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Abstract
An inference procedure is proposed to provide consistent estimators of parame-
ters in a modal regression model with a covariate prone to measurement error.
A score-based diagnostic tool exploiting parametric bootstrap is developed to
assess adequacy of parametric assumptions imposed on the regression model.
The proposed estimationmethod anddiagnostic tool are applied to synthetic data
generated from simulation experiments and data from real-world applications
to demonstrate their implementation and performance. These empirical exam-
ples illustrate the importance of adequately accounting for measurement error
in the error-prone covariate when inferring the association between a response
and covariates based on a modal regression model that is especially suitable for
skewed and heavy-tailed response data.
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1 INTRODUCTION

The mean, median, and mode are three widely used measures of central tendency of data. The mode can be a more infor-
mative and sensible central tendency measure than the other two for data arising from distributions that are heavy-tailed
and skewed. This very virtue of mode and the ubiquity of heavy-tailed and skewed data in biology, sociology, economics,
and many other fields of study have recently revived data scientists’ interest in regression methodology focusing on the
conditional mode of a response (Chacón, 2020).
While there exists an extensive literature on regressionmodels that relate themean or themedian of a response variable

𝑌 to covariates 𝑿, there are much less work on regression models tailored for the conditional mode of 𝑌 given 𝑿 (Lee,
1989, 1993; Sager & Thisted, 1982). Among the limited existing modal regression methods, the majority of them are in the
semi-/nonparametric framework (Chen et al., 2016; Kemp et al., 2020; Ota et al., 2019; Ullah et al., 2022; Wang et al., 2019;
Xiang & Yao, 2022; Yao & Li, 2013; Zhang et al., 2021), which typically suffer from low statistical efficiency when compared
with their parametric counterparts. One reality that discourages use of parametric models for inferring the mode is that
very fewnamed distributions that allow asymmetry can be conveniently formulated as distribution families indexed by the
mode along with other parameters. Among the few groups of authors who considered parametric modal regression mod-
els, Aristodemou (2014, Chapter 3) assumed a gamma distribution for a nonnegative response with a covariate-dependent
mode; Bourguignon et al. (2020) followed a similar model construction while also allowing a covariate-dependent preci-
sion parameter for the gamma distribution. Focusing on bounded response data, Zhou and Huang (2020) proposed two
modal regression models, one based on a beta distribution and the other based on a generalized biparabolic distribution
for the response given covariates. In all three aforementioned works, frequentist likelihood-based methods are developed
to infer model parameters. Most recently, Zhou and Huang (2022) unified the mean regression and modal regression in a
Bayesian framework by reparameterizing a four-parameter beta distribution with an unknown support so that the mean

Biometrical Journal. 2024;66:2200348. © 2024 Wiley-VCH GmbH. 1 of 18www.biometrical-journal.com
https://doi.org/10.1002/bimj.202200348

https://orcid.org/0000-0003-3265-6330
mailto:qingyang@email.sc.edu
http://www.biometrical-journal.com
https://doi.org/10.1002/bimj.202200348
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbimj.202200348&domain=pdf&date_stamp=2024-01-19


2 of 18 LIU and HUANG

or the mode of 𝑌 depends on 𝑿. Earlier works on Bayesian modal regression, including parametric and nonparametric
methods, can also be found in Aristodemou (2014, Chapter 2).
All the above works on modal regression assume that covariates are measured precisely. Data analysts in many dis-

ciplines are well aware that, among all variables of interest, some of them often cannot be measured precisely due to
inaccuratemeasuring devices or human error in data collection. Some variables are in principle inaccessible and only some
surrogates of them can be measured. For example, one’s long-term blood pressure is an important biomarker associated
with one’s heart health, yet it cannot be directlymeasured. Instead,measurable surrogates of it are blood pressure readings
collected during a doctor’s visit, which can be viewed as error-contaminated versions of one’s long-term blood pressure.
It has also been well understood that ignoring covariates measurement error in mean regression or quantile regression
usually lead to misleading inference results. There exists a large collection of works on mean regression methodology
accounting for measurement error (Buonaccorsi, 2010; Carroll et al., 2006; Fuller, 2009; Yi, 2017), and also some works in
quantile regression to address this complication (He & Liang, 2000; Wang et al., 2012; Wei & Carroll, 2009). Modal regres-
sion methodology that address this issue only emerged recently, including those developed by Zhou and Huang (2016), Li
and Huang (2019), and Shi et al. (2021), all of which opted for a nonparametric model for the error term in the primary
regression model. There is a lack of methodology to account for error-prone covariates in parametric modal regression,
and our study presented in this article fills the void.
In preparation for proposing a method to account for measurement error in covariates that is applicable to any para-

metric modal regression models, we first formulate the measurement error model and discuss complications unique to
modal regression models in Section 2. For concreteness, we then focus on the beta modal regression model for a response
supported on [0, 1] with an error-prone covariate, and propose consistent estimation methods to infer model parameters
that account for measurement error in Section 3. A model diagnostic method is developed to detect model misspecifica-
tions when adopting the beta modal regression model in a given application in Section 4. Simulation studies are reported
in Section 5 to demonstrate the performance of the estimation and diagnostics methods. We apply the proposed modal
regression method accounting for covariate measurement error to data sets arising from two real-life studies in Section 6,
where we also discuss revisions of the method to adapt to more general settings. Section 7 gives concluding remarks and
future research directions.

2 DATA ANDMODEL

2.1 Observed data

Suppose that, given 𝑝 covariates in 𝑿 = (𝑋1, … , 𝑋𝑝)
T, 𝑌 follows a unimodal distribution specified by the probability den-

sity function (pdf), 𝑓𝑌|𝑿(𝑦|𝒙). Denote by 𝜃(𝒙) the mode of 𝑌 given 𝑿 = 𝒙. In modal regression without measurement
error, one infers 𝜃(𝒙) based on a random sample of size 𝑛 from the joint distribution of (𝑌, 𝑿), {(𝑌𝑗, 𝑿𝑗)}

𝑛
𝑗=1

, where
𝑿𝑗 = (𝑋1,𝑗, … , 𝑋𝑝,𝑗)

T. Now suppose that a covariate in 𝑿, say, 𝑋1, is prone to measurement error, and a surrogate 𝑊 is
observed instead of𝑋1, with 𝑛𝑗 replicate measures of𝑋1,𝑗 in𝑊𝑗 = {𝑊𝑗,𝑘}

𝑛𝑗
𝑘=1

, for 𝑗 = 1,… , 𝑛. In this study, we assume that
𝑊𝑗,𝑘 relates to 𝑋1,𝑗 via an additive measurement error model,

𝑊𝑗,𝑘 = 𝑋1,𝑗 + 𝑈𝑗,𝑘, for 𝑗 = 1,… , 𝑛 and 𝑘 = 1,… , 𝑛𝑗 , (1)

where {𝑈𝑗,𝑘, 𝑘 = 1,… , 𝑛𝑗}
𝑛
𝑗=1

are independent and identically distributed (i.i.d.) mean-zeromeasurement error, which are
independent of {(𝑌𝑗, 𝑿𝑗)}

𝑛
𝑗=1

to guarantee nondifferential measurement error as considered in the classical measurement
error models (Carroll et al., 2006, Section 2.5).
In a naive univariate modal regression analysis using the surrogate data, one treats𝑊 as if it were 𝑋 = 𝑋1, and equiv-

alently, views the conditional pdf of 𝑌 given 𝑊 = 𝑤, 𝑓𝑌|𝑊(𝑦|𝑤), the same as 𝑓𝑌|𝑋(𝑦|𝑤). As a result, naive modal
regression analysis essentially infers the mode of 𝑓𝑌|𝑊(𝑦|𝑤) instead of 𝜃(⋅). In the context of univariate mean regres-
sion models not limited to linear regression, the attenuation effect of measurement error on covariate effect estimation
is often noted in the literature (Buonaccorsi, 2010; Carroll et al., 2006), which causes the estimated covariate effect of a
truly influential covariate to be pulled toward zero. Naive modal regression can suffer the same attenuation effect. For
instance, if the mean and the mode of 𝑓𝑌|𝑋(𝑦|𝑥) differ by a quantity that does not depend on covariates, such as for a
Gumbel distribution that depends on a covariate 𝑋 only via the mode but not via the scale parameter, then the impact of
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measurement error on naive inference for the conditional mean mostly carries over to naive inference for 𝜃(𝑥). In other
model settings where the conditional mean andmode of𝑌 differ by a quantity that does depend on the error-prone covari-
ate, the effect of measurement error on naivemodal regression demands investigation on a case-by-case basis. Even before
conducting such investigation, a more fundamental question needs to be addressed, that is, whether or not naive modal
regression is meaningful, because unimodality of 𝑓𝑌|𝑋(𝑦|𝑥) does not guarantee unimodality of 𝑓𝑌|𝑊(𝑦|𝑤). Indeed,
there is an extra layer of complication in modal regression with an error-prone covariate that does not exist in mean
regression since, if the mean of 𝑌 given 𝑋, 𝜇(𝑋), is well defined, then the mean of 𝑌 given 𝑊 is 𝐸{𝜇(𝑋)|𝑊}, which is
also well defined in most settings of practical interest. Because of this additional complication, correcting naive inference
to account for measurement error in modal regression is more challenging than the counterpart task in mean regres-
sion. For example, a strategy that can be easy to implement in mean regression is to correct the bias in a naive estimator
of a parameter to produce an improved estimator accounting for measurement error (Carroll et al., 2006, Section 3.4).
This idea of debiasing naive estimation may not be a sensible approach now with the existence of a naive mode function
in question.

2.2 Regression model

We propose to account for measurement error when inferring parameters in a modal regression model by exploiting the
idea of corrected scores. In particular, we focus on modeling a bounded response 𝑌, which is commonly encountered
in practice, such as test scores, disease prevalence, and the fraction of household income spent on food. Any bounded
response with a known support can be scaled to be supported on the unit interval [0, 1]. Beta distribution is a parametric
family that encompasses various shapes of distributions supported on [0, 1], and thus, serves as a relatively flexible basis
for building a regression model for such responses. For a random variable 𝑉 that follows a beta distribution with shape
parameters 𝛼1, 𝛼2 > 0, that is, 𝑉 ∼ beta(𝛼1, 𝛼2), its density function is,

𝑓(𝑣; 𝛼1, 𝛼2) =
Γ(𝛼1 + 𝛼2)

Γ(𝛼1)Γ(𝛼2)
𝑣𝛼1−1(1 − 𝑣)𝛼2−1, for 0 < 𝑣 < 1,

where Γ(⋅) is the Gamma function. When 𝛼1, 𝛼2 > 1, this distribution has a unique mode given by 𝜃 = (𝛼1 − 1)∕(𝛼1 +

𝛼2 − 2). To prepare for modal regression, we reparameterize the beta distribution by setting 𝛼1 = 1 + 𝑚𝜃 and 𝛼2 = 1 +

𝑚(1 − 𝜃), where 𝑚 > 0 plays the role of a precision parameter, with a larger value of 𝑚 leading to a smaller variance of
the distribution (Zhou & Huang, 2020). A similar parameterization of the beta distribution was used in Chen (1999) to
formulate the beta kernel in kernel density estimators, and also in Bagnato and Punzo (2013) to construct beta mixture
distributions. In both earlier works, the beta family is indexed by 𝜃 and a dispersion parameter equal to the reciprocal
of 𝑚. The parameterization of beta distributions used in our study is also in line with the one in Kruschke (2015, see
Equation (6.6)), except for that a concentration parameter equal to our𝑚 plus 2 is used in place of our precision parameter
there. Despite these small differences, all aforementioned parameterizations highlight themode as the location parameter,
with the original shape parameters 𝛼1 and 𝛼2 specified by the mode and a precision/concentration/dispersion parameter
that is of secondary interest in drawing inference. By construction, as long as the mode 𝜃 ∈ (0, 1) exists, which we assume
throughout the study, we have 𝛼1, 𝛼2 > 1 following our parameterization.
With a beta distribution family indexed by (𝜃,𝑚) formulated, a beta modal regression model follows by introducing

covariates-dependent mode of 𝑌, 𝜃(𝐗) = 𝑔(𝜷
T
�̃�), where �̃� = (1, 𝑿T)T, 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑝)

T with 𝛽0 being the intercept and
𝛽1, … , 𝛽𝑝 representing covariate effects associated with the 𝑝 covariates in 𝑿, and 𝑔(⋅) is a user-specified link function,
such as logit, probit, log-log, and complementary log-log. Now a modal regression model for 𝑌 is fully specified by the
following conditional distribution of 𝑌 given 𝑿,

𝑌|𝐗 ∼ beta(1 + 𝑚𝜃(𝐗), 1 + 𝑚{1 − 𝜃(𝐗)}). (2)

Combining (2) with (1) completes the specification of a modal regression model for a response 𝑌 supported on [0, 1]
and covariates 𝑿 = (𝑋1, … , 𝑋𝑝)

T, with 𝑋1 subject to additive nondifferential measurement error. The focal point of infer-
ence lies in parameters involved in the primary regression model in (2), 𝛀 = (𝜷

T
,𝑚)T. Parameters appearing in (1) are of

secondary interest but required to specify the measurement error distribution.
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3 PARAMETER ESTIMATION

3.1 Maximum likelihood estimation

In the absence ofmeasurement error, onemay carry outmaximum likelihood estimation of𝛀 straightforwardly by solving
the normal score equations for𝛀. More specifically, the log-likelihood of error-free data, = {(𝑌𝑗, 𝑿𝑗)}

𝑛
𝑗=1

, is

𝓁(𝛀;) =

𝑛∑
𝑗=1

𝓁(𝛀;𝑌𝑗, 𝑿𝑗)

= 𝑛 log Γ(2 + 𝑚) −

𝑛∑
𝑗=1

log
(
Γ(1 + 𝑚𝜃

(
𝐗𝑗

)
)Γ(1 + 𝑚

{
1 − 𝜃

(
𝐗𝑗

)}
)
)

+𝑚

𝑛∑
𝑗=1

[
𝜃
(
𝐗𝑗

)
log𝑌𝑗 +

{
1 − 𝜃

(
𝐗𝑗

)}
log
(
1 − 𝑌𝑗

)]
.

(3)

Differentiating (3)with respect to𝛀 leads to the score equations,
∑𝑛

𝑗=1
𝚿0(𝛀;𝑌𝑗, 𝑿𝑗) = 0,where the score vector evaluated

at the 𝑗th data point,𝚿0(𝛀;𝑌𝑗, 𝑿𝑗), consists of the following scores, for 𝑗 = 1,… , 𝑛,

𝜕𝓁(𝛀;𝑌𝑗, 𝑿𝑗)

𝜕𝜷
=

{
−𝑚𝜓(1 + 𝑚𝜃(𝐗𝑗)) + 𝑚𝜓(1 + 𝑚{1 − 𝜃(𝐗𝑗)}) + 𝑚 log

(
𝑌𝑗

1 − 𝑌𝑗

)}
× 𝑔′(𝜷

T
�̃�𝑗)�̃�𝑗, (4)

𝜕𝓁(𝛀;𝑌𝑗, 𝑿𝑗)

𝜕𝑚
= 𝜓(2 + 𝑚) − 𝜃(𝐗𝑗)𝜓(1 + 𝑚𝜃(𝐗𝑗)) − {1 − 𝜃(𝐗𝑗)}𝜓(1 + 𝑚{1 − 𝜃(𝐗𝑗)})

+ 𝜃(𝐗𝑗) log𝑌𝑗 + {1 − 𝜃(𝐗𝑗)} log(1 − 𝑌𝑗), (5)

where 𝜓(𝑡) = (𝑑∕𝑑𝑡) log Γ(𝑡) is the digamma function and 𝑔′(𝑡) = (𝑑∕𝑑𝑡)𝑔(𝑡).

3.2 Monte-Carlo corrected scores

In the presence of measurement error, a naive estimator of 𝛀 solves the naive score equations resulting from replacing
𝑋1,𝑗 with 𝑊𝑗 = 𝑛−1

𝑗

∑𝑛𝑗
𝑘=1

𝑊𝑗,𝑘 in (4) and (5), for 𝑗 = 1,… , 𝑛. As pointed out earlier and also evidenced in simulation
study to be presented later, this naive treatment typically results in misleading inference for 𝛀. We propose to follow the
idea of the corrected score method (Nakamura, 1990) and revise the naive scores to obtain estimating equations that ade-
quately account for measurement error. The thrust of the corrected score method is to use the observed error-prone data,


∗ = {(𝑌𝑗,𝑊𝑗, 𝑿−1,𝑗)}
𝑛
𝑗=1

with𝑊𝑗 = {𝑊𝑗,𝑘}
𝑛𝑗
𝑘=1

and𝑿−1,𝑗 = (𝑋2,𝑗, … , 𝑋𝑝,𝑗)
T, to construct unbiased estimators of the above

normal scores. In this vein of thinking, one treats {𝑋1,𝑗}
𝑛
𝑗=1

as unknown parameters instead of realizations of a random
variable, and thus, one takes on the functional point of view as opposed to the structural viewpoint of measurement error
models where a distribution for 𝑋1 is assumed (Carroll et al., 2006, Section 2.1).
We begin with applying the Monte-Carlo-amenable method proposed by Stefanski et al. (2005), a method originat-

ing from the idea described in Stefanski (1989). More specifically, we construct a score,𝚿(𝛀;𝑌𝑗,𝑊𝑗, 𝑿−1,𝑗), that satisfies
𝐸{𝚿(𝛀;𝑌𝑗,𝑊𝑗, 𝑿−1,𝑗)|𝑌𝑗, 𝑿𝑗} = 𝚿0(𝛀;𝑌𝑗, 𝑿𝑗), for 𝑗 = 1,… , 𝑛. This particular method is especially suitable for settings
with a univariate error-prone covariate subject to normal measurement error𝑈. We will address violation of the normal-
ity assumption on 𝑈 in Section 3, and describe revisions of the method to adapt to settings with multiple error-prone
covariates in Section 6. As shown in Stefanski et al. (2005, Theorem 1), the minimum variance unbiased estimator of
𝚿0(𝛀;𝑌𝑗, 𝑿𝑗) is given by
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𝚿(𝛀;𝑌𝑗,𝑊𝑗, 𝑿−1,𝑗) = 𝐸

⎧⎪⎨⎪⎩𝚿0

⎛⎜⎜⎜⎝𝛀;𝑌𝑗,𝑊𝑗 + 𝑖

√√√√ (𝑛𝑗 − 1)𝑆2
𝑗

𝑛𝑗
𝑇, 𝑿−1,𝑗

⎞⎟⎟⎟⎠
||||||||𝑌𝑗,𝑊𝑗, 𝑆

2
𝑗
, 𝑿−1,𝑗

⎫⎪⎬⎪⎭, (6)

where 𝑖 is the imaginary unit, 𝑆2
𝑗
is the sample variance of𝑊𝑗 = {𝑊𝑗,𝑘}

𝑛𝑗
𝑘=1

, and𝑇 = 𝑍1∕(
∑𝑛𝑗−1

𝑘=1
𝑍2
𝑘
)1∕2 is independent of all

observed data, in which 𝑍1, … , 𝑍𝑛𝑗−1 are independent standard normal random variables. The estimator of𝚿0(𝛀;𝑌𝑗, 𝑿𝑗)

in (6) originates from a jackknife exact-extrapolant estimator constructed for the purpose of estimating a function of the
mean of a normal distribution based on a random sample from the distribution. In the context of (6), this random sample is
𝑊𝑗 from𝑁(𝑋1,𝑗, 𝜎

2
𝑢), where 𝜎2𝑢 is the measurement error variance, that is, assuming𝑈 ∼ 𝑁(0, 𝜎2𝑢) in (1), and the function

of the normal mean 𝑋1,𝑗 is 𝚿0(𝛀;𝑌𝑗, 𝑋1,𝑗, 𝑿−1,𝑗). The expectation in (6) cannot be derived in closed form. But since the
only quantity viewed as randomwhen deriving this conditional expectation is 𝑇 that is independent of observed data, one
can estimate this expectation unbiasedly via an empirical mean based on simulated random samples of 𝑇. Moreover, as
shown in Stefanski et al. (2005), even though (6) is complex-valued by construction, the expectation of its imaginary part
is zero as long as 𝚿0(𝛀;𝑌𝑗, 𝑋1,𝑗, 𝑿−1,𝑗) is infinitely differentiable with respect to 𝑋1,𝑗 , which is guaranteed in our case
by choosing a link function 𝑔(𝑡) that is infinitely differentiable. Hence, using the real part of the empirical version of (6)
suffices for constructing an unbiased estimator of 𝚿0(𝛀;𝑌𝑗, 𝑿𝑗). This leads to the following corrected score based on a
simulated random sample of 𝑇 of size 𝐵, 𝑇𝑗 = {𝑇𝑗,𝑏}

𝐵
𝑏=1

, for 𝑗 = 1,… , 𝑛,

𝚿(𝛀;𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗) =
1

𝐵

𝐵∑
𝑏=1

Re

⎧⎪⎨⎪⎩𝚿0

⎛⎜⎜⎜⎝𝛀;𝑌𝑗,𝑊𝑗 + 𝑖

√√√√ (𝑛𝑗 − 1)𝑆2
𝑗

𝑛𝑗
𝑇𝑗,𝑏, 𝑿−1,𝑗

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭, (7)

where Re(𝑡) denotes the real part of a complex-valued 𝑡.
One now can solve the following system of 𝑝 + 2 equations based on the corrected score in (7),

𝑛∑
𝑗=1

𝚿(𝛀;𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗) = 0, (8)

for 𝛀 to obtain a consistent estimator �̂�, where 𝑇1, … , 𝑇𝑛 are independent. Solving (8) for 𝛀 is equivalent to solving an
optimization problem, that is,

�̂� = argmin
𝛀∈ℝ𝑝+1×ℝ+

{
𝑛∑

𝑗=1

𝚿(𝛀;𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗)

}T{ 𝑛∑
𝑗=1

𝚿(𝛀;𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗)

}
. (9)

The equivalence between (9) and the solution to (8) is obvious when there exists a unique solution to (8). An added benefit
of dealing with an optimization problem is more appreciated in the presence of model misspecification that can poten-
tially lead to nonexistence of a solution to (8), yet (9) may still be well defined with meaningful statistical interpretations
according to White (1982).

3.3 Monte-Carlo corrected log-likelihood

To this end, estimating 𝛀 appears to be a straightforward optimization problem. But the numerical procedure to obtain
(9) requires evaluating 𝑝 + 2 scores at each iteration, which can be cumbersome and very demanding on the computer
memory and central processing unit, especially due to the Monte Carlo nature of the score in (7) that involves computing
a vector-valued score 𝐵 times. Viewing the quadratic form in (9) as an objective function that accounts for measurement
error, we propose to use a different objective function that also takes measurement error into account and is computation-
ally less cumbersome to optimize. This new objective function is obtained by correcting the naive log-likelihood function
𝓁(𝛀;𝑌𝑗,𝑊𝑗, 𝑿−1,𝑗) that is the summand of (3) with 𝑋1,𝑗 evaluated at 𝑊𝑗 , for 𝑗 = 1,… , 𝑛. Similar to the construction of
the corrected score in (7) based on the naive score, the new objective function based on the naive log-likelihood evaluated
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6 of 18 LIU and HUANG

at the 𝑗th observed data point is

�̃�(𝛀; 𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗) =
1

𝐵

𝐵∑
𝑏=1

Re

⎧⎪⎨⎪⎩𝓁
⎛⎜⎜⎜⎝𝛀;𝑌𝑗,𝑊𝑗 + 𝑖

√√√√ (𝑛𝑗 − 1)𝑆2
𝑗

𝑛𝑗
𝑇𝑗,𝑏, 𝑿−1,𝑗

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭, (10)

which satisfies 𝐸{�̃�(𝛀; 𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗)|𝑌𝑗, 𝑿𝑗} = 𝓁(𝛀;𝑌𝑗, 𝑿𝑗), for 𝑗 = 1,… , 𝑛. We then define an estimator of𝛀 as

�̂� = argmax
𝛀∈ℝ𝑝+1×ℝ+

𝑛∑
𝑗=1

�̃�(𝛀; 𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗), (11)

which only requires repeated evaluation of a scalar function in (10) at each iteration of an optimization algorithm. In
simulation studies (not presented in this article) where we estimate𝛀 using these two routes of optimization according to
(9) and (11), we obtain very similar estimates of𝛀, with the former routemore computationally demanding than the latter.
The numerical similarity of (9) and (11) may be expected given the connection between the naive score and the naive log-
likelihood, in addition to the equivalence between the solution to the normal score equation and themaximum likelihood
estimator in the absence of measurement error. We refer to the estimator defined in (11) the Monte Carlo corrected log-
likelihood (MCCL) estimator.
Whether one follows the idea of correcting the naive scores or the route of correcting the naive log-likelihood to account

formeasurement error, our proposed estimationmethod falls in the general framework of𝑀-estimation (Boos& Stefanski,
2013, Chapter 7). As an𝑀-estimator, the MCCL estimator �̂� is a consistent estimator of 𝛀 that is asymptotically normal
under regularity conditions stated in, for example, Theorem 7.2 in Boos and Stefanski (2013). Moreover, motivated by its
asymptotic variance of the sandwich form (Boos & Stefanski, 2013, Section 7.2.1), the variance of �̂� can be estimated by

𝑽(∗; �̂�) =
{
𝑨(∗; �̂�)

}−1
𝑩(∗; �̂�)

[{
𝑨(∗; �̂�)

}−1]T
, (12)

where

𝑨(∗; �̂�) =
1

𝑛

𝑛∑
𝑗=1

𝜕

𝜕𝛀T
𝚿(𝛀;𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗)

||||||𝛀=�̂�

,

𝑩(∗; �̂�) =
1

𝑛

𝑛∑
𝑗=1

𝚿(�̂�; 𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗)
{
𝚿(�̂�; 𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗)

}T
.

4 MODEL DIAGNOSTICS

Even though we avoid specifying the true covariate distribution by adopting the functional viewpoint of measurement
errormodels, the primary regressionmodel in (2) is fully parametric. This raises the concern ofmodelmisspecification and
calls for model diagnostics tools. Model diagnostics based on error-prone data is more challenging than settings without
measurement error. In particular, conventional residual-based diagnostics methods that require evaluating an estimated
regression function, whether it is the conditional mean 𝜇(𝑿) in mean regression or the conditional mode 𝜃(𝑿) in modal
regression, are no longer applicable now that a true covariate is unobserved. Another contribution of our study is an
effective score-based diagnostic tool that circumvents this obstacle a traditional residual-based diagnostic method faces
in the presence of measurement error.
For the beta modal regression model without error in covariates, Zhou and Huang (2020) propose a score-based test

statistic defined below for the purpose of model diagnostics,

𝑄(�̂�0;) =
𝑛 − 2

2(𝑛 − 1)
𝐒
T

�̂�−1𝐒, (13)
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LIU and HUANG 7 of 18

where �̂�0 is the maximum likelihood estimator of 𝛀, 𝐒 = 𝑛−1
∑𝑛

𝑗=1
𝐒(�̂�0; 𝑌𝑗, 𝑿𝑗), and �̂� = {𝑛(𝑛 − 1)}−1∑𝑛

𝑗=1{𝐒(�̂�0; 𝑌𝑗, 𝑿𝑗) − 𝐒}{𝐒(�̂�0; 𝑌𝑗, 𝑿𝑗) − 𝐒}T, in which, for 𝑗 = 1,… , 𝑛,

𝐒(𝛀;𝑌𝑗, 𝑿𝑗) =

⎡⎢⎢⎢⎣
log𝑌𝑗 − 𝜓(1 + 𝑚𝜃(𝑿𝑗)) + 𝜓(2 + 𝑚)

𝑌𝑗 log𝑌𝑗 −
{1 + 𝑚𝜃(𝑿𝑗)}{𝜓(2 + 𝑚𝜃(𝑿𝑗)) − 𝜓(3 + 𝑚)}

2 + 𝑚

⎤⎥⎥⎥⎦ (14)

is the score vector constructed by matching log𝑉 and 𝑉 log𝑉 with their respective expectations for 𝑉 ∼ beta(𝛼1, 𝛼2), and
thus, 𝐸{𝑺(𝛀;𝑌𝑗, 𝑿𝑗)} = 0 in the absence of model misspecification. By construction, a larger value of the nonnegative
𝑄(�̂�0;) provides stronger evidence indicating model misspecification. A parametric bootstrap procedure is developed
in Zhou and Huang (2020) to estimate the null distribution of 𝑄(�̂�0;), from which one onbtains an estimated 𝑝-value
for the test.
Returning to our beta modal regression model with error-in-covariate, we apply the idea of corrected score here to

construct a counterpart of (14) to obtain a score accounting for measurement error whose mean is zero in the absence of
model misspecification. This yields the corrected score evaluated at the 𝑗th observed data point for model diagnostics, for
𝑗 = 1,… , 𝑛,

�̃�(𝛀; 𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗) =
1

𝐵

𝐵∑
𝑏=1

Re

⎧⎪⎨⎪⎩𝑺
⎛⎜⎜⎜⎝𝛀;𝑌𝑗,𝑊𝑗 + 𝑖

√√√√ (𝑛𝑗 − 1)𝑆2
𝑗

𝑛𝑗
𝑇𝑗,𝑏, 𝑿−1,𝑗

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭. (15)

The test statistic of the quadratic form denoted by �̃�(�̂�;∗) that is parallel to (13) follows by using the MCCL estimator �̂�
instead of �̂�0, replacing 𝑺 appearing in (13) with 𝑛−1

∑𝑛

𝑗=1
�̃�(𝛀; 𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗), and revising �̂� accordingly. But the next

hurdle emerges, that is the design of a parametric bootstrap procedure for estimating the null distribution of �̃�(�̂�;∗).
Traditional parametric bootstrap in the regression setting, such as the procedure in Zhou and Huang (2020), involves
generating response data from the primary regression model that again requires evaluating an estimated regression func-
tion at the true covariates that are partly unobserved in the current context. We overcome this hurdle by “estimating”
unobserved true covariate data, as implemented in the method of regression calibration (Chapter 4, Carroll et al., 2006)
that takes on the structural viewpoint of measurement error models. Under the classical measurement error in (1), the
best linear predictor of𝑋1,𝑗 is𝐸(𝑋1,𝑗|𝑊𝑗) = 𝜇1 + 𝜆𝑗(𝑊𝑗 − 𝜇1), where𝜇1 = 𝐸(𝑋1) and 𝜆𝑗 = 𝑛𝑗𝜎

2
1∕𝜎

2
𝑊

is the reliability ratio
associatedwith𝑊𝑗 (Carroll et al., 2006, Section 3.2.1), inwhich 𝜎21 and 𝜎

2
𝑊

denote the variance of𝑋1 and that of𝑊, respec-
tively. Replacing each unknown quantity in 𝐸(𝑋1,𝑗|𝑊𝑗) with its method-of-moments estimator yields an “estimator” or
prediction of 𝑋1,𝑗 given by

�̂�∗
1,𝑗

= 𝑊 + �̂�(𝑊𝑗 −𝑊), for 𝑗 = 1,… , 𝑛, (16)

where𝑊 = 𝑛−1
∑𝑛

𝑗=1
𝑊𝑗 and �̂� = �̂�21∕�̂�

2
𝑊
, in which �̂�2

𝑊
is the sample variance of (𝑊1,… ,𝑊𝑛), �̂�21 = (�̂�2

𝑊
− �̂�2𝑢)+, and

�̂�2𝑢 = 𝑛−1
∑𝑛

𝑗=1 𝑆
2
𝑗
∕𝑛𝑗 , recalling that, for 𝑗 = 1,… , 𝑛, 𝑆2

𝑗
is the sample variance of (𝑊𝑗,1, … ,𝑊𝑗,𝑛𝑗 ) computed earlier to

evaluate the corrected score and the corrected log-likelihood. The idea of regression calibration is to regress 𝑌 on the
estimated covariate �̂�∗

1 defined by (16) and 𝑿−1 = (𝑋2, … , 𝑋𝑝)
T instead of regressing on (𝑊,𝑿T

−1)
T. Even though this idea

often yields estimators of parameters in the primary regression model improved over naive estimators, Buonaccorsi et al.
(2018) noted that (16) tends to underestimate the variability of the true covariate and thus can be problematic if used in a
bootstrap procedure as we intend to. They then proposed to use

�̂�1,𝑗 = 𝑊 + �̂�1∕2(𝑊𝑗 −𝑊), for 𝑗 = 1,… , 𝑛, (17)

as estimated covariate data instead so that these estimated covariate values have the mean and variance coinciding with
method-of-moments estimates for the mean and variance of 𝑋1.
With this last hurdle resolved, we are in the position to present the detailed algorithm of the parametric bootstrap for

estimating the 𝑝-value associated with �̃�(�̂�;∗) based on𝑀 bootstrap samples next.
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8 of 18 LIU and HUANG

Step 1: Fit the beta modal regression model with classical measurement error to 
∗ by applying the MCCL method in

Section 3.3. This gives the MCCL estimate �̂� = (�̂�
T

, �̂�)T.
Step 2: Compute the test statistic �̃�(�̂�;∗).

For 𝑑 = 1,… ,𝑀, repeat Steps 3–5,
Step 3: For 𝑗 = 1,… , 𝑛, generate 𝑌

(𝑑)
𝑗

from beta(1 + �̂��̂�(�̂�1,𝑗, 𝑿−1,𝑗), 1 + �̂�{1 − �̂�(�̂�1,𝑗, 𝑿−1,𝑗)}), and generate 𝑊
(𝑑)
𝑗,𝑘

=

�̂�1,𝑗 + 𝑈
(𝑑)
𝑗,𝑘
, for 𝑘 = 1,… , 𝑛𝑗 , where �̂�1,𝑗 is given by (17), and {𝑈

(𝑑)
𝑗,𝑘

}
𝑛𝑗
𝑘=1

are i.i.d. from𝑁(0, 𝑆2
𝑗
). Let𝑊(𝑑)

𝑗
= {𝑊

(𝑑)
𝑗,𝑘

}
𝑛𝑗
𝑘=1

.

This yields the 𝑑th set of bootstrap data,(𝑑) = {(𝑌
(𝑑)
𝑗

, 𝑊
(𝑑)
𝑗

, 𝑿−1,𝑗)}
𝑛
𝑗=1

.
Step 4: Fit the beta modal regression model with classic measurement error to(𝑑), and obtain the MCCL estimate of𝛀,

denoted by �̂�(𝑑).
Step 5: Compute the test statistic, �̃�(�̂�(𝑑);(𝑑)).
Step 6: Estimate the 𝑝-value by𝑀−1∑𝑀

𝑑=1
𝐼{�̃�(�̂�(𝑑);(𝑑)) > �̃�(�̂�;∗)}.

In the absence of covariate measurement error where {𝑋1,𝑗, 𝑗 = 1, … , 𝑛} are observed, the above algorithm (with �̂�1,𝑗

replaced by𝑋1,𝑗 in Step 3) essentially follows the general guidelines of bootstrap hypothesis testing as discussed inHall and
Wilson (1991), Davison and Hinkley (1997), and Martin (2007). In particular, our targeted null hypothesis states that the
response given true covariates follows a beta modal regression model; Step 1 in our bootstrap algorithm aims to “recover”
themodel consistent with the null, and response data obtained in Step 3 are generated from the fitted nullmodel, and thus,
these response data reflect the null. This is precisely the first principle of model-based bootstrap for hypothesis testing:
to generate bootstrap data that reflect the null. The unique challenge of bootstrap hypothesis testing in the presence of
covariate measurement error is that true covariate values need to be estimated before generating response data. Unlike
response data generation, which should reflect the null (which does not specify a distribution for the true covariate data),
when “recovering” true covariate values, one aims to recover certain structures of the design matrix in the absence of
measurement error. We accomplish this goal by using {�̂�1,𝑗, 𝑗 = 1, … , 𝑛} in (17), which preserve certain structures of true
covariate values in the sense that the first two moments of these estimated covariate values coincide with the method-
of-moment estimates for the first two moments of {𝑋1,𝑗, 𝑗 = 1, … , 𝑛}. The so-constructed estimated true covariate values
are also used in Thomas et al. (2011) to recover true covariate data. Even though it is unclear if there exists a better way
to recover error-free covariates data for the purpose of bootstrap hypothesis testing, Buonaccorsi et al. (2016) showed that
this approach substantially outperforms two obvious alternative methods: one is to use𝑊𝑗 to estimate𝑋1,𝑗 , the other is to
use �̂�∗

1,𝑗
in (16). In our context, empirical evidence from the simulation study presented in the next section suggests that

the proposed bootstrap procedure can estimate the null distribution of �̃�(�̂�;∗) accurately enough to preserve the right
size of the test for model misspecification over a wide range of significance levels.

5 SIMULATION STUDY

We carry out simulation study to inspect finite sample performance of the proposed estimationmethod and the diagnostic
method. The source code to reproduce results in this section is publicly available on the journal’s web page.

5.1 Design of simulation experiments

We generate data from each of the following four data generation processes.

(M1) Generate response data according to (2), with 𝑚 = 3, 𝜃(𝐗) = 1∕{1 + exp(−𝛽0 − 𝛽1𝑋1 − 𝛽2𝑋2)}, 𝜷 = (𝛽0, 𝛽1, 𝛽2)
T =

(0.25, 0.25, 0.25)T, 𝑋2 ∼ Bernoulli(0.5), and 𝑋1|𝑋2 ∼ 𝑁(𝐼(𝑋2 = 1) − 𝐼(𝑋2 = 0), 1), where 𝐼(⋅) is the indicator func-
tion. Contaminate data of 𝑋1 according to (1) to generate 𝑊𝑗,𝑘, for 𝑗 = 1,… , 𝑛 and 𝑘 = 1, 2, 3, with 𝑈𝑗,𝑘 ∼

𝑁(0, 𝜎2𝑢).
(M2) Same as (M1) except for that 𝑚 = 40 and 𝜃(𝐗) = 1∕{1 + exp(−𝛽0 − 𝛽1𝑋1 − 𝛽2𝑋2 − 𝛽3𝑋

2
1)}, with 𝜷 =

(𝛽0, 𝛽1, 𝛽2, 𝛽3)
T = (1, 1, 1, 1)T.

(M3) Same as (M1) except for that 𝜃(𝐗) = Φ(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2) with 𝜷 = (𝛽0, 𝛽1, 𝛽2)
T = (1, 1, 1)T, where Φ(⋅) is the

cumulative distribution function of 𝑁(0, 1).
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LIU and HUANG 9 of 18

TABLE 1 Medians of MCCL estimates and medians of naive estimates across 1000 Monte Carlo replicates generated according to (M1).
The number in parentheses following each median is the interquartile range of the 1000 realizations of an estimator.

𝜷𝟎 𝜷𝟏 𝜷𝟐 𝐥𝐨𝐠𝒎

𝝈𝟐
𝒖 = 𝟎.𝟔

𝑛 = 100 MCCL𝐵=100 0.23 (0.34) 0.24 (0.22) 0.26 (0.59) 1.18 (0.30)
MCCL𝐵=200 0.23 (0.35) 0.24 (0.22) 0.26 (0.59) 1.18 (0.30)
Naive 0.19 (0.31) 0.20 (0.18) 0.35 (0.55) 1.16 (0.29)

𝑛 = 200 MCCL𝐵=100 0.24 (0.23) 0.25 (0.15) 0.26 (0.40) 1.14 (0.22)
MCCL𝐵=200 0.24 (0.23) 0.25 (0.15) 0.26 (0.40) 1.14 (0.22)
Naive 0.20 (0.22) 0.20 (0.13) 0.34 (0.37) 1.13 (0.21)

𝝈𝟐
𝒖 = 𝟏.𝟐

𝑛 = 100 MCCL𝐵=100 0.24 (0.34) 0.24 (0.24) 0.27 (0.65) 1.18 (0.30)
MCCL𝐵=200 0.24 (0.35) 0.24 (0.24) 0.26 (0.66) 1.18 (0.30)
Naive 0.17 (0.31) 0.17 (0.17) 0.41 (0.54) 1.16 (0.29)

𝑛 = 200 MCCL𝐵=100 0.25 (0.25) 0.25 (0.18) 0.25 (0.43) 1.14 (0.21)
MCCL𝐵=200 0.25 (0.25) 0.25 (0.18) 0.26 (0.43) 1.14 (0.21)
Naive 0.17 (0.21) 0.17 (0.12) 0.41 (0.36) 1.12 (0.21)

(M4) Generate response data {𝑌𝑗}
𝑛
𝑗=1

according to 𝑌𝑗 = (𝑌∗
𝑗
− 𝑌∗

(1)
)∕(𝑌∗

(𝑛)
− 𝑌∗

(1)
), for 𝑗 = 1,… , 𝑛, where 𝑌∗

(1)
and 𝑌∗

(𝑛)

are the minimum and maximum order statistics of data {𝑌∗
𝑗
}𝑛
𝑗=1

, respectively, 𝑌∗
𝑗
∣ 𝐗𝑗 ∼ Gumbel(𝜃(𝐗𝑗), 𝛾

−1{1 −

2𝜃(𝐗𝑗)}∕(2 + 𝑚)), in which 𝜃(𝐗𝑗) < 0.5 is the mode formulated as that in (M1) with 𝜷 = (𝛽0, 𝛽1, 𝛽2) = (1, 1, 1)T,
𝛾−1{1 − 2𝜃(𝐗𝑗)}∕(2 + 𝑚) is the scale of the Gumbel distribution, and 𝛾 stands for the Euler–Mascheroni constant.

Despite the data-generation process used to generate a particular data set, we always assume a beta modal regression
model with 𝜃(𝑿) specified as that in (M1) when carrying out modal regression analysis of𝑌 on𝑿 = (𝑋1, 𝑋2)

T. By so doing,
the design in (M1) allows us to monitor point estimation in the absence of model misspecification, and the latter three
designs can be used to study operating characteristics of the proposedmodel diagnosticmethod in the presence of different
sources of model misspecification. In particular, fitting the assumed model to data generated according to (M2) creates a
scenario where one misspecifies the linear predictor in the regression function. When data are generated from (M3), the
assumed model has a wrong link function. Finally, fitting the assumed model to data from (M4) gives rise to the most
severe model misspecification in the sense that the true distribution of 𝑌 given 𝑿 is outside of the beta family.

5.2 Performance of point estimation

Besides assessing the quality of the MCCL estimator of 𝛀 in comparison with the naive maximum likelihood estimator,
we aim at addressing the following three issues of point estimation in the simulation study: (i) the impact of having an
error-free covariate along with an error-prone covariate on covariate effects estimation; (ii) the quality of the variance
estimation based on (12); and (iii) the robustness of the MCCL estimator to the normality assumption on 𝑈. We bring
up the third issue because the corrected score method is developed under the assumption of normal measurement error.
Due to our focus on covariate effects estimation in the presence of an error-prone covariate in a modal regression model
for a bounded response, none of the existing modal regression methods accounting for measurement error referenced in
Section 1 serves as a sensible competingmethod in the current simulation study (e.g., there is no covariate effect parameters
𝜷 in a nonparametric modal regression model).
Based on data generated according to (M1) with 𝜎2𝑢 = 0.6, 1.2, we obtain the MCCL estimate of 𝛀 using 𝐵 = 100, 200

and the naive maximum likelihood estimate that ignores measurement error in 𝑋1. Table 1 provides the median of MCCL
estimates �̂� and the median of naive estimates across 1000 Monte Carlo replicates at each of the two sample sizes 𝑛 =

100, 200. In contrast to the naive estimates that exhibit bias that do not diminish as the sample size increases, the MCCL
estimates are much improved despite the severity of error contamination in 𝑋1. And raising 𝐵 from 100 to 200 provides
negligible improvement in the quality of MCCL estimates. We thus set 𝐵 = 100 in the remaining empirical study and only
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10 of 18 LIU and HUANG

F IGURE 1 Boxplots of regression coefficients estimates under (M1) with 𝑋1 and 𝑋2 dependent (left panel) and those under a revised
version of (M1) with 𝑋1 and 𝑋2 independent (right panel). The two boxes associated with each parameter correspond to two estimators (from
left to right): the MCCL estimator (red box) and the naive estimator (cyan box).

show results corresponding to this default choice of 𝐵 in the sequel. Not surprisingly, the MCCL estimator corrects the
bias of the naive estimator at the price of an inflation in variation.
The attenuation effect of measurement error on the naive covariate effect estimation for 𝑋1 is evident in Table 1. In

contrast, the covariate effect estimation for the error-free covariate 𝑋2 is noticeably overestimated by the naive method.
One may wonder if the observed opposite directions in the bias of naive estimation of two covariates effects persist when
the two covariates are independent. This relates to the first issue brought up above. To address this issue,we revise the data-
generating process in (M1) in that 𝑋1 ∼ 𝑁(0, 1). Figure 1 includes boxplots of two sets of regression coefficients estimates,
including the MCCL estimates and the naive estimates, under (M1) where 𝑋1 and 𝑋2 are dependent (see the left panel in
Figure 1) and under the revised (M1) with 𝑋1 and 𝑋2 independent (see the right panel in Figure 1). Here, we set 𝑛 = 2000

for each of 1000 Monte Carlo replicates. Interestingly, when 𝑋2 is independent of the error-prone covariate 𝑋1, naive
estimation for the covariate effect of 𝑋2 does not appear to be affected by measurement error. Regardless, the attenuation
in the estimated covariate effect for 𝑋1 remains.
Table 2 presents the average of standard deviation estimation of each parameter in 𝛀 based on (12) across 1000 Monte

Carlo replicates from (M1) with 𝑛 = 200. The Monte Carlo standard deviation of each parameter estimate in 𝛀 is used
as a reference/gold standard in this table. The proximity of the standard deviation estimate with the reference shown in
the table suggests that the sandwich variance estimator in (12) provides reliable estimation for the variance of the MCCL
estimator. This settles the second issue.
The third issue concerns the normality assumption on measurement error in the development of the Monte Carlo

corrected score method. To assess the robustness of the MCCL estimator to this normality assumption, we revise (M1) by
letting𝑈𝑗,𝑘 ∼ Laplace(0, 0.51∕2) instead, for 𝑘 = 1, 2, 3, and set 𝑛 = 200. Table 3 provides summary statistics of parameter

TABLE 2 Averages of standard deviation estimates, ŝ.d., and empirical standard deviation, s.d., across 1000 Monte Carlo replicates from
(M1) with 𝜎2

𝑢 = 1.2 and 𝑛 = 200. Numbers in parentheses are Monte Carlo standard errors associated with the Monte Carlo means.

𝜷𝟎 𝜷𝟏 𝜷𝟐 𝐥𝐨𝐠𝒎

ŝ.d. s.d. ŝ.d. s.d. ŝ.d. s.d. ŝ.d. s.d.
MCCL 0.19 (0.03) 0.19 0.13 (0.03) 0.13 0.32 (0.06) 0.32 0.15 (0.02) 0.16
Naive 0.16 (0.02) 0.16 0.09 (0.01) 0.09 0.26 (0.03) 0.26 0.15 (0.01) 0.16

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200348 by U
niversity O

f South C
arolina, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LIU and HUANG 11 of 18

TABLE 3 Medians of MCCL estimates and medians of naive estimates across 1000 Monte Carlo replicates generated according to (M1)
with 𝑈𝑗,𝑘 ∼ Laplace(0, 0.51∕2) and 𝑛 = 200. The number in parentheses following each median is the interquartile range of the 1000
realizations of an estimator. MCCL1 and MCCL2 refer to MCCL estimates when replicate measures are present and absent, respectively.

𝜷𝟎 𝜷𝟏 𝜷𝟐 𝐥𝐨𝐠𝒎

MCCL1 0.25 (0.26) 0.25 (0.17) 0.26 (0.41) 1.12 (0.19)
MCCL2 0.25 (0.26) 0.25 (0.17) 0.26 (0.41) 1.12 (0.19)
Naive 0.18 (0.22) 0.19 (0.13) 0.39 (0.36) 1.10 (0.19)

estimates as those shown in Table 1 (with 𝐵 = 100) under this revised setting. In addition to estimates parallel to those
considered in Table 1, we also include summary statistics for MCCL estimates obtained without using replicate measures
of𝑋1. That is, we keep𝑊𝑗,1 in𝑊𝑗 = {𝑊𝑗,𝑘}

3
𝑘=1

as the only available error-contaminatedmeasure of𝑋1,𝑗 , for 𝑗 = 1,… , 200,
when constructing the corrected log likelihood function. In Section 6.2, we describe a modified version of the correct log
likelihood in (10) that does not require replicate measures but depends on the measurement error variance (see (18)). This
creates a scenario where the violation of normality assumption associated with the measurement error in 𝑊𝑗,1 is more
severe than when𝑊𝑗 =

∑3

𝑘=1
𝑊𝑗,𝑘∕3 is used as a surrogate of 𝑋1,𝑗 . As one can see from Table 3, despite the (severity in)

violation of the normality assumption on 𝑈, the MCCL estimates remain close to the truth and significantly outperform
the naive estimates. This robustness feature of the Monte Carlo corrected score method is also noted and explained in
Novick and Stefanski (2002).

5.3 Performance of the model diagnostic method

Using 5000 Monte Carlo replicates from (M1) with 𝜎2𝑢 = 1.2 at each sample size level in 𝑛 = 100, 200, 500, 1000, we
implement the bootstrap algorithm related in Section 4 with 𝑀 = 300 bootstrap samples to obtain estimated 𝑝-values
associated with the test statistic �̃�(�̂�;∗). We then record the proportion of replicates, across 5000 replicates, that lead to
rejection of the null hypothesis of nomodelmisspecification at various nominal levels. This rejection rate can be viewed as
an empirical size of the test at a prespecified significance level. Figure 2 depicts this rejection rate versus the significance
level, from which one can see that the size of the test is well controlled by the bootstrap procedure over a wide range of
nominal levels.
Table 4 presents rejection rates of the model diagnostic method in the presence of different forms of model misspeci-

fication that occur when fitting data generated according to (M2)–(M4) while assuming a beta modal regression model
specified in (M1). As one can see in Table 4, the proposed score-based test has moderate power to detect a misspecified
form of the linear predictor, with the power steadily increasing as 𝑛 increases, and is especially powerful in detecting
violation of the distributional assumption on 𝑌 given covariates; but the test is less sensitive to link misspecification. Low
power of most goodness-of-fit tests to detect link misspecification has been reported in the context of generalized linear
models (e.g., Hosmer et al., 1997). Given these reported findings in the literature, the low power observed under design
(M3) may not be surprising, especially with the high similarity of the logit link in the assumed model with the probit link
in the true model in (M3).
When the assumed beta modal regression model is rejected by the proposed diagnostic test, one may consider a more

flexible unimodal distribution for the response conditioning on true covariates, such as the unimodal distributions for-
mulated in Fernández and Steel (1998), Quintana et al. (2009), Rubio and Steel (2015), and Liu et al. (2022b). A different
assumed primary regressionmodel leads to a different log likelihood function 𝓁(𝛀;𝑌𝑗, 𝑿𝑗) in (10), and our proposed strat-
egy of correcting a naive log likelihood function to account for measurement error remains applicable for any parametric
regression models.

TABLE 4 Rejection rates of the score-based diagnostic test resulting from 300 Monte Carlo replicates in the presence of four types of
model misspecification in (M2)–(M4).

Model 𝒏 = 𝟐𝟎𝟎 𝒏 = 𝟑𝟎𝟎 𝒏 = 𝟒𝟎𝟎 𝒏 = 𝟓𝟎𝟎

(M2) 0.283 0.407 0.550 0.580
(M3) 0.053 0.120 0.090 0.113
(M4) 1.000 0.997 0.997 1.000
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12 of 18 LIU and HUANG

F IGURE 2 Rejection rates associated with the score-based diagnostic test across 5000 Monte Carlo replicates from (M1) versus the
nominal level of the test. Black dashed lines are the 45◦ reference lines.

6 REAL-LIFE DATA APPLICATION

In this section, we analyze data arising from two different applications where a covariate of interest cannot be observed
directly. Besides dealing with scientific questions in relevant fields, these applications provide opportunities for us to
address some practical issues one faces when implementing the proposed estimation method and diagnostic method not
discussed in the simulation study.

6.1 Application to dietary data

Food Frequency Questionnaire (FFQ) is a convenient and inexpensive dietary assessment instrument in epidemiologic
studies. To study the association between an individual’s FFQ intake and his/her long-term usual intake as the univari-
ate covariate 𝑋, we analyze a dietary data set from Women’s Interview Survey of Health (Carroll et al., 1997). The data
set contains 271 females’ FFQ intake records, measured as the percentage calories from fat, and six 24-hour food recalls,
𝑊𝑗,𝑘, for 𝑗 = 1,… , 271 and 𝑘 = 1,… , 6. Because the 𝑗th subject’s long-term usual intake𝑋𝑗 cannot be measured directly, a
generally accepted practice in epidemiology is to use𝑊𝑗 =

∑6

𝑘=1
𝑊𝑗,𝑘∕6 as a surrogate of𝑋𝑗 , for 𝑗 = 1,… , 271. According

to the preliminary analysis in existing literature, the distribution of the FFQ intake appears to be right-skewed and poten-
tially heavy-tailed, which motivates the consideration of a modal regression model in place of a mean regression model.
Here, we assume a beta modal regression model given in (2) with 𝜃(𝑋) = 1∕{1 + exp(−𝛽0 − 𝛽1𝑋)} for the response data
{𝑌𝑗}

271
𝑗=1

, where 𝑌𝑗 is the 𝑗th subject’s FFQ intake in kilocalorie divided by 8000, a biologically plausible upper bound of
daily energy intakes for a general population.
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LIU and HUANG 13 of 18

TABLE 5 Estimates of parameters in the beta modal regression model applied to the dietary data, along with the corresponding
estimated standard errors in parentheses.

Method 𝜷𝟎 𝜷𝟏 𝐥𝐨𝐠𝒎

MCCL −1.578 (0.033) 0.381 (0.099) 3.015 (0.196)
SIMEX −1.580 (0.034) 0.354 (0.087) 3.008 (0.195)
Naive −1.581 (0.041) 0.270 (0.058) 2.979 (0.094)

We obtain theMCCLestimate of𝛀 = (𝛽0, 𝛽1, log𝑚)T according to (11), and also carry out regression analysis that ignores
measurement error to obtain a naive maximum likelihood estimate of 𝛀. Moreover, we implemented the simulation-
extrapolation method (SIMEX, Carroll et al., 2006, Chapter 5) applied to the assumed beta modal regression model.
In this particular application, SIMEX amounts to repeatedly estimating 𝛀, without accounting for measurement error,
using data 

∗
𝑏
(𝜁) = {(𝑌𝑗,𝑊𝑗,𝑏(𝜁))}

𝑛
𝑗=1

, for 𝑏 = 1,… , 𝐵, where 𝑊𝑗,𝑏(𝜁) = 𝑊𝑗 +
√
𝜁𝜎𝑢𝑍𝑗,𝑏, in which {𝑍𝑗,𝑏, 𝑗 = 1,… , 𝑛}𝐵

𝑏=1
are independent standard normal errors, 𝜎𝑢 is the standard deviation of measurement error associated with the surro-
gate measure𝑊𝑗 , and 𝜁 is a user-specified positive constant. Denote by �̂�𝑏(𝜁) the (naive) estimator of 𝛀 based on data


∗
𝑏
(𝜁), and then �̂�(𝜁) =

∑𝐵

𝑏=1 �̂�𝑏(𝜁)∕𝐵 is a naive estimator based ondata resulting from further contaminating the original
error-prone data∗ = {(𝑌𝑗,𝑊𝑗)}

𝑛
𝑗=1

, with the amount of additional contamination controlled by 𝜁. Collecting a sequence
of �̂�(𝜁) as one varies 𝜁 realizes the simulation step of SIMEX. In this data application, we set 𝐵 = 300 and let 𝜁 vary
from 0.125 to 1 in increments of 0.125. The extrapolation step of SIMEX entails extrapolating the sequence of estimates
in {�̂�(𝜁), 𝜁 = 0.125, 0.25, … , 1} to �̂�(−1), leading to the so-called SIMEX estimator. A heuristic motivation of extrap-
olating towards 𝜁 = −1 can be revealed by noting that Var(𝑊𝑗,𝑏(𝜁)|𝑋𝑗) = Var(𝑊𝑗|𝑋𝑗) + 𝜁𝜎2𝑢, where 𝜎2𝑢 = Var(𝑊𝑗|𝑋𝑗).
Setting 𝜁 = −1 in the preceding variance expression gives Var(𝑊𝑗,𝑏(−1)|𝑋𝑗) = 0, as if 𝑊𝑗,𝑏(−1) contained no measure-
ment error, and hence extrapolating {�̂�(𝜁), for 𝜁 > 0} to obtain �̂�(−1) is an attempt to “recover” an estimator of 𝛀 had
there been no covariate measurement error. Shi et al. (2021) applied SIMEX to a kernel-based modal regression model
with error-prone covariates.
Three estimates of𝛀, theMCCL estimate, SIMEX estimate, and naive estimate, are given in Table 5. The covariate effect

associated with the long-term intake suggested by the naive estimate is substantially weaker than that indicated by the
MCCL estimate and SIMEX estimate, implying potentially significant attenuation on the covariate effect due to measure-
ment error in the former, whereas the latter two correct for this attenuation. Figure 3 depicts the estimated regression
functions �̂�(𝑥) resulting from these three methods, imposed on the scaled response data versus the surrogate covariate
data. This pictorial contrast between the three estimated regression functions shows that the proposedmethod and SIMEX
are able to capture the underlying positive nonlinear covariate effect that is partially concealed or weakened by the naive
method. Although SIMEX produces similar inference results as those from our method, the simulation step relies on the
error variance 𝜎2𝑢 when generating 𝑊𝑗,𝑏(𝜁)’s, which we estimate in this example based on replicate measures; and the
extrapolation step depends on the choice of an extrapolant, a choice that usually lacks data evidence to support in most
applications. Here, we use a quadratic extrapolant to obtain the SIMEX estimate. Besides being more computationally
burdensome compared to the MCCLmethod (due to repeatedly estimating𝛀 based further contaminated data), variance
estimation for SIMEX estimators is also less straightforward than that for our estimator (Carroll et al., 1996). We resort to
nonparametric bootstrap, with 1000 bootstrap samples, in this example to obtain the estimated standard errors associated
with SIMEX estimates shown in Table 5. Finally, applying the proposed diagnostic method to this data set with𝑀 = 300

bootstrap samples yields an estimated 𝑝-value of 0.097. We thus conclude lack of sufficient data evidence (at significance
level 0.05) to indicate the assumed beta modal regression model inadequate for this application.

6.2 Application to Alzheimer’s disease data

Medical researchers have long recognized that cerebral atrophy is associated with dementia, and extensive research has
been conducted to understand the association between volumetric changes of different brain regions with the severity of
dementia. Abundant data collected from this line of research are available in the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (http://adni.loni.usc.edu/). Zhou andHuang (2020) analyzed a data set relating to 245 individuals
diagnosed with mild cognitive impairment from this database. The goal is to study roles that an individual’s volumetric
measure of entorhinal cortex (ERC) and that of hippocampus (HPC) play in predicting one’s risk of developingAlzheimer’s
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14 of 18 LIU and HUANG

F IGURE 3 Estimated conditional mode functions for the dietary data based on the MCCL estimate (red solid line) and the naive
estimate (cyan dashed line), respectively. Observed covariate data {𝑊𝑗}

271
𝑗=1 are treated as surrogates of long-term usual intakes in the scatter

plot of the observed data (solid dots).

disease. An individual’s test score from the Alzheimer’s disease assessment scale, known as ADAS-11, at month 12 since
entering the ADNI cohort is used to assess one’s severity of cognitive impairment. Covariates of interest are the volumetric
change in ERC (ERC.change) and that in HPC (HPC.change) at month 12 compared to the baseline measures collected at
month 6. Assuming that these volumetric measures are observed precisely, Zhou and Huang (2020) fitted the data to the
beta modal regression model for the response 𝑌 defined as an individual’s ADAS-11 score divided by a perfect score of 70,
with the log-log link in themode function, 𝜃(𝑿) = exp{− exp(−𝛽0 − 𝛽1 × ERC.change − 𝛽2 ×HPC.change)}, and showed
that it provides a better fit for the data compared to the beta mean regression model proposed by Ferrari and Cribari-Neto
(2004).
In reality, measuring ERC volume is challenging because of lateral border discrimination from the perirhinal cortex

(Price et al., 2010), and the accuracy of HPC measurements is also in question (Maclaren et al., 2014). It is thus more
sensible to view the observed volumetric change of ERC or that of HPC as a noisy surrogate of the actual amount of
change. Despite of which covariate is viewed as error-prone, the current data present some challenges due to the lack of
replicate measures for an individual’s true covariate value, and thus, the estimation methods proposed in Section 3 are
not applicable. For example, in (10), the term multiplying the imaginary unit 𝑖 is equal to zero now with the number of
replicates 𝑛𝑗 = 1, making the “corrected” log-likelihood the same as the naive log-likelihood. A quick fix to the problem
is to invoke a similar strategy of correcting naive scores to account for measurement error as discussed in Novick and
Stefanski (2002). Following this strategy, a corrected log-likelihood evaluated at the 𝑗th data point to use in place of (10) is

�̃�(𝛀; 𝑌𝑗,𝑾𝑗, �̃�𝑗) =
1

𝐵

𝐵∑
𝑏=1

Re{𝓁(𝛀;𝑌𝑗,𝑾𝑗 + 𝑖𝚺
1∕2
𝑢 𝒁𝑗,𝑏)}, (18)

where �̃�𝑗 = {𝒁𝑗,𝑏}
𝐵
𝑏=1

, for 𝑗 = 1,… , 𝑛, and {𝒁𝑗,𝑏, 𝑏 = 1,… , 𝐵}𝑛
𝑗=1

are independent 𝑝-dimensional normal random vectors
withmean zero and variance–covariance as an identitymatrix, which accommodatesmultiple error-prone covariates in𝑿
by letting𝑾𝑗 be a 𝑝-dimensional multivariate surrogate of𝑿𝑗 , contaminated by amultivariate normalmeasurement error
𝑼𝑗 with variance–covariance matrix 𝚺𝑢. By setting all entries in 𝚺𝑢 at zero except for the first diagonal entry gives rise to
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LIU and HUANG 15 of 18

TABLE 6 Sensitivity analysis using the ADNI data for the beta modal regression with the log-log link. Numbers in parentheses are
estimated standard errors. Numbers in square brackets are 𝑝-values associated with covariate effects.

𝚺𝒖 𝜷𝟎

𝜷𝟏
(ERC.change)

𝜷𝟐
(HPC.change) 𝐥𝐨𝐠𝒎[

0 0

0 0

]
−0.69 (0.03) −0.12 (0.05) −0.22 (0.11) 2.78 (0.15)

[0.007] [0.054][
0.16 0

0 0

]
−0.88 (0.03) −2.44 (0.00) 0.39 (0.46) 3.45 (0.04)

[0.000] [0.386][
0 0

0 0.0225

]
−0.71 (0.03) −0.11 (0.05) −0.47 (0.27) 2.80 (0.16)

[0.014] [0.084][
0.16 0

0 0.0225

]
−0.81 (0.03) −2.42 (0.00) −0.85 (0.00) 3.85 (0.02)

[0.000] [0.000]

the case considered in themajority of this article with only𝑋1 prone to error. Certainly, not having replicate measures still
creates an obstacle to implementing this strategy due to its dependence on 𝚺𝑢 that cannot be estimated without replicate
measures of a true multivariate covariate value or other external validation data. A well-accepted practice among statisti-
cians in similar situations is to carry out sensitivity analysis where one analyzes the data under different assumptions for
the parameter, such as 𝚺𝑢 in our case, that one lacks data information to infer. If one obtains drastically different inference
results when assuming different values for 𝚺𝑢, including a matrix of zeros corresponding to naive estimation that ignores
measurement error, then one may recommend to exercise caution when interpreting results from an inference procedure
that assumes error-free covariates.
For illustration purposes, we assume in the sensitivity analysis four values for 𝚺𝑢 listed in Table 6, where inference

results for model parameters under each assumed 𝚺𝑢 are provided. According to Table 6, all four rounds of regression
analyses lead to the conclusion that the volumetric change of ERC is an influential predictor for the severity of cognitive
impairment, even though the magnitude of the estimated covariate effect is sensitive to the assumed error variance asso-
ciated this covariate. In particular, when assuming imprecise measurements for ERC.change, the revised MCCL method
that employs the corrected log-likelihood in (18) with 𝐵 = 100, 000 produces results indicating a much stronger associa-
tion than the naive analysis. By comparison, the magnitude of the estimate for the HPC.change effect is less sensitive to
the assumed 𝚺𝑢, but its statistical significance is noticeably affected by it. For example, one would conclude a moderately
significant covariate effect of HPC.change based on the naive analysis assuming error-free covariates, but claim a highly
significant, or moderately significant, or nonsignificant HPC.change effect depending on which covariate(s) one assumes
to be error-prone and the severity of error contamination. This phenomenon is a reminiscence of an observation made
in Figure 1, and may suggest that ERC.change and HPC.change are correlated. In fact, measurements of ERC and HPC
via magnetic resonance imaging are known to be highly correlated with observed clinical alterations in patients suffering
mild cognitive impairment or at dementia phases of Alzheimer’s disease (Desikan et al., 2010; Jack et al., 2013; Varon et al.,
2014).
In conclusion, results from the sensitivity analysis suggest that volumetric measures of different brain regions are likely

to be subject to measurement error, and statistical analyses under the assumption of precisely measured covariates should
be interpreted with caution. If replicate data are available for covariates of interest, the MCCL method can provide more
reliable inference. Lastly, even though one can mimic (18) to construct a corrected score in place of �̃�(𝛀; 𝑌𝑗,𝑊𝑗, 𝑇𝑗, 𝑿−1,𝑗)

in (15) and then formulate the test statistic �̃�(�̂�;∗) for model diagnostics, the dependence of the revised score on the
unknown 𝚺𝑢 remains an obstacle that hinders one from using the bootstrap procedure outlined in Section 4 to assess
statistical significance of the revised test statistic. Alternative diagnostic methods that do not rely on parametric boot-
strap or corrected score (e.g. Huang et al., 2006) can be used to detect inadequate assumptions imposed on the primary
regression model.

7 DISCUSSION

We propose an inference procedure based on the idea of corrected score that falls in the framework of𝑀-estimation for
modal regression with an error-prone covariate. Even though in this article, we focus on the beta modal regression model
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as the primary regression model, the proposed MCCLmethod is applicable in other parametric modal regression models,
such as the gammamodal regressionmodels for nonnegative responses proposed byAristodemou (2014) andBourguignon
et al. (2020), and the flexible Gumbel regression model recently proposed by Liu et al. (2022b) for responses ranging over
the entire real line. In fact, provided that a parametricmodal regressionmodel can provide reliable inference for the global
mode in the absence of covariate measurement error (even when 𝑌 follows a multimodal distribution given 𝑿), such as
the flexible unimodal regression models considered in Liu et al. (2022a), the proposed MCCL method applied to error-
prone data is expected to improve over the counterpart naive method that ignores measurement error. A Python package
for implementing the proposed methods for beta modal regression with errors-in-covariate is available at https://pypi.
org/project/pybetareg/. All computer programs used in this paper are available at https://github.com/rh8liuqy/Modal_
regression_with_measurement_error.
To accommodate situationswithout replicatemeasures of the true covariate or settingswithmultiple error-prone covari-

ates, theMCCLmethod can be easily revised as demonstrated in Section 6.2, although one needs to specify the variance (or
the variance–covariancematrix) of the (vector-valued)measurement error if one lacks replicate data or external validation
data to estimate it.
Focusing on the current beta modal regression models, some extensions are worthy of further investigation, such as a

zero-inflated beta modal regression model to fit disease prevalence data especially suitable for rare diseases, and a four-
parameter beta modal regression model as considered in Zhou and Huang (2020) for a bounded response with unknown
support. Another follow-up research direction is variable selection based on a parametric modal regression model with or
without measurement error contamination in covariates.
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