustness
Huang et al. (2006) use remeasurement-based methods to as-
sess the robustness of target estimators to measurement error
in structural measurement error models. We summarize the
salient aspects of this approach with models for individual bi-
nary response and then extend this technique to models for
pooled response.

3.1 Individual Response
The remeasurement method involves further contaminating
the observed covariate W. We call the further contaminated
data the λ-remeasured data, where λ is a prespecified positive
constant that controls the degree of further contamination.
Specifically, for a chosen λ > 0, we first generate B sets of
n independent random errors from a standard normal distri-
bution, {Zbi , i = 1, 2, . . . , n}B

b=1, and form the λ-remeasured
data defined by

Wbi (λ) = Wi +
√

λσU Zbi , (5)

for b = 1, 2, . . . , B and i = 1, 2, . . . , n. Note that, by this
construction, the measurement error variance associated with
W bi (λ) is equal to (1 + λ)σ2

U for all b and i.
Let Ω = (θT , τ T )T denote the r × 1 vector of unknown

parameters, where r = 2 + t, and suppose that Ω is to be
estimated by solving the vector-valued estimating equation

n∑
i=1

ψ
(
Yi , Wi ; θ, τ , σ2

U

)
= 0, (6)

in the absence of further contamination. For example, if
the maximum likelihood estimator (MLE) of Ω is de-
sired, then

∑n

i=1 ψ(Yi , Wi ; θ, τ , σ2
U ) = (∂/∂Ω)l(θ, τ , σ2

U ). In
general, denote the estimator that solves equation (6) by
Ω̂(0) = {θ̂(0)T , τ̂ (0)T }T . Based on equation (6), we con-
struct the vector-valued estimating equation evaluated at the
λ-remeasured data as

n∑
i=1

ψB

{
Yi , W̃i (λ); θ, τ , (1 + λ)σ2

U

}
= 0, (7)

where ψB {Yi , W̃i (λ); θ, τ , (1 + λ) σ2
U } = B−1

∑B

b=1 ψ{Yi ,

Wbi (λ); θ, τ , (1 + λ)σ2
U } and W̃i (λ) = {Wbi (λ)}B

b=1. Solving
equation (7) yields the same type of estimator as Ω̂(0) based
on the λ-remeasured data; we denote this estimator by Ω̂(λ) =
{θ̂(λ)T , τ̂ (λ)T }T . Plotting one component of Ω̂(λ) versus λ,
for λ ≥ 0, produces the simulation extrapolation, simex, plot
for that estimate (Cook and Stefanski, 1994; Stefanski and
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Cook, 1995). A constant or nearly constant simex plot sug-
gests that the considered estimator is robust to measurement
error under the assumed model for X. A substantial deviation
from constancy indicates that the estimator is sensitive to
measurement error under the presumed model for X and that
the estimator is biased, with the magnitude of bias depending
on the size of measurement error variance.

In addition to the graphical simex diagnostic, Huang et al.
(2006) provide a quantitative assessment of robustness in the
form of the test statistic

t∗1(λ) = ν̂−1
1 {γ̂(λ) − γ̂(0)},

where γ is an element in Ω, γ̂(·) is the target estimator for γ,
and ν̂2

1 is an estimator for var{γ̂(λ) − γ̂(0)}. The derivation
of an estimator for var{γ̂(λ) − γ̂(0)} is provided in Web Ap-
pendix A. The statistic t∗1(λ) evaluates the amount of change
in the estimate as the measurement error variance increases
from σ2

U to (1 + λ)σ2
U after adjusting for background noise. If

t∗1(λ) deviates significantly from zero, one may conclude that
the estimator is not robust to measurement error under the
assumed latent-variable model. The operating characteristics
of t∗1(λ) are studied in Huang et al. (2006).

There is a delicate difference between the remeasurement
method described above and the method described in Huang
et al. (2006) in computing Ω̂(λ) at λ > 0. In Huang et al.
(2006), when λ > 0, Ω is estimated B times, each time based
on one set of λ-remeasured data of size n, and the final Ω̂(λ)
is defined as the average of these B estimates. The modi-
fication here is to compute Ω̂(λ) only once based on all B
sets of λ-remeasured data, which are combined in one vector-
valued estimating equation (7). The solution to equation (7)
is asymptotically equivalent to the older version of Ω̂(λ), but
is far less cumbersome to compute.

3.2 Pooled Response
Generating the remeasured data in Section 3.1 does not
involve the binary response Y. Therefore, the same data-
generation step applies when pooled responses are consid-
ered. Suppose that the target estimator for Ω, based on the
data with pooled response, solves the vector-valued estimat-
ing equation

G∑
g =1

ψ∗(Y ∗
g ,W∗

g ; θ, τ , σ2
U

)
= 0. (8)

Analogously to the construction of equation (7), the estimator
for Ω of the same type, based on the λ-remeasured data with
pooled response, is obtained by solving

G∑
g =1

ψ∗
B

{
Y ∗

g ,W̃∗
g (λ); θ, τ , (1 + λ)σ2

U

}
= 0, (9)

where ψ∗
B {Y ∗

g , W̃∗
g (λ); θ, τ , (1 + λ) σ2

U }=B−1
∑B

b=1 ψ∗{Y ∗
g ,

W∗
bg (λ); θ, τ , (1 + λ)σ2

U }, W∗
bg (λ) = {W ∗

bg j (λ)}n g

j=1, for b = 1,
2, . . . , B, and W̃∗

g (λ) = {W∗
bg (λ)}B

b=1, for g = 1, 2, . . . , G.

Denote by Ω̂
∗
(0) = {θ̂∗

(0)T , τ̂ ∗(0)T }T and Ω̂
∗
(λ) = {θ̂∗

(λ)T ,
τ̂ ∗(λ)T }T the solutions to equations (8) and (9), respectively.
As with individual response, the simex plot of one component
of Ω̂

∗
(λ) can provide evidence of robustness or lack thereof.

Furthermore, assuming independent pools, the construction
of t∗1(λ) based on the solutions to equations (8) and (9) is

identical to that based on individual response. As described
in Web Appendix A, the variance estimator ν̂2

1 in this case
is changed to reflect the fact that pools are the experimental
units; not the individuals.

4. Robustness Findings
We now apply the previously outlined diagnostic methods to
assess the robustness of target estimators resulting from data
with different types of binary response.

4.1 Random Versus Homogeneous Pooling
In studying the structural measurement error models with
pooled responses, we consider two pooling strategies. The
first strategy is to form the pools randomly, so that the com-
position of pools is independent of the individual covariate
information. We henceforth refer to this as random pool-
ing. The second pooling strategy we consider is motivated by
Vansteelandt et al. (2000), who showed that, in the absence
of covariate measurement error, a more precise estimator of
Pr(Y ∗

g = 1 |X∗
g ) results when one pools individuals with sim-

ilarly observed covariates, that is, when Xg 1, Xg 2, . . . , Xg n g

are as homogeneous as possible. We refer to this as homoge-
neous pooling. In the presence of measurement error, the best
homogeneous composition one can hope for is to pool individ-
uals with similar W values. To implement this strategy, one
can sort and partition the ordered W’s into G pools, so that
the datum for the first pool, say, is (Y ∗

1 , W11, W12, . . . , W1n 1 ) =
(Y ∗

1 , W(1), W(2), . . . , W(n 1)), where W(1), W(2), . . . , W(n 1) are the
first n1 order statistics of W 1, W 2, . . . , W n . When generating
λ-remeasured data, regardless of pool composition, we always
contaminate the unsorted observed data W 1, W 2, . . . , W n

with the unsorted random noise {Zbi , i = 1, 2, . . . , n}B
b=1 to

obtain {W bi (λ), i = 1, 2, . . . , n}B
b=1.

A complication with homogeneous pooling is that it ren-
ders a small amount of dependence among the pools due to
the ordering of the observed covariates. Therefore, the MLE
of Ω based on the homogeneous-pooling responses is not ob-
tained by maximizing equation (4) as equation (4) is derived
under the assumption of independent pools. In fact, we have
found that maximizing the true log likelihood from homoge-
neous pooling is practically infeasible. To estimate Ω in this
situation, a sensible solution is to first estimate τ by maxi-
mizing the log likelihood of W = (W 1, W 2, . . . , W n )T given
by

lW
(
τ , σ2

U

)
=

n∑
i=1

log

{∫
fW |X

(
Wi

∣∣x; σ2
U

)
f

(a )
X (x; τ ) dx

}
.

This provides a consistent estimator for τ because the or-
dering does not enter at this level. We then estimate θ by
maximizing equation (4) with τ fixed at its estimate. This
simplifies the objective function to be optimized by assum-
ing pools to be independent and yields a pseudo-MLE for
θ, which is biased, but much less so when compared to the
estimator for θ resulting from maximizing equation (4) with
respect to τ and θ simultaneously. The vector-valued estimat-
ing equation evaluated at the observed data corresponding to
this two-stage approach is

G∑
g =1

ψ∗(Y ∗
g , W ∗

g ; θ, τ , σ2
U

)
=

(
(∂/∂τ )lW

(
τ , σ2

U

)
(∂/∂θ)l∗

(
θ, τ , σ2

U

)
)

= 0.
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Another small complication with homogeneous pooling relates
to the variance estimator for the pseudo-MLE of Ω and the
variance estimator ν̂2

1 in t∗1(λ). Both estimators are initially
derived under the assumption of independent experimental
units, which, in the case of pooled response, corresponds to in-
dependent pools. For the reasons previously outlined, these es-
timators are not appropriate for use with homogeneous pool-
ing. To obviate this difficulty, we use the bootstrap to estimate
these variances when homogeneous pooling is used.

4.2 Simulation Evidence
We conducted several simulations to evaluate the merit of
pooling in structural measurement error models. For illustra-
tion, we take h(β 0 + β 1X) = Φ(β 0 + β 1X), where Φ(·) is
the N (0, 1) distribution function, θ = (β 0, β 1)T = (−2, 1)T ,
and the true model for X to be the two-component mixture
f

(a )
X (x) = 0.1f 1(x) + 0.9f 2(x), where f 1(x) and f 2(x) denote

the N (2.35, 0.41) and N (−0.26, 0.38) density functions, re-
spectively. The two normal components are chosen to produce
a bimodal distribution with mean 0, variance 1, skewness 1.3,
and kurtosis 2. A random sample of size n = 2000 is gener-
ated from the structural measurement error model for indi-
vidual data defined in Section 2.1 with σ2

U = 0.25, so that
the reliability ratio σ2

X /(σ2
X + σ2

U ) = 0.8 (Carroll et al. 2006,

Figure 1. simex plots for regression parameter estimates. The horizontal dot-dashed line is a reference line placed at the
true parameter values. The left (right) panel depicts the estimates under a normal (mixture normal) assumption for X. The
solid line, dashed line, and dotted line correspond to θ̂I , θ̂R , and θ̂H , respectively.

Section 3.2.1). For both pooling protocols, we set ng = 10,
for g = 1, 2, . . . , G, yielding G = 200 pools. Thus, in the re-
sults that follow, the MLEs from the data with individual
responses are based on 2000 responses whereas the estimates
from the data with pooled response are based on only 200.
The assumed models for X we consider are (a) a normal dis-
tribution, representing the situation wherein one misspecifies
the latent-variable model and (b) a two-component mixture
normal distribution, representing the situation in which one
serendipitously chooses the correct parametric model. The es-
timators resulting from (b) serve as gold standards with which
the estimators from (a) are compared. In the remeasurement
method, we set B = 50 and take λ = 1.

For λ ≥ 0, denote by θ̂
(n )
I (λ), θ̂

(n )
R (λ), and θ̂

(n )
H (λ) the MLEs

for θ from the data with individual response, the data with
random-pooling response, and the pseudo-MLE for θ from
data with homogeneous-pooling response, respectively, when
the assumed model for X is normal, and by θ̂

(m )
I (λ), θ̂

(m )
R (λ),

and θ̂
(m )
H (λ) the corresponding estimates when the assumed

model for X is mixture normal. From the simex plots in
Figure 1, it is evident that θ̂

(n )
H (λ) is more robust to mea-

surement error than either θ̂
(n )
I (λ) or θ̂

(n )
R (λ), despite the fact
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Figure 2. simex plots averaged over 300 Monte Carlo replications. The horizontal dot-dashed line is a reference line placed
at the true parameter values. The left (right) panel depicts the estimates under a normal (mixture normal) assumption for
X. The solid line, dashed line, and dotted line correspond to θ̂I , θ̂R , and θ̂H , respectively.

that the latent-variable model is misspecified and θ̂
(n )
H (λ) is

a pseudo-MLE. For this simulation, all three estimates for θ
under correct modeling do not appear to be sensitive to mea-
surement error. To provide an overall assessment, we repeated
the same simulation 300 times to observe the average pattern
exhibited by the simex plots in the setting described above.
The averages of the 300 sets of θ̂

(n )
I (λ), θ̂

(n )
R (λ), and θ̂

(n )
H (λ),

as well as θ̂
(m )
I (λ), θ̂

(m )
R (λ), and θ̂

(m )
H (λ), are plotted in Figure

2, and the values of these averages for λ = 0, 1 are given in
Table 1. The observations from Figure 2 and Table 1 recon-
cile the patterns observed from the one Monte Carlo replicate
depicted in Figure 1.

4.3 Interpretation
Our overall simulation results indicate that, in the presence of
latent-model misspecification, estimates computed from data
with homogeneous-pooling response can be more robust to
measurement error than those from data with individual re-
sponse or with random-pooling response. An interesting re-
lated observation is given in Weinberg and Umbach (1999),
who used pooled exposure assessments to improve the ef-
ficiency in case–control studies. Unlike our use of pooling,

Table 1
Mean regression parameter estimates from 300 Monte Carlo

replications under the normal and mixture normal
latent-variable assumption with β 0 = −2, β 1 = 1, and λ = 0,
1. Monte Carlo mean-squared errors are in parentheses. IND,
RP, and HP represent individual response, random-pooling
response, and homogeneous-pooling response, respectively.

Normal β̂
(n )
0 (0) β̂

(n )
0 (1) β̂

(n )
1 (0) β̂

(n )
1 (1)

IND −2.25 (0.064) −2.54 (0.295) 1.26 (0.068) 1.53 (0.283)
RP −2.37 (0.135) −2.92 (0.846) 1.35 (0.126) 1.83 (0.691)
HP −2.12 (0.015) −2.19 (0.035) 0.97 (0.001) 1.03 (0.001)

Mixture
normal β̂

(m )
0 (0) β̂

(m )
0 (1) β̂

(m )
1 (0) β̂

(m )
1 (1)

IND −2.01 (<0.001) −2.01 (<0.001) 1.01 (<0.001) 1.01 (<0.001)
RP −2.02 (<0.001) −2.02 (<0.001) 1.01 (<0.001) 1.01 (<0.001)
HP −2.03 (0.001) −2.02 (<0.001) 1.05 (0.002) 1.03 (0.001)

these authors pool the exposure covariates instead. When the
exposure assessment is obtained from an error-prone assay,
the authors show that the attenuation effect of measurement
error on the naive MLEs (that is, estimators which ignore
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measurement error) can be magnified when the pooled expo-
sure assessments are used in place of the individual exposure
assessments. The authors reached this conclusion by showing
that the reliability ratio of the pooled exposure data is lower
than that of the individual exposure data.

Our use of pooling, which can lead to more robust esti-
mators, involves the responses based on the sorted observed
predictor values and is thus structurally different from the
approach taken by Weinberg and Umbach (1999). However,
the gains in robustness from homogeneous pooling can also be
explained by the change in the reliability ratio. When we form
pooled responses based on homogeneous covariates, the vari-
ation in the true predictor among the pools is usually larger
than the variation in the true predictor based on the individu-
als. This is true so long as the reliability ratio of the individual
data is not too small, that is, as long as the process of sorting
the W data also approximately sorts the X’s. Higher between-
pool variance of the true predictor yields a higher reliability
ratio for the pooled data. In this light, homogeneous pooling
can alleviate the effect of measurement error.

Our findings are especially encouraging when group test-
ing is used for cost concerns, because one may be able to
realize large gains in robustness to measurement error in the
presence of latent-model misspecification at a small fraction
of the testing cost. One might naturally conjecture that us-
ing pooled responses in place of individual responses would
cause a notable loss in precision when estimating θ. However,
we have found that this may not be true. Inference based on
the pooled responses can actually be more efficient than infer-
ence based on the individual responses when the between-pool
variance of X is large and the pool sizes ng are not so large
that the pools conceal too much information. In fact, in our
presented simulation study, with ng = 10, we found that the

mean-squared errors associated with θ̂
(n )
I are generally much

higher than the mean-squared errors associated with θ̂
(n )
H (see

Table 1). The reduction in bias due to measurement error in

θ̂
(n )
H can again be explained by the increase in the variance of

the true predictor among the experimental units after form-
ing homogeneous pools, which in turn increases the reliability
ratio.

5. New Diagnostic Method
The statistic t∗1(λ) proposed by Huang et al. (2006) is de-
signed to test the hypothesis H 01 : γ(0) = γ(λ), where γ is
one of the elements in Ω, and where γ(0) and γ(λ) are the
probability limits of the target estimators for γ based on the
observed data and the λ-remeasured data, respectively. In
the context herein, it is understood to mean that asymptotic
results apply when the number of experimental units grows
large without bound; that is, n for individual-response data
and G for pooled-response data. Rejecting H01 implies that
the considered estimator for γ is not robust to measurement
error. As nonrobustness can be a consequence of misspeci-
fying the latent-variable model, rejection of H01 can suggest
latent-variable model misspecification. Because the model pa-
rameters are re-estimated based on the noisier data sets in the
remeasurement method, computing t∗1(λ) can be time con-
suming. We propose a new test statistic for diagnosing model

misspecification that does not require generating remeasured
data or re-estimation based on noisier data.

The creation of our new statistic is motivated by the fact
that when the latent-variable model is correctly specified, θ̂I

and θ̂R are in close agreement, but that they can differ largely
when the latent-variable model is misspecified (see Figures 1
and 2). This occurs because if the latent-variable model is
correctly specified, so that the likelihood of the data with in-
dividual response and with random-pooling response are both
correct, θ̂I and θ̂R are both consistent estimators of θ. How-
ever, close agreement between θ̂I and θ̂R is not guaranteed
when the latent-variable model is misspecified.

5.1 Test Statistic
For G > r, the new test statistic is defined by

t∗2 =
G − r

r(G − 1)
× {Ω̂R (0) − Ω̂I (0)}T Σ̂

−1{Ω̂R (0) − Ω̂I (0)},

where Ω̂(·)(0) is the MLE of Ω = (θT , τ T )T , subscripts I
and R denote individual response and random-pooling re-
sponse, respectively, and Σ̂ is an estimator of the variance-
covariance matrix of Ω̂R (0) − Ω̂I (0), derived in Web Ap-
pendix B. Also shown in Web Appendix B, (G − r)−1r(G −
1)t∗2 is a Hotelling’s T2-type statistic; thus, t∗2 follows an F (r,
G − r) distribution under H 02. Structurally different from
t∗1(λ), the statistic t∗2 tests the null hypothesis H 02 :ΩR (0) =
ΩI (0), where ΩR (0) and ΩI (0) are the probability limits of
Ω̂R (0) and Ω̂I (0), respectively. It is worth noting that t∗2 does
not depend on the remeasured data, so it is far easier to com-
pute than t∗1(λ).

5.2 Simulation Evidence
To examine the performance of the test statistics, we first
computed t∗1(1) and t∗2 using the simulated data from Figure 1
with n = 2000, G = 200, and ng = 10. Table 2 displays the
results. The variance estimate ν̂2

1 , in the case of homogeneous
pooling, is computed using 100 bootstrap resamples. Using
1.96 as a large-sample critical value, the values of t∗1(1) in Ta-
ble 2 reinforce the visual findings revealed in Figure 1. That

Table 2
Values of t∗1(1) and t∗2 associated with the regression parameter
estimates from Figure 1 under the normal and mixture normal
assumption. IND, RP, and HP represent individual response,
random-pooling response, and homogeneous-pooling response,
respectively. The numbers in parentheses in the rows for t∗2 are

the p-values associated with t∗2.

β̂
(n )
0 β̂

(n )
1

Normal IND RP HP IND RP HP

t∗1(1) −4.18 −1.92 −0.34 4.91 2.27 −0.08
t∗2 4.49 (0.002) — — — — —

β̂
(m )
0 β̂

(m )
1Mixture

normal IND RP HP IND RP HP

t∗1(1) 0.35 −0.72 1.11 −0.83 0.71 −0.68
t∗2 0.37 (0.92) — — — — —
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Table 3
Rejection rates of t∗1(1) and t∗2 based on 300 Monte Carlo replications. Monte Carlo standard
errors are in parentheses. IND, RP, and HP represent individual response, random-pooling

response, and homogeneous-pooling response, respectively.

β̂
(n )
0 β̂

(n )
1

Normal IND RP HP IND RP HP

t∗1(1) 1 (0) 0.45 (0.03) 0.16 (0.02) 1 (0) 0.74 (0.03) 0.12 (0.02)
t∗2 0.87 (0.02) — — — — —

β̂
(m )
0 β̂

(m )
1

Mixture normal IND RP HP IND RP HP

t∗1(1) 0.04 (0.01) 0.01 (0.01) 0.02 (0.01) 0.04 (0.01) 0.02 (0.01) 0.07 (0.01)
t∗2 0.03 (0.01) — — — — —

is, when the model for X is misspecified as normal, θ̂H is
more robust to measurement error than θ̂I and θ̂R . Further-
more, when the model for X is correctly specified, none of
the three values of t∗1(1) provide sufficient evidence to con-
clude that the estimates are sensitive to measurement error
or that the latent-variable model has been misspecified. Sim-
ilarly, when the latent-variable model is misspecified as nor-
mal, the small probability values associated with t∗2, computed
with respect to the F (4, 196) reference distribution, provide
strong evidence of model misspecification. When the latent-
variable model is correct, t∗2 does not indicate significant dis-
agreement between Ω̂R (0) and Ω̂I (0), as seen through the
large probability values, computed with respect to the F (7,
193) distribution.

To explore the power and size properties of the two statis-
tics, we repeated the same simulation using 300 Monte Carlo
replicates and recorded the proportion of times that H01 and
H02 are rejected. Table 3 summarizes the results. Under cor-
rect modeling, our findings suggest that both test statis-
tics have nearly nominal size characteristics. In addition, the
quantile–quantile plot of the 300 values of t∗2 (not shown)
strongly supports the limiting F distribution when the latent-
variable model is correct. When the assumed latent-variable
model is incorrect, the power of t∗1(1) under homogeneous
pooling is low. This finding reinforces our robustness discov-
ery.

Under incorrect modeling, although high, the power of t∗2
is slightly lower than that of t∗1(1) based on the individual
responses. This is not totally unexpected, given the fact that
t∗1(λ) and t∗2 detect latent-model misspecification in very dif-
ferent ways. When the latent-variable model is misspecified
in a way that compromises likelihood-based inference, t∗1(λ)
reveals nonrobustness of a single target estimator γ̂ to mea-
surement error as the noise level increases for the same data
type, whereas t∗2 detects the discrepancy between estimators of
Ω resulting from different data types at a fixed level of noise.
When the analyst has misspecified the true latent-variable
model, Ω̂R (0) and Ω̂I (0) may be affected similarly, making
misspecification difficult to detect (see Section 6). However,
we have found that when n and G are large enough to produce
reasonably precise estimates, the power of t∗2 is often above
80% when the pool size ng ≥ 4, making its use attractive

because of computational ease. In practice, we recommend
choosing G so that ŝe(β̂0)/β̂0 and ŝe(β̂1)/β̂1 are both small.
Here, ŝe(·) denotes the estimated standard error, which we
compute using the sandwich formula.

6. Application to Framingham Heart Study
We now apply the remeasurement method and the new test-
ing procedure with data from the Framingham Heart Study.
Our data set consists of 1615 male subjects who are followed
for the development of coronary heart disease over six exam-
ination periods. At each of the second and third examination
periods, each subject’s systolic blood pressure is measured
twice during two clinic visits. Additionally, the first evidence
of coronary heart disease within the 8-year follow-up period
from the second examination period is recorded for each sub-
ject. Define Y as the binary indicator of the first evidence of
coronary heart disease within this follow-up period and the
explanatory variable X as the long-term systolic blood pres-
sure. The true predictor X is unobserved, and the two systolic
blood pressure readings collected during the clinic visits can
be viewed as error-contaminated versions of X.

In our analysis, we do not view X as time dependent, and
we take the average of the two systolic blood pressure readings
measured in the second examination period as the value of the
observed predictor, denoted by W. We use the average of the
two systolic blood pressure readings measured in the third ex-
amination period as a replicate measurement of X so that we
can estimate the measurement error variance σ2

U , as in Car-
roll et al. (2006, Section 5.4.2.1). Because σ2

U is estimated, we
stack an additional estimating equation associated with σ2

U

on top of the estimating equations in (6)–(9); in addition, σU

in equation (5) is replaced with its estimate σ̂U . To relate Y to
X , we posit the probit model, Pr(Y = 1 |X) = Φ(β0 + β1X).
For the assumed latent model for X, we choose a normal dis-
tribution and a two-component mixture normal distribution,
assumptions under which we compute the statistics t∗1(1) and
t∗2. For illustration, we set ng = 5, for g = 1, 2, . . . , 323. For the
remeasurement method, we take B = 50 and λ = 1.

Values of t∗1(1) and t∗2 for the Framingham data are listed in
Table 4. Using these values, one cannot find sufficient evidence
of misspecification when the assumed latent-variable model is
mixture normal. Under the normal model assumption, the
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Table 4
Framingham data. Values of t∗1(1) and t∗2 computed under the
normal and mixture normal assumption. IND, RP, and HP
represent individual response, random-pooling response, and
homogeneous-pooling response, respectively. The numbers in
parentheses in the rows for t∗2 are the p-values associated

with t∗2.

β̂
(n )
0 β̂

(n )
1

Normal IND RP HP IND RP HP

t∗1(1) −2.87 −1.88 −1.67 2.92 1.93 1.51
t∗2 0.21 (0.93) — — — — —

β̂
(m )
0 β̂

(m )
1Mixture

normal IND RP HP IND RP HP

t∗1(1) 0.46 0.80 −1.44 −0.45 −0.79 1.31
t∗2 1.51 (0.16) — — — — —

statistic t∗1(1) based on individual response and t∗2 suggest dif-
ferent conclusions, but this is not necessarily contradictory
for the reasons noted in Section 5.2. At the current contami-
nation level of the raw data (λ = 0), θ̂R and θ̂I are affected
similarly by measurement error under the normal assump-
tion. More importantly, our methods reveal a novel finding for
these data; namely, if one prefers a simpler assumed latent-
variable model, such as the normal, the pseudo-MLE based on
homogeneous-pooling responses is less sensitive to measure-
ment error when compared to the MLE based on individual
responses.

7. Discussion
When compared to individual binary response, we have shown
that likelihood-based inference in structural measurement er-
ror models for pooled binary response can be more robust to
covariate measurement error when the latent-variable model
is misspecified. Moreover, pooling can improve efficiency in es-
timation. Pooled binary responses do arise naturally in group
testing (Gastwirth and Johnson, 1994; Vansteelandt et al.,
2000), and our findings suggest that latent-model misspeci-
fication may be less of a concern in this setting, so long as
pools are composed homogeneously. However, as we have il-
lustrated herein, our use of pooling is not restricted to group
testing. Furthermore, including multiple covariates would not
pose methodological challenges beyond those seen here. If, in
addition to the mismeasured X, the analyst also uses V, mea-
sured without error, then the issue of model misspecification is
only relevant to the model of X given V, and all of our tech-
niques apply with f

(a )
X (x; τ ) being replaced by an assumed

conditional model. If the primary regression model depends
on a multivariate error-prone covariate X, homogeneous pools
can be formed by sorting the observed W data by the least
noisiest covariate first. The rationale for this is to achieve
the largest possible between-pool variance of X, noting that
sorting the observed covariate associated with a heavily error-

prone predictor may not change the between-pool variance of
this predictor significantly.

We have also proposed a new test statistic t∗2 for diagnos-
ing model misspecification. The rationale for using t∗1(λ) and
t∗2 as indicators of model misspecification are different, yet,
they are united by a common, almost-counterintuitive theme.
The construction of both statistics involves some form of in-
formation reduction, that is, one either adds more noise to
the observed W to compute t∗1(λ), or one conceals the indi-
vidual responses to compute t∗2. In the context of structural
measurement error models for binary response, the fact that
one can learn more from the data by reducing information is
intriguing. In fact, we feel that this general idea could prove
to be useful when examining model selection in a broader
context.

It is important to remember that robustness does not guar-
antee consistency, yet, robustness is still a desirable property
for an estimator to possess when measurement error exists.
We do not suggest that estimates from pooled analyses should
blindly replace those from the individual data. In fact, be-
cause the pseudo-MLE is biased, we recommend using the
MLE based on the original individual responses when there is
insufficient evidence of latent-variable model misspecification.
However, if there is a genuine uncertainty about the form of
the true latent-variable model and one desires an estimator
that is less sensitive to measurement error, the pseudo-MLE
based on homogeneous pooling is preferred.

8. Supplementary Materials
The Web Appendices referenced in Sections 3.1, 3.2, and 5.1
are available under the Paper Information link at the Biomet-
rics website http://www.biometrics.tibs.org.
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