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ABSTRACT. Since the seminal work of Dorfman (1943) group testing has been widely

adopted in epidemiological studies. In Dorfman’s context of detecting syphilis in U.S. army

recruits, group testing entails pooling recruits’ blood samples and testing the pools, as op-

posed to testing individual samples. A negative pool indicates all individuals in the pool free

of syphilis antigen, whereas a positive pool suggests at least one sample carry the antigen.

With covariate information regularly collected along with disease status, many researchers

have considered regression models that allow one study covariate-adjusted disease preva-

lence. In this article, we study maximum likelihood estimators of the covariate effects in

these regression models when the group response is prone to error. We show that, when

compared to inference drawn from individual testing data, inference based on group testing

data can be more resilient to response misclassification in terms of both bias and efficiency.

We also provide practically valuable guidance on designing the group composition to alleviate

adverse effects of misclassification on inference results.

Key words: attenuation, efficiency, generalized linear model, individual testing.
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1. Introduction

In the past few decades, group testing has received increasing attention in disease screening

(Gastwirth and Hammick, 1989; Dhand, Johnson, Toribio, 2010), pollution detection (Wahed

et al., 2006; Lennon, 2007), drug discovery (Remlinger et al., 2006), and genetics (Chi et

al., 2009). One initial goal among statisticians in this line of research was to estimate the

prevalence of a rare trait. This later evolved into the more challenging problem of estimating

a covariate-adjusted prevalence (Vansteelandt, Goetghebeur, and Verstraeten, 2000; Xie,

2001). With covariates involved, regression analysis for group testing data has become a

central interest (Chen, Tebbs, and Bilder, 2009; Delaigle and Meister, 2011; Delaigle and

Hall, 2012; McMahan, Tebbs, and Bilder, 2013; Delaigle, Hall, and Wishart, 2014; Wang

et al., 2014). Alongside the development of this methodology, McMahan, Tebbs, and Bilder

(2012a,b) designed efficient group testing strategies that make use of covariate information.

From a practical standpoint, group testing is time/cost-efficient when the trait of interest

is rare. From a statistical perspective, inferences based on group testing data typically suffer

from lower efficiency since a positive group response is less informative than the collection

of individual responses from that group. In this article, we rigorously show that, in the

presence of misclassification in the binary response, one can actually benefit from drawing

inference based on group testing data when compared to individual testing data.

Misclassification in group testing is common in many applications. For example, in the

infertility prevention project (IPP), the state of Iowa uses group testing with the GenProbe

Aptima Combo 2 Assay nucleic acid amplification test (Gen-Probe, San Diego) for chlamydia

and gonorrhea, which is prone to error (Tebbs, McMahan, and Bilder, 2013). Viewing

misclassification as a form of measurement error contamination, our findings reveal that

likelihood-based inference from group testing data enjoys a certain level of robustness to error

contamination in the response. This conclusion complements nicely the finding in Huang
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and Tebbs (2009), which indicates that regression analysis based on group testing data can

be more robust to measurement error in covariates when compared to regression analysis of

individual testing data. Although mismeasured responses are as ubiquitous as error-prone

covariates in practice, less research has examined regression analyses in the presence of the

former, and no investigations have been pursued in the context of group testing. Our study

fills in this important gap in the literature. In particular, by considering covariate-adjusted

prevalence, this study generalizes the work of Hung and Swallow (1999), who showed gains

in robustness when estimating disease prevalence of a homogeneous population. Viewing

individual testing as a special case of group testing (with group size equal to one), our

findings encompass those in Neuhaus (1999), who considered regression analysis based on

error-prone individual testing responses.

To set the stage for our theoretical development regarding maximum likelihood estima-

tors (MLE) of regression coefficients, we define notation and formulate models for group

testing data in Section 2. In Section 3, we study asymptotic bias of the MLE when one

ignores misclassification, leading to the so-called naive MLE. Then we study the effects of

misclassification and grouping on the efficiency of the non-naive/consistent MLE obtained

by accounting for misclassification in Section 4. In Section 5, we carry out regression analy-

ses of two data sets, one from the IPP and one from a surveillance study of HIV in Kenya.

Lastly, in Section 6, we summarize contributions of this paper and discuss further research

topics. All appendices referenced henceforth are in the supplementary materials.

2. Data and models

Denote by Yij the true binary response of subject j in group i, and by Xij the corresponding

covariate, for i = 1, . . . ,m, j = 1, . . . , ni. For ease of exposition, we consider a univari-

ate covariate associated with each subject for the majority of the article. Generalization

to multivariate covariates is mathematically straightforward, which is included in the sup-
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plementary materials and demonstrated in an example in Section 5. Define the true group

response as Zi = max1≤j≤ni
Yij, and the ni × 1 vector of covariates as Xi = (Xi1, . . . , Xini

)T,

for i = 1, . . . ,m. Suppose that the model of Yij given Xij is specified by the following

generalized linear model (GLM),

P (Yij = 1|Xij ;β) = g−1(β0 + β1Xij), for i = 1, . . . ,m, j = 1, . . . , ni, (1)

where g(·) is a known, increasing, and differentiable link function, and β = (β0, β1)
T is the

vector of regression coefficients, including the intercept β0 and the covariate effect β1. It

follows that the model of Zi conditional on Xi is determined by

P (Zi = 1|Xi;β) = 1−

ni
∏

j=1

{

1− g−1(β0 + β1Xij)
}

, for i = 1, . . . ,m. (2)

In this study, {Zi}
m
i=1

are unobserved, and the observed group responses {Z∗
i }

m
i=1

result

from potential misclassification of the true group responses. Suppose that the misclassifica-

tion mechanism is dictated by the sensitivity, η = P (Z∗
i = 1|Zi = 1), and the specificity,

θ = P (Z∗
i = 0|Zi = 0), for i = 1, . . . ,m. Like in most measurement error problems where

the severity of error contamination is unknown, validation data or external data are needed

to infer η and θ (Hanson, Johnson, and Gastwirth, 2006; Küchenhoff, Mwalili, and Lesaffre,

2006). To focus on inference about β, we do not introduce such data and we assume η and θ

known. Moreover, we assume that η and θ do not depend on the group size ni. This assump-

tion is common in the group testing literature for single infections (Kim et al., 2007). For

this to be reasonable in practice, assay thresholds may need to be adjusted to accommodate

pooled and individual specimens (McMahan, Tebbs, and Bilder, 2013).

By (2), it is straightforward to show that the probability of observing a positive group

response is, for i = 1, . . . ,m,

PT (Z
∗
i = 1|Xi;β) = η − (η + θ − 1)

ni
∏

j=1

{

1− g−1(β0 + β1Xij)
}

, (3)
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where the subscript “T” in PT signifies that (3) specifies the true model of Z∗
i given Xi. If

one ignores misclassification and views {Z∗
i }

m
i=1

to be the same as {Zi}
m
i=1

, one would carry

out a naive regression analysis assuming the following wrong model of Z∗
i given Xi,

PF (Z
∗
i = 1|Xi;β

∗) = 1−

ni
∏

j=1

{

1− g−1(β∗
0
+ β∗

1
Xij)

}

, for i = 1, . . . ,m. (4)

The subscript “F” in PF is used to stress that (4) leads to a false model of Z∗
i given Xi, and

β∗ = (β∗
0
, β∗

1
)T is the vector of regression coefficients one would estimate under this false

model, whose interpretation differs from that of β in (1)–(3).

3. Naive maximum likelihood estimator

3.1 Estimating equations based on group testing data

Denote by β̂
∗
= (β̂∗

0
, β̂1)

T the naive MLE of β that maximizes the observed-data likeli-

hood derived from the wrong model in (4). By theories of maximum likelihood estimation

based on a misspecified model (White, 1982), under regularity conditions, β̂
∗
converges al-

most surely to β∗ as m → ∞, with max1≤i≤m ni bounded, where β
∗ minimizes the Kullback-

Leibler (KL) divergence between the true observed-data likelihood, fT ({Z
∗
i ,Xi}

m
i=1

;β), and

the false likelihood, fF ({Z
∗
i ,Xi}

m
i=1

;β∗). More specifically, β∗ minimizes

KL(fT , fF ) = lim
m→∞

m−1E

[

log
fT ({Z

∗
i ,Xi}

m
i=1

;β)

fF ({Z∗
i ,Xi}mi=1

;β∗)

]

= lim
m→∞

m−1

m
∑

i=1

EXi

[

EZ
∗

i |Xi

{

log
fT (Z

∗
i |Xi;β)

fF (Z∗
i |Xi;β

∗)

}]

= EX

[

EZ
∗

i |Xi

{

log
fT (Z

∗
i |Xi;β)

fF (Z∗
i |Xi;β

∗)

}]

, (5)

where fT (Z
∗
i |Xi;β) = PT (Z

∗
i = 1|Xi;β)

Z∗
i PT (Z

∗
i = 0|Xi;β)

1−Z∗
i , fF (Z

∗
i |Xi;β

∗) is similarly

defined, for i = 1, . . . ,m, and EX(·) refers to limm→∞ m−1
∑m

i=1
EXi

(·). The existence of a

unique minimizer to (5) over β∗ is guaranteed by the identifiability of β∗ when testing errors

are known.
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In Appendix A we differentiate (5) with respect to β∗ and show that β∗ is the unique

solution to the following system of estimating equations,

EX

[

{λ(1|Xi;β,β
∗)− λ(0|Xi;β,β

∗)}PF (Z
∗
i = 0|Xi;β

∗)×

n
∑

j=1

(1, Xij)
T

g′ {g−1(β∗
0
+ β∗

1
Xij)} {1− g−1(β∗

0
+ β∗

1
Xij)}

]

= 02, (6)

where g′(t) = (d/dt)g(t), 02 is the 2× 1 vector of zeros, and

λ(z|Xi;β,β
∗) =

PT (Z
∗
i = z|Xi;β)

PF (Z∗
i = z|Xi;β

∗)
, for z = 0, 1. (7)

The set of equations in (6) generally does not have an explicit solution, and one may nu-

merically solve (6) for β∗ given any true model/parameter configuration and pooling strategy.

In the practice of group testing, typically one of the two pooling strategies, random pooling

and homogeneous pooling, is employed. According to random pooling, pools are formed

randomly and independently of covariate information. Homogeneous pooling requires one

gather individuals with similar covariate values in a pool. Because the between-pool variabil-

ity of covariate information is larger under homogeneous pooling than that under random

pooling, more efficient statistical inference is expected based on data from homogeneous

pooling (Vansteelandt, Goetghebeur, and Verstraeten, 2000).

3.2 Approximate naive limiting maximum likelihood estimator

To gain insight into the properties of β∗, we first seek an approximation of β∗, denoted

by β̃
∗
, in this subsection before we solve (6) numerically for β∗ in the next subsection. The

hope for β̃
∗
is that it is close to β∗ enough such that it possesses some properties of β∗ that

reflect the influence of grouping and misclassification on β∗. Detailed derivations leading

to such β̃
∗
= (β̃0, β̃

∗
1
)T are given in Appendix B. In what follows, we sketch the derivations

leading to β̃∗
1
, and discuss its implications.
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The search for an approximated solution of (6) starts with assuming ni = n, for i =

1, . . . ,m. We envision that β̃
∗
solves λ(1|Xi;β, β̃

∗
) = λ(0|Xi;β, β̃

∗
) for all Xi, which is

equivalent to
n
∏

j=1

{

1− g−1(β̃∗
0
+ β̃∗

1
Xij)

}

= PT (Z
∗
i = 0|Xi;β), for all Xi. (8)

This vision of β̃
∗
simplifies the problem of solving (6) to solving (8). Then, we evaluate (8) at

two special covariate values,Xi = Si1n andXi = (Si+1)1n, where 1n is the n×1 vector of 1’s,

and Si is some common covariate value shared by subjects in group i. These configurations

of within-pool covariate values can be seen in a special homogeneous pooling, such as those

considered in Farrington (1992) and Tu, Kowalski, and Jia (1999). As elaborated in Appendix

B, following these two evaluations of (8), one can solve the resultant equations for β̃∗
1
and

find that β̃∗
1
= H(β1, n), with

H(β1, n) = g
(

1− [PT {Z
∗
i = 0|Xi = (Si + 1)1n;β}]

1/n
)

− g
[

1− {PT (Z
∗
i = 0|Xi = Si1n;β)}

1/n
]

. (9)

Close inspections of (9) provides several useful insights on the effects of grouping and

misclassification on naive inference of the covariate effect. First, for a very large n, β̃∗
1

becomes very close to zero, although the trend is not necessarily monotone. In other words,

with very big group sizes, one tends to conclude lack of association between the response

and the covariate based on naive analysis. Second, when η + θ > 1, (9) implies that β̃∗
1
has

the same sign as that of β1. Hence, the naive estimator of β1 asymptotically conserves the

sign of β1. Third, if β1 = 0, then β̃∗
1
= 0, that is, H(0, n) = 0. Following this last remark,

one has the first-order Taylor series approximation of β̃∗
1
= H(β1, n) around β1 = 0 as

β̃∗
1
≈ H ′(0, n)β1, (10)

where H ′(0, n) is defined as (∂/∂β1)H(β1, n) evaluated at β1 = 0, given by

H ′(0, n) =
(η + θ − 1)pn−1

0Y
g′
[

1− {1− η + (η + θ − 1)pn
0Y
}1/n

]

{1− η + (η + θ − 1)pn
0Y
}1−1/n g′(p1Y )

, (11)
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in which p1Y = g−1(β0) and p0Y = 1− p1Y .

Straightforward algebraic manipulations reveal that setting n = 1 in H ′(0, n) in (11)

results in the attenuation factor in Neuhaus (1999, equation (13)). In fact, with Xi = Si1n

for i = 1, . . . ,m, (2) reduces to P (Zi = 1|Xi;β) = 1−{1−g−1(β0+β1Si)}
n, for i = 1, . . . ,m,

which is a GLM with link function g∗(t) = g{1 − (1 − t)1/n}. This brings one back to the

context of Neuhaus (1999). Hence, for this special case, one can reach (11) by replacing

g(·) with g∗(·) in Neuhaus’ attenuation result. Other than this special case where one can

directly apply Neuhaus’s bias analysis with some careful adjustments, our bias analysis

encompasses a much broader scenario than that considered in the existing work. Despite

the more complicated expression of H ′(0, n) and the generality of our data structure, we are

able to establish the attenuation effect of misclassification on the naive MLE of β1. This

finding is stated in the next theorem, with the proof provided in Appendix C.

Theorem 3.1 If η + θ ≥ 1 and 1/g′(t) is concave, then H ′(0, n) in (11) lies in [0, 1] for all

n ≥ 1.

Theorem 3.1 indicates thatH ′(0, n) can be interpreted as an attenuation factor associated

with β̃∗
1
if 1/g′(t) is concave. The concavity of 1/g′(t) is assumed in the bias analysis in

Neuhaus (1999) as well, where it is pointed out that any link function g(t) defined as the

inverse cumulative distribution function corresponding to a log-concave density function

yields a concave 1/g′(t). In particular, popular link functions such as logistic, probit, and

complementary log-log all share this characteristic.

To this end, one may wonder if the attenuation effect of misclassification on β̃∗
1
implied

in Theorem 3.1 carries over to the exact naive limiting MLE, β∗
1
. To address this, in the

next subsection, we numerically solve (6) for β∗ and compare β∗
1
with (10). The upcoming

large-sample numerical study (as opposed to finite-sample simulation studies) show that the

approximation of β̃∗
1
given in (10) indeed captures certain features of β∗

1
useful for under-



MLE from error-prone group testing data 9

standing the effects of grouping and misclassification on the naive covariate effect estimator.

3.3 Exact naive limiting maximum likelihood estimator

In the numerical study, we set β1 = 1 so that (10) becomes β̃∗
1
≈ H ′(0, n). We use a

logistic link in the GLM, g(t) = log{t/(1 − t)}, and consider (η, θ) = (0.9, 0.95), (0.9, 0.8),

β0 = −3,−2.5,−2. Covariate values are generated according to Xij ∼ N(0, 1), for i =

1, . . . ,m, j = 1, . . . , ni, where ni = n (i = 1, . . . ,m) with n varying from 1 to 15. Under

this covariate configuration, the marginal probability P (Y = 1) is around 0.069, 0.105, and

0.156 when β0 = −3,−2.5,−2, respectively. These low prevalence rates are chosen to be

consistent with most group testing applications, where typically a rare trait is of interest.

We consider both homogeneous pooling and random pooling when solving (6), and denote

by β∗
1,h and β∗

1,r the limiting MLE of β1 from these two ways of pooling, respectively. To

evaluate quantities in (6) under homogeneous pooling at a given level of n, we first generate

a random sample of X of size 106n from N(0, 1); then we form 106 pools, each of size n,

according to the sorted covariate values. Based on the simulated 106 homogeneous pools,

we approximate the large-sample averages in (6), EX(·), via the corresponding empirical

means. The same approximation of the large-sample averages is employed when evaluating

(6) for random pooling, but now the empirical means are computed using a random sample

{Xi, i = 1, . . . , 106} from N(0n, In), where In is the n-dimensional identity matrix.

Figure 1 depicts three asymptotic quantities, β∗
1,h, β

∗
1,r, and H ′(0, n) (as an approximation

of β̃∗
1
) versus n. The pictorial comparison highlights the following three phenomena. First,

more severe misclassification in the response leads to more attenuation in all considered naive

MLEs. Second, when the prevalence is low, which is when group testing is most advocated,

naive estimation of β1 based on either pooling scheme can be less attenuated than that

from individual testing data. Third, albeit we reach the analytic attenuation factor from an

approximate solution to (6), H ′(0, n) preserves the overall trend of the two exact limiting
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MLEs in terms of how they change as n increases.

The last point above suggests that H ′(0, n) is an informative indicator of the effect of

misclassification on naive estimation that also reflects effects of grouping. With its explicit

expression available, one may utilize (11) at the design stage of a group testing study to

approximate an optimal group size in order to minimize the adverse effect of misclassification

in regard to bias. In particular, we observe for a wide range of parameter configurations,

besides those used to produce Figure 1, that the group size yielding the least amount of

attenuation in the naive limiting MLE of β1 when β1 6= 0 is always slightly below the group

size that maximizes H ′(0, n).

Since ignoring misclassification means falsely setting η and θ at 1, one may wonder what

if one misspecifies (η, θ) in various ways. Appendix D presents the limiting MLE of β1 when

one assumes sensitivity and/or specificity that deviate(s) from the truth in different ways.

Although attenuation is not the universal phenomenon across all misspecified (η, θ), results

there suggest that using group testing data does often produce less biased covariate effect

estimator. Moreover, having the assumed testing errors closer to the truth typically yields

less biased estimators. Hence, if one has a reliable estimates of η and θ, it is both natural

and beneficial to incorporate them in inference rather than assuming them both to be one.

Certainly, the issue of bias is less of a concern, at least for large samples, if one conducts

non-naive regression analysis using the correct (η, θ). This is the focus of the next section,

where we study the efficiency of the resultant consistent MLE of β.

4. Consistent maximum likelihood estimator

Denote by β̂
Z

∗ = (β̂0Z∗ , β̂1Z∗)T the consistent MLE of β based on the correct model of

Z∗ in (3), and by β̂
Z
= (β̂0Z, β̂1Z)

T the counterpart consistent estimator in the absence

of misclassification. In this section we study the asymptotic relative efficiency (ARE) of

β̂1Z∗ to β̂1Z defined as ARE(β̂1Z∗ , β̂1Z) = Var(β̂1Z)/Var(β̂1Z∗), where each Var(·) denotes
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the asymptotic variance of the estimator derived from the Fisher information (Boos and

Stefanski, 2013, Section 2.5) associated with the estimator. The primary interest here lies in

the efficiency loss due to misclassification rather than the variance of a consistent estimator.

This distinguishes our study from that in Liu et al. (2012), who studied the asymptotic

variance of the estimated prevalence using error-prone group testing data, with no covariate

involved.

4.1 General efficiency results for group testing

For ni ≥ 1, we show in detail in Appendix D that the asymptotic variance-covariance

matrix of β̂
Z

∗ is

Var(β̂
Z

∗) =
1

m





EX(A
2C) EX(ABC)

EX(ABC) EX(B
2C)





−1

, (12)

where

A =

ni
∑

j=1

1

(1− µYij
)g′(µYij

)
, B =

ni
∑

j=1

Xij

(1− µYij
)g′(µYij

)
, C =

(η + θ − 1)2(1− µZi
)2

µZ
∗

i
(1− µZ

∗

i
)

, (13)

in which

µYij
= g−1(β0 + β1Xij), for j = 1, . . . , n,

µZi
= P (Zi = 1|Xi;β) = 1−

ni
∏

j=1

(1− µYij
), (14)

µZ
∗

i
= PT (Z

∗
i = 1|Xi;β) = η − (η + θ − 1)(1− µZi

). (15)

And Var(β̂
Z
) follows immediately by substituting C in (12) with C1 = (1− µZi

)/µZi
, which

is equal to C evaluated at η = θ = 1. By (12), the asymptotic variance of β̂1Z∗ and that of

β̂1Z are

Var(β̂1Z∗) =
1

m

{

EX(B
2C)−

EX(ABC)EX(ABC)

EX(A2C)

}−1

, (16)

Var(β̂1Z) =
1

m

{

EX(B
2C1)−

EX(ABC1)EX(ABC1)

EX(A2C1)

}−1

. (17)



MLE from error-prone group testing data 12

The ARE of β̂1Z∗ to β̂1Z, ARE(β̂1Z∗ , β̂1Z), follows by forming the ratio of (17) over (16).

Setting ni = 1 for i = 1, . . . ,m in the above general results gives the asymptotic vari-

ance results for individual testing presented in Neuhaus (1999). There, the monotonicity of

ARE(β̂1Y ∗ , β̂1Y ) with respect to η and θ is explicitly established only for the special case with

β1 = 0, where β̂1Y ∗ and β̂1Y are the counterpart estimators of β̂1Z∗ and β̂1Z for individual

testing, respectively. Here, we are able to show in Appendix E the counterpart properties

for ARE(β̂1Z∗ , β̂1Z) for an arbitrary β1 and ni ≥ 1. These properties are summarized in

Theorem 4.1.

Theorem 4.1 If 1 < η + θ < 2, then ARE(β̂1Z∗ , β̂1Z) obtained from (16) and (17) lies in (0,

1), and is increasing in η and θ for all β1.

4.2 Effects of grouping on efficiency

With equal group size and β1 = 0, ARE(β̂1Z∗ , β̂1Z) obtained in Section 4.1 reduces to

ARE(β̂1Z∗ , β̂1Z) =
(η + θ − 1)2p1Zp0Z

p1Z
∗p0Z

∗

, (18)

where p1Z and p1Z
∗ are equal to µZ and µZ

∗ in (14) and (15) evaluated at β1 = 0, respectively,

and p0Z = 1− p1Z, p0Z
∗ = 1− p1Z

∗ . We show in Appendix F that, with p1Y and (η, θ) fixed,

the ARE can be maximized at an n larger than 1. This finding is elaborated in Theorem 4.2,

where we use Int(t) to denote the integer that is closest to t.

Theorem 4.2 Define p1Y = g−1(β0) ∈ (0, 1) and p0Y = 1− p1Y .

Case I: When η = θ 6= 1, ARE(β̂1Z∗ , β̂1Z) in (18) is maximized at n = 1 if p1Y ≥ 0.5; and it

is maximized at n = Int(log 0.5/ log p0Y ) if p1Y < 0.5.

Case II: When η 6= θ ∈ (0.5, 1), ARE(β̂1Z∗ , β̂1Z) in (18) is maximized at

n = max

(

1, Int

[

log
η(1− η)− {η(1− η)θ(1− θ)}1/2

(η + θ − 1)(θ − η)

/

log p0Y

])

. (19)

When β1 6= 0, one can numerically obtain the ARE associated with the covariate effect of
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interest given any model/parameter/covariate configurations based on (16) and (17). Adopt-

ing the settings of the large-sample study in Section 3.3, we compute ARE(β̂1Z∗ , β̂1Z) when

β1 = 0, 0.5, 1. Under the current configurations, a larger β0 or β1 gives a higher prevalence

rate, P (Y = 1), which ranges from 0.047 to 0.155 here. Figure 2 presents these asymptotic

quantities, which convey two key messages. First, ARE(β̂1Z∗ , β̂1Z) decreases as misclassifi-

cation happens more often. Second, when the prevalence rate is low, non-naive inference

based on group testing data can be more robust to misclassification in terms of efficiency

than inference drawn from individual testing data. Moreover, the value of n that maximizes

ARE(β̂1Z∗ , β̂1Z) when β1 = 0 coincides with what is indicated by Theorem 4.2.

It is worth noticing in Figure 2 that many features of the ARE when β1 = 0 are also

observed when β1 6= 0, and the overall trend of how the ARE in (18) varies as n varies can be

a reasonable approximation of the phenomenon when β1 6= 0. We observe that, in general,

the group size maximizing the ARE when β1 6= 0 is smaller than the corresponding optimal

group size when β1 = 0. Therefore the optimal group size given in Theorem 4.2 can serve as

an upper bound of a preferable group size when planning for a group testing study.

5. Applications

Here we consider two studies where group testing is involved. Depending on the type of

data available in each study, we focus on the attenuation effect of misclassification on naive

MLEs in the first study, and look into the efficiency loss in the consistent MLEs due to

misclassification in the second study.

5.1 IPP data for chlamydia

As described in Section 1, subjects enrolled in the IPP are tested using an imperfect

test for chlamydia and/or gonorrhea. Besides the testing results, covariate information of

subjects, such as age, race, ethnicity, are also recorded. These covariate information are
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potentially useful for predicting prevalence and designing efficient group testing strategies

(McMahan, Tebbs, and Bilder, 2012a,b). In order to compare inference from individual

testing data with inference from group testing data, we opt to use data from the state of

Nebraska, where individual testing data are collected. In particular, we will analyze data re-

garding chlamydia from year 2008 for 14,441 female subjects, whose specimens were collected

via cervix swabs. Also, to illustrate individual/group-testing regression with multivariate

covariates, we include age (Xij,1) and race (Xij,2) as covariates of interest, and denote by

β
1
= (β1,1, β1,2)

T the vector of corresponding covariate effects.

In this sample, 12% of the females were under the age of 18 and 80% between age 18 to

29. Caucasians (for which Xij,2 = 1) contribute 81% of this sample, and African-Americans

(for which Xij,2 = 2) account for 11%. Finally, 7.19% were tested positive for chlamydia

in this sample of size 14,441. With the response being the indicator of a positive test for

chlamydia, considering a logistic regression for the individual testing data, we carry out both

naive regression analysis (by assuming a perfect test) and non-naive regression analysis. To

perform the non-naive analysis, we adopt the sensitivity η = 0.942 and specificity θ = 0.976

given in Tebbs, McMahan, and Bilder (2013, Table 2). After this round of individual-

testing data analysis, we create six group testing data sets resulting from the combination

of two pooling strategies (homogeneous pooling and random pooling) and three group-size

configurations. According to the first configuration, 2063 pools of equal size are created,

with ni = 7, for i = 1, . . . , 2063. Under the second configuration, we form a total of 963

pools, with ni = 15, for i = 1, . . . , 962 and n963 = 11. The third configuration leads to pools

of unequal sizes, with 509 pools of size 5, 1000 pools of size 7, and 544 pools of size 9. When

homogeneous pooling is employed, before partitioning the raw individual testing data into

pools, we sort the data first by age then by race. Based on each of the six sets of group testing

data, we implement naive analysis and non-naive analysis successively. Table 1 presents these
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estimates of the covariates effects from the individual testing data and six induced group

testing data sets. Also listed in Table 1 is an estimate of the attenuation factor, Ĥ ′, defined as

the ratio of the naive estimate over its non-naive counterpart. Appendix G provides the SAS

IML code for computing the individual-testing naive estimates, group-testing naive estimates

for both random pooling and homogeneous pooling under the second pooling configuration,

and the non-naive counterpart estimates of all the above.

The consistent estimates of β
1
from most of the above analyses seem to suggest significant

covariate effects for both age and race. The naive estimates of β
1
from individual testing

data suffers far more attenuation due to misclassification than the naive estimates from any

one of the six group testing data sets. This is reminiscent of the bias analysis of naive MLEs

in Section 3. Moreover, we evaluate the attenuation factor in (11) at a range of n in the

context of the data analyzed here, and find that the attenuation factor is maximized at

n = 8 in the current setting. Suppose one wishes to use group testing in Nebraska in the

follow-up study using a new assay, of which one is unsure about the testing errors. Following

the discussion regarding a preferable group size to alleviate attenuation effect in Section 3.3,

we would recommend a group size slightly below 8 to avoid too much underestimation of

covariate effects due to inaccurate testing errors used in the likelihood-based inference.

5.2 Kenyan data for HIV

The data set to be entertained in this subsection was analyzed in Vansteelandt, Goetghe-

beur, and Verstraeten (2000), who compared the cost and precision of parameter estimates

when individual testing data were used with the estimates from group testing data created

according to different pooling strategies. This data set was collected during the first year

of a surveillance study in Kenya aimed at assessing the HIV epidemic at that time and

monitoring progress in the following years. More specifically, during that year of the study,

individual testing data were collected in order to evaluate the feasibility of using group test-
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ing data in the upcoming years for estimating covariate-adjusted HIV prevalence, where the

recorded covariates include parity, age, education, etc. The binary response for this study is

defined as the indicator of being HIV positive suggested by tests on subjects’ serum samples.

For illustration purposes, we consider parity as the covariate. Similar to the treatment on

missing data in Vansteelandt, Goetghebeur, and Verstraeten (2000), we only use data from

the 705 adult females, out of a total of 787, whose information of parity and test results

were not missing. Among these 705 subjects, the values of parity range from 0 to 12, with

95% of them below 6. Because the sensitivity and specificity of the test were reported to

be 1 and 0.9997, respectively, we treat the observed responses error-free. With a (nearly)

perfect test, we can artificially create error-prone individual testing responses and group

testing responses, which allows us to observe the efficiency loss due to misclassification in

the non-naive inference.

Before we create artificial error-prone responses, with the logistic link and parity as the

covariate in (1), we first compute MLEs of the regression parameters using the observed

(deemed error-free) individual testing data of 705 subjects, denoted by β̂
Y
= (β̂0Y , β̂1Y )

T.

Then we create an induced group testing data set via random pooling with ni = 3 for

i = 1, . . . , 235, based on which we obtain the MLEs of β, namely, β̂
Z
. The estimates of the

covariate effect are β̂1Y = −0.2488 (0.0930) and β̂
1Z

= −0.2633 (0.1801), with the corre-

sponding estimated standard errors in parentheses, obtained following the sandwich variance

estimation (Stefanski and Boos, 2002). Next, we create error-prone responses based on the

observed individual testing outcomes using a sensitivity and a specificity of 0.98. Finally, we

compute two sets of non-naive MLEs (by acknowledging η = θ = 0.98), first using the error-

prone individual testing data, resulting in estimates denoted by β̂
Y

∗ = (β̂0Y ∗ , β̂1Y ∗)T, second

β̂
Z

∗ based on an induced group testing set resulting from random pooling like previously

done. The estimates of the covariate effect are β̂1Y ∗ = −0.2550 (0.1407) and β̂1Z∗ = −0.2721
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(0.1862). Comparing this round of estimation with the previous round before contami-

nating the observed responses, we have an estimate of ARE(β̂1Y ∗ , β̂1Y ) and an estimate of

ARE(β̂1Z∗ , β̂1Z) by forming the ratios of the corresponding estimated variances. These es-

timates are ˆARE(β̂1Y ∗ , β̂1Y ) ≈ 0.4368 and ˆARE(β̂1Z∗ , β̂1Z) ≈ 0.9356. This reinforces the

finding in Section 4 that efficiency loss in consistent estimators due to misclassification can

be less for group testing data than for individual testing data when the trait of interest is

rare. Among the 705 individuals in this study, around 7.2% were found HIV positive.

If one wishes to plan in the future a group testing study for a comparable population,

assuming η = θ 6= 1 and using 0.072 as an estimate of p1Y , one may apply Theorem 4.2 and

find that, if β1 = 0, the optimal group size is n = 9. Because the analysis using the error-free

individual testing data seems to suggest β1 6= 0, one may consider a group size smaller than 9

to protect against too much efficiency loss in the consistent maximum likelihood estimation

due to misclassification.

6. Discussion

With the individual testing response being a special case of the group testing response

(with group size always equal to 1), our study leads to some interesting discoveries regarding

the comparisons between group-testing inference and individual-testing inference. Although

statistical inference in the presence of misclassification are understandably compromised by

misclassification in responses, whether it is grouped responses or individual responses, we

show that one can gain from group-testing inference more robustness to misclassification in

regard to both accuracy and precision. Although robustness here does not imply consistency

or no loss of efficiency, it is comforting for group testing practitioners that, compared to

inference from a more costly study that produces individual testing data, inference based on

the cheaper group testing data can be less compromised by misclassification.

The contribution of this study is at least twofold. First, the robustness features estab-
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lished in this study elongate the list of advantages of group testing compared to individual

testing. This is a valuable addition especially considering that group testing has been mostly

advocated for its savings in time and cost, rarely for its gain in statistical inference. Sec-

ond, as a special form of error contamination, misclassification in binary responses has been

studied far less than problems involving error-prone covariates. There is the folklore in the

field of measurement error implying that measurement error compromise statistical infer-

ence, whether one ignores it or accounts for it when making inference. Although we do not

disagree with the folklore, we show in this study that the adverse effects can be alleviated

if error-prone binary responses are strategically pooled in groups. Our theoretical findings

provide practical guidance on such strategic pooling. To recap, if one ignores misclassifica-

tion in inference, one should use a group size slightly below that maximizes the attenuation

factor in (11) to avoid too much bias; if one accounts for the testing errors, one may use the

group size no larger than that specified in Theorem 4.2 to alleviate efficiency lost.

Stepping outside of the above two research fields, results from this study have further

intriguing implications. Even without misclassification, certainly efficiency loss is inevitable

when group testing data are used for likelihood-based inference in place of individual testing

data. Even without pooling individuals into groups, expectedly inference becomes biased

in the presence of misclassification and it is uncounted for, except in special cases such

as when β1 = 0. Both actions of misclassifying and pooling lead to coarsened data, that

is, data with less information than before the action takes place. Effects of each form of

coarsening by itself on statistical inference are better understood, and mostly agree with

one’s intuition. But when both forms of coarsening occur, the interaction effects are far less

intuitive and merit more careful theoretical investigation. Our findings in this study suggest

that, as undesirable as each coarsening is from the statistical standpoint, the interplay of

two coarsening can unexpectedly yield inference outcomes with some desirable properties.
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This implication points at the bigger picture of inference based on coarsened data, and,

in particular, raises the question of when it is possible, and how, to gain more from less

informative data.

Supporting information

Additional supporting information for this article is available online:
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Fig. 1. The limiting MLE of β1 under homogeneous pooling, β∗
1,h (solid lines), the limiting

MLE under random pooling, β∗
1,r (dashed lines), and the attenuation factor H ′(0, n) (dotted

lines) versus group size n when the prevalence rate is approximately 0.069 (left panels), 0.105

(middle panels), and 0.156 (right panels), with (η, θ) = (0.9, 0.95) (upper panels), and (0.9,

0.8) (lower panels).
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Fig. 2. Asymptotic relative efficiency (ARE) of β̂1Z∗ to β̂1Z versus group size n when β0 = −3

(left panels), −2.5 (middle panels), −2 (right panels), with (η, θ) = (0.9, 0.95) (upper panels),

(0.9, 0.8) (lower panels). Each panel includes ARE when β1 = 0 (solid lines), 0.5 (dashed

lines passing solid or empty circles), and 1 (dotted lines passing solid or empty circles).

When β1 6= 0, ARE associated with homogeneous pooling are depicted by lines passing solid

circles, and ARE associated with random pooling are depicted by lines passing empty circles.
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Table 1

Naive maximum likelihood estimates and consistent maximum likelihood estimates of β
1

computed using IPP data, where β
1
contains two elements, β1,1 and β1,2, associated with

age and race effects, respectively. Attenuation factors are estimated by Ĥ ′. Numbers in

parentheses beneath the estimates are estimated standard errors of the estimates based on

sandwich variance estimation (Stefanski and Boos, 2002). The code “UE” in the first

column refers to the case with the third group-size configuration

Naive estimates Non-naive estimates Ĥ ′

β1,1 β1,2 β1,1 β1,2 β1,1 β1,2

Individual testing −0.0632 0.0713 −0.0998 0.0908 0.6325 0.7857

(0.0081) (0.0178) (0.0119) (0.0219)

Homogeneous pooling

n = 7 −0.0550 0.0643 −0.0606 0.0687 0.9081 0.9368

(0.0081) (0.0228) (0.0091) (0.0248)

n = 15 −0.0439 0.0342 −0.0498 0.0389 0.8819 0.8792

(0.0089) (0.0314) (0.0105) (0.0370)

UE −0.0555 0.0670 −0.0576 0.0725 0.9620 0.9244

(0.0080) (0.0235) (0.0072) (0.0205)

Random pooling

n = 7 −0.0851 0.0811 −0.0911 0.0864 0.9341 0.9396

(0.0186) (0.0363) (0.0203) (0.0380)

n = 15 −0.0996 0.1028 −0.1104 0.1112 0.9020 0.9241

(0.0314) (0.0589) (0.0352) (0.0634)

UE −0.0774 0.0891 −0.0822 0.0932 0.9408 0.9565

(0.0200) (0.0370) (0.0214) (0.0392)


