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Abstract
We propose new parametric frameworks of regression analysis with the condi-
tional mode of a bounded response as the focal point of interest. Covariate effects
estimation and prediction based on the maximum likelihood method under two
new classes of regression models are demonstrated. We also develop graphical
and numerical diagnostic tools to detect various sources of model misspecifica-
tion. Predictions based on different central tendency measures inferred using
various regression models are compared using synthetic data in simulations.
Finally, we conduct regression analysis for data from the Alzheimer’s Disease
Neuroimaging Initiative to demonstrate practical implementation of the pro-
posed methods. Supporting Information that contain technical details and addi-
tional simulation and data analysis results are available online.

KEYWORDS
beta distribution, generalized biparabolic distribution, linear predictor, link function, maxi-
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1 INTRODUCTION

The statistical models and methodology presented in this article are motivated by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) launched in 2003 and led by Principal Investigator Michael W. Weiner, MD. It is an ongoing study
with a public–private partnership in the United States and Canada that gathers and analyzes thousands of subjects’ brain
scans, genetic profiles, and biomarkers in blood and cerebrospinal fluid. Themain goal of ADNI is to understand relation-
ships among the clinical, cognitive, imaging, genetic and biochemical biomarker characteristics of the entire spectrum
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F IGURE 1 Histogram of ADAS-11 scores at month-12 of subjects in ADNI Phase 1 study

of Alzheimer’s diseases (AD). Ultimately, the hope is to achieve early detection of AD in preparation for early interven-
tion of the disease progression and also to help recruiting appropriate individuals in clinical trials. Clinical outcomes
for assessing one’s cognitive function in ADNI are bounded scores from well-established neuropsychological tests, such
as the Alzheimer’s disease assessment scale (ADAS; Kueper, Speechley, & Montero-Odasso, 2018; Rosen, Mohs, & Davis,
1984),mini-mental state examination (Tombaugh&McIntyre, 1992), andRey auditory verbal learning test (Schmidt, 1996).
Distributions of these test scores from the ADNI cohort are typically heavy-tailed and skewed. As an example, Figure 1
presents histogram of the ADAS-cognition subscale scores, also referred to as ADAS-11, of subjects at month 12 who were
diagnosed with late mild cognitive impairment (LMCI) when they entered the ADNI Phase 1 study.
In order to effectively reveal the association between one’s cognitive skill and potential influential biomarkers, we for-

mulate parametric mode regression models tailored for heavy-tailed, skewed, and bounded response data, with efficient
prediction as our goal of statistical inference besides identifying influential biomarkers for AD. Under the nonparamet-
ric framework, Wang, Chen, Cai, Shen, and Huang (2017) carried out mode regression analysis of ADNI data to predict
cognitive impairment using neuroimaging data. They noted that mean regression analysis for studying the association
between the cognitive assessment of an individual and the individual’s neuroimaging features failed to yield scientifically
meaningful results due to the heavy-tailed and skewed noise presented in data typically arising in this application. In
addition to biomedical applications, mode regression for association study has been routinely used in econometrics (Ho,
Damien, & Walker, 2017; Kemp & Silva, 2012; Lee, 1989, 1993), astronomy (Bamford et al., 2008), and traffic engineering
(Einbeck & Tutz, 2006). Kemp and Silva (2012) argued that the mode is the most intuitive measure of central tendency for
positively skewed data found in many econometric applications such as wages, prices, and expenditures. More generally,
the conditional mode serves as a more informative summary for associations between a response𝑌 and covariates𝐗 than
the conditional mean or median when the distribution of𝑌 given𝐗 is heavy-tailed or skewed. When comparing with pre-
dictions based on conditional means or medians, predictions based on conditional modes can provide more meaningful
estimated outcomes. Yao and Li (2014) showed that, when the interval width is fixed, a mode-based prediction interval
tends to have a higher coverage probability than a mean-based prediction interval.
Most existing works on mode regression involve nonparametric components (Chen, Genovese, Tibshirani, & Wasser-

man, 2016; Liu, Zhang, Zhao, & Lv, 2013; Yang & Yang, 2014; Yao & Li, 2014; Zhang, Zhao, & Liu, 2013; Zhao, Zhang,
Liu, & Lv, 2014). These nonparametric and semiparametric approaches are developed under the frequentist framework. A
few developments under the Bayesian framework include Yu and Aristodemou (2012) and Ho et al. (2017). Even though
nonparametric methods and semiparametric methods can protect against misleading inference caused by inadequate
parametric assumptions, often at the price of low statistical efficiency, it is not unreasonable to believe that an inference
procedure may still provide reliable inference for the mode of a distribution even when certain aspects, such as tails, of
the distribution are not well estimated by this procedure (Hall, 1992; Zhou &Huang, 2019). Hence, with the potential gain
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in efficiency, parametric regression models can be useful in studying the association between a response and covariates
via inferring the conditional mode.
Assuming a unimodal conditional distribution for the response, we formulate in Section 2 two new classes of mode

regression models for a bounded response. Bounded response data are ubiquitous in practice, with the ADAS-11 score as
one example. Other examples include rates or proportions, such as a disease prevalence, the fraction of household income
spent on food, and the proportion of food and hygienic waste in residential solid waste. Although, technically, one can
often map a bounded response to a new response whose support is the entire real line, say, via a logit transformation for a
rate response, and then carry out regression analysis on the new response, it is practically more appealing to directly study
the association between the original response and covariates. This practical consideration, along with the observation that
many proportion responses encountered in practice are asymmetrically distributed, motivated the beta regression model
proposed by Ferrari and Cribari-Neto (2004), with the mean of the beta distribution depending on covariates. Smithson
and Verkuilen (2006) followed a similar strategy to formulate a regression model for a response bounded on [0, 1], where
they specified a mean model and a variance model as functions of two sets of covariates separately. They later general-
ized this regression model by using a mixture of beta distributions (Verkuilen & Smithson, 2012). Starting from a beta
regressionmodel, Guolo and Varin (2014) incorporated the serial dependence between responses via a Gaussian copula to
model time series data bounded on the unit interval. Following the construction of their regression models, all the afore-
mentioned works carry out frequentist inference, mostly based on maximum likelihood. Under the Bayesian inferential
framework, Bayes, Bazán, and García (2012) replaced the beta distribution with the beta rectangular distribution, defined
as the mixture of a beta distribution and a uniform distribution, to achieve more robustness to outliers of a proportion
response. Figueroa-Zúñiga, Arellano-Valle, and Ferrari (2013) introduced mixed Bayesian regression models by incorpo-
rating random effects in the linear predictor when specifying the mean function. Also considering Bayesian regression
analysis for bounded data, Migliorati, Di Brisco, and Ongaro (2018) proposed a flexible beta distribution for the response
given covariates based on a special mixture of two beta distributions to balance between flexibility and tractability. Unlike
all the above regression models which focus on inferring the conditional mean of a bounded response, Bayes, Bazán, and
DeCastro (2017) developed quantile regressionmodels for bounded responses built upon on beta distributions. Barrientos,
Jara, and Quintana (2017) took on a fully nonparametric Bayesian approach to model the covariates-dependent distribu-
tion of a bounded response. One major feature of our work that distinguishes it from these existing works on regression
analysis for bounded data is that the conditional mode is the focal point of inference. This very key feature motivates our
construction of the regression models presented in Section 2
Following the model formulation, we outline maximum likelihood estimation of parameters in these models in Sec-

tion 2. In Section 3, we propose graphical and numerical diagnostics methods for detecting various sources of model
misspecification when one draws inference based on an assumed model in the two proposed families. Section 4 presents
simulation studies where we carry out mode regression analysis using these assumed models based on data generated
frommodels that may or may not belong to the two families. In these simulation experiments, we report maximum likeli-
hood estimates (MLEs) for covariate effects, operating characteristics of the proposed diagnostics methods, and prediction
intervals constructed based on the proposed mode regression models. In Section 5, we carry out mean and mode regres-
sion analysis for a dataset fromADNI. Finally, we summarize contributions of this work and discuss follow-up research in
Section 6.

2 TWO FAMILIES OF REGRESSIONMODELS ANDMAXIMUM LIKELIHOOD
ESTIMATION

2.1 Regression models

Without loss of generality, we assume fromnowon that the response variable has support on [0,1], since any other bounded
support can be rescaled to the unit interval. Inspired by the existing mean and quantile regression models for bounded
data originating from beta regression, we first formulate a beta mode regression model for a bounded response. Recall
that, for a random variable 𝑉 that follows a beta distribution, its probability density function (pdf) is given by

𝑓beta(𝑣; 𝛼1, 𝛼2) =
Γ(𝛼1 + 𝛼2)
Γ(𝛼1)Γ(𝛼2)

𝑣𝛼1−1(1 − 𝑣)𝛼2−1, for 𝑣 ∈ [0, 1], (2.1)
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F IGURE 2 Probability density functions of GBP distributions (red lines) with (𝜃,𝑚) = (0.2, 5) (solid line), (0.5, 5) (dashed line), and (0.8,
10) (dotted line), respectively, and beta density curves (blue lines) with the same mode and variance as those of the GBP densities depicted in
the same line type

where Γ(𝑡) is the gamma function and 𝛼1 and 𝛼2 are two positive shape parameters. When 𝛼1, 𝛼2 > 1, there is a unique
mode for the beta distribution given by 𝜃 = (𝛼1 − 1)∕(𝛼1 + 𝛼2 − 2). Directly including the mode in the parameterization
makes it more convenient to draw inference for the mode. For this reason, we set 𝛼1 = 1 + 𝑚𝜃 and 𝛼2 = 1 + 𝑚(1 − 𝜃),
where𝑚 > 0. This parameterization not only signifies the parameter of central interest, 𝜃, but also makes 𝛼1 and 𝛼2 larger
than one, ensuring the existence of a unique mode. The variance of the beta distribution under this parameterization is
(1 + 𝑚𝜃){1 + 𝑚(1 − 𝜃)}∕{(2 + 𝑚)2(3 + 𝑚)}, suggesting a smaller variance as𝑚 increases.
With the mode as our choice of central tendency measure for the bounded response, it is desirable to include the mode

as one of the canonical parameters in the response distribution without additional reparameterization as we do above for
a beta distribution. To the best of our knowledge, the family of generalized biparabolic distributions (GBP; García, Pérez,
& Rambaud, 2009) is the only named distribution family that, first, is defined on a bounded support, second, includes
symmetric and asymmetric distributions, and third, has the mode as the sole location parameter appearing in the pdf.
More specifically, if 𝑉 follows a GBP distribution on the support [0, 1], its pdf is given by

𝑓GBP(𝑣; 𝜃,𝑚) =
(2𝑚 + 1)(𝑚 + 1)

(3𝑚 + 1)
𝑑𝑚(2 − 𝑑𝑚), (2.2)

where𝑚 is a positive shape parameter, and 𝑑 = 𝐼(0 < 𝑣 ≤ 𝜃)𝑣∕𝜃 + 𝐼(𝜃 < 𝑣 ≤ 1)(1 − 𝑣)∕(1 − 𝜃), in which 𝜃 ∈ (0, 1) is the
mode of the distribution, and 𝐼(⋅) is the indicator function. A larger 𝑚 leads to a GBP distribution more concentrated
around the mode with a smaller variance. Figure 2 depicts three GBP density functions, in comparison with three beta
density functions that share the same mode and variance as the corresponding depicted GBP distributions. This figure
shows the general pattern that, with the mode and variance fixed, a GBP density displays a sharper drop toward zero on
both sides of the mode than that for a beta density.
To complete the formulation of a regression model, we assume that, given𝐗, the mode of 𝑌 relates to a linear predictor

𝜂(𝐗) = 𝛽0 + 𝜷T
1𝐗 via a link function 𝑔(𝑡), that is,

Mode(𝑌|𝐗) = 𝜃(𝐗) = 𝑔{𝜂(𝐗)}. (2.3)

Commonly employed link functions include logit, probit, log–log, and complementary log–log. To this end, we have two
regression models for 𝑌 once a link function is chosen, written succinctly as

𝑌|𝐗 ∼ beta(1 + 𝑚𝜃(𝐗), 1 + 𝑚{1 − 𝜃(𝐗)}),

𝑌|𝐗 ∼ GBP(𝜃(𝐗), 𝑚),

which are henceforth referred to as the beta mode model and the GBP mode model, respectively. Note that neither
regression model is a generalized linear model (McCullagh, 2019) because neither (2.1) nor (2.2) is in the form of a
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density corresponding to an exponential dispersion distribution (Jørgensen, 1987) when they are parameterized via
𝜃 and 𝑚 as described above. Both regression models allow heteroscedasticity in the sense that the conditional vari-
ance of 𝑌 depends on covariates. For example, under the beta mode model, Var(𝑌|𝐗) = {1 + 𝑚𝜃(𝐗)}[1 + 𝑚{1 − 𝜃(𝐗)}]∕
{(2 + 𝑚)2(3 + 𝑚)}.

2.2 Maximum likelihood estimation

Given a random sample of size 𝑛,  = {(𝑌𝑖, 𝐗𝑖), 𝑖 = 1, … , 𝑛}, the log-likelihood function associated with a beta mode
model is

𝓁beta(𝛀;) = 𝑛 log Γ(2 + 𝑚) −
𝑛∑

𝑖=1
log (Γ{1 + 𝑚𝜃(𝐗𝑖)}Γ[1 + 𝑚{1 − 𝜃(𝐗𝑖)}])

+ 𝑚
𝑛∑

𝑖=1
[𝜃(𝐗𝑖) log𝑌𝑖 + {1 − 𝜃(𝐗𝑖)} log(1 − 𝑌𝑖)].

Maximizing 𝓁beta(𝛀;)with respect to𝛀 = (𝜷T,𝑚)T yields theMLE for𝛀 under thismodel, where 𝜷 = (𝛽0, 𝜷
T
1)

T. Because
the beta family is an exponential family, the corresponding likelihood function is concave, suggesting the existence of a
unique MLE for𝛀. Furthermore, regularity conditions required for the MLE to be consistent and asymptotically normal
can also be easily verified for this regression model.
When a GBP mode model is assumed, by (2.2), the log-likelihood function is given by

𝓁GBP(𝛀;) = 𝑛 log {
(2𝑚 + 1)(𝑚 + 1)

3𝑚 + 1 } + 𝑚
𝑛∑

𝑖=1
log 𝑑𝑖 +

𝑛∑

𝑖=1
log

(
2 − 𝑑𝑚

𝑖
)
, (2.4)

where 𝑑𝑖 = 𝐼{0 < 𝑌𝑖 ≤ 𝜃(𝐗𝑖)}{𝑌𝑖∕𝜃(𝐗𝑖)} + 𝐼{𝜃(𝐗𝑖) < 𝑌𝑖 < 1}{(1 − 𝑌𝑖)∕{1 − 𝜃(𝐗𝑖)}. Maximizing𝓁GBP(𝛀;)with respect to
𝛀 yields theMLE for𝛀under theGBPmode regressionmodel. Unlike the beta family, theGBP family is not an exponential
family. For simplicity, let us assume𝑚 known in (2.2) and focus on the density as a function of 𝜃 for now. It can be shown
that lim𝜃→𝑣+(𝜕2∕𝜕𝜃2) log 𝑓GBP(𝑣; 𝜃,𝑚) = −2𝑚2∕𝑣2, whereas lim𝜃→𝑣−(𝜕2∕𝜕𝜃2) log 𝑓GBP(𝑣; 𝜃,𝑚) = −2𝑚2∕(1 − 𝑣)2, indi-
cating that the Hessian function is discontinuous at any realization of the distribution except for 𝑣 = 0.5. It can also be
shown that the GBP log-likelihood is concave in a neighborhood of the truth almost surely. Moreover, regularity condi-
tions (Cox &Hinkley, 1979, p. 281) for the consistency of MLE as themaximizer of (2.4) are satisfied for the GBP regression
model, but additional conditions needed to establish asymptotic normality for MLE are not.

3 MODEL DIAGNOSTICS

Basing statistical inference on a specific parametric model raises the concern of model misspecification that can lead to
misleading inference results. This concern motivates the diagnosis tools we develop in this section.

3.1 Graphical diagnosis

Half-normal residual plots with simulated envelopes (Atkinson, 1987) are useful graphical tools for checking the goodness-
of-fit of a model with complex response distributions. Let �̂�(𝒙) and �̂�2(𝒙) denote the MLEs for the mean and variance of
𝑌 given 𝐗 = 𝒙, respectively, resulting from an assumed regression model. Define the absolute standardized residual as
𝑟𝑖 = |𝑌𝑖 − �̂�(𝐗𝑖)|∕�̂�(𝐗𝑖). Given data = {(𝑌𝑖, 𝐗𝑖), 𝑖 = 1, … , 𝑛}, the algorithm below describes how to obtain a half-normal
residual plot with a simulated envelope.
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Step 1 Fit the assumed regressionmodel to data, calculate the absolute standardized residuals, then order the residuals
from smallest to largest, denoted as {𝑟(𝑖), 𝑖 = 1, … , 𝑛}. Plot 𝑟(𝑖) against the half-normal quantile 𝑞𝑖 = Φ−1{(𝑖 + 𝑛 −
0.125)∕(2𝑛 + 0.5)}, for 𝑖 = 1, … , 𝑛, where Φ(⋅) is the cumulative distribution function of 𝑁(0, 1).

Step 2 For 𝑘 = 1,… , 𝐾, conditioning on 𝐗𝑖 , generate a new response 𝑌∗(𝑘)
𝑖 from the estimated regression model resulting

from Step 1, for 𝑖 = 1, … , 𝑛. This produces new data∗(𝑘) = {(𝑌∗(𝑘)
𝑖 , 𝐗𝑖), 𝑖 = 1, … , 𝑛}, for 𝑘 = 1,… , 𝐾.

Step 3 For 𝑘 = 1,… , 𝐾, fit the assumed regression model to data ∗(𝑘) and calculate the ordered absolute standardized
residuals {𝑟∗(𝑘)(𝑖) , 𝑖 = 1, … , 𝑛}.

Step 4 Compute 𝑟𝐿𝑖 = min1≤𝑘≤𝐾{𝑟
∗(𝑘)
(𝑖) } and 𝑟𝑈𝑖 = max1≤𝑘≤𝐾{𝑟∗(𝑘)(𝑖) }, for 𝑖 = 1, … , 𝑛. Plot points {(𝑥, 𝑦) ∶ (𝑞𝑖, 𝑟𝐿𝑖 ), 𝑖 = 1, … , 𝑛}

and {(𝑥, 𝑦) ∶ (𝑞𝑖, 𝑟𝑈𝑖 ), 𝑖 = 1, … , 𝑛} on the same plot obtained in Step 1 to form the envelope.

Herewe set𝐾 = 19 as suggested byAtkinson (1987). Thisway, the resulting envelope has a probability approximately equal
to 0.95 to cover the ordered residuals 𝑟(𝑖) obtained from the original data if the assumedmodel agrees with the true model.
A substantially larger proportion of residuals falling outside the envelope indicates a lack-of-fit of the assumed model.

3.2 Score tests for model diagnosis

To assess the adequacy of an assumed regression model quantitatively, we develop tests using score functions constructed
based on matching moments. The proposed score tests exploit certain moments of the response variable or functions of it
that are special in some way so that they are difficult to be estimated well via maximizing a misspecified likelihood func-
tion.
When the assumed model is a beta mode model, we construct a bivariate score function based on the following results

relating to a beta random variable 𝑉:

𝐸(log𝑉) = 𝜓(𝛼1) − 𝜓(𝛼1 + 𝛼2),

𝐸(𝑉 log𝑉) =
𝛼1{𝜓(𝛼1 + 1) − 𝜓(𝛼1 + 𝛼2 + 1)}

𝛼1 + 𝛼2
,

where𝜓(𝑡) = {(𝑑∕𝑑𝑡)Γ(𝑡)}∕Γ(𝑡) is the digamma function.Matching these two expectationswith their sample counterparts,
we formulate the following score function evaluated at (𝑌𝑖, 𝐗𝑖) for model diagnosis when the assumed regression model
is a beta mode model:

𝐒𝑖,beta(𝛀) =
⎡
⎢
⎣

log𝑌𝑖 − 𝜓{1 + 𝑚𝜃(𝐗𝑖)} + 𝜓(2 + 𝑚)

𝑌𝑖 log(𝑌𝑖) −
{1 + 𝑚𝜃(𝐗𝑖)}[𝜓{2 + 𝑚𝜃(𝐗𝑖)} − 𝜓(3 + 𝑚)]

2 + 𝑚

⎤
⎥
⎦
. (3.1)

If the assumed model is a GBP mode model, we formulate a bivariate score function based on matching the first two
moments of 𝑌|𝐗 ∼ GBP(𝜃(𝐗), 𝑚) (García et al., 2009),

𝐸(𝑌|𝐗) =
6𝑚2𝜃(𝐗) + 7𝑚 + 2
6𝑚2 + 14𝑚 + 4

,

Var(𝑌|𝐗) =
{
4(3𝑚 + 1)2(𝑚 + 2)2(2𝑚 + 3)(𝑚 + 3)

}−1[
4𝑚2(37𝑚2 + 61𝑚

+10)𝜃(𝐗){𝜃(𝐗) − 1} + 82𝑚4 + 247𝑚3 + 247𝑚2 + 96𝑚 + 12
]
.

That is, the score function evaluated at (𝑌𝑖, 𝐗𝑖) for assessing the adequacy of an assumed GBP mode model is

𝐒𝑖,GBP(𝛀) = [
𝑌𝑖 − 𝐸(𝑌𝑖|𝐗𝑖)

𝑌2
𝑖 − Var(𝑌𝑖|𝐗𝑖) − {𝐸(𝑌𝑖|𝐗𝑖)}2

] . (3.2)
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Generically denote by 𝐒𝑖(𝛀) the score function in (3.1) or (3.2), depending on whether one assumes a beta mode model
or a GBP mode model. We mimic the Hotelling’s 𝑇2 statistic (Hotelling, 1931) to define the following test statistic:

𝑄(�̂�;) = 𝑛 − 2
2(𝑛 − 1)

𝐒
T
�̂�
−1

𝐒, (3.3)

where �̂� is the MLE of 𝛀 under the assumed model, 𝐒 = 𝑛−1 ∑𝑛
𝑖=1 𝐒𝑖(�̂�), and �̂� = {𝑛(𝑛 − 1)}−1 ∑𝑛

𝑖=1{𝐒𝑖(�̂�) − 𝐒}{𝐒𝑖(�̂�) −
𝐒}T is an estimator for the variance-covariace of 𝐒. Under the null hypothesis that the assumedmodel is the truemodel, one
has 𝐸(𝐒) = 0 when evaluating �̂� at the truth, and thus a small value for 𝑄(�̂�;) is expected under the null. In contrast,
when the assumed model differs from the true model to the extent that 𝐸(𝐒) substantially deviates from zero, a large
realization of 𝑄(�̂�;) is expected. According to Hotelling (1931), if 𝐒𝑖(𝛀) is a bivariate normal random variable, then
𝑄(𝛀;) ∼ 𝐹2,𝑛−2 under the null. With a response supported on [0, 1], a bivariate normal is not likely to approximate
well the distributions of the scores in (3.1) and (3.2), although a large 𝑄(�̂�;) still implies poor fit for relevant moments
and thus casts doubt on the assumed model. To accurately approximate certain percentiles of the null distribution of
𝑄(�̂�;), we use a parametric bootstrap procedure that leads to an estimated 𝑝-value associated with the test statistic. The
algorithm in supplementary Section S1 outlines the bootstrap procedure under the null stating that the true model is a
GBP mode model. A similar bootstrap procedure is used to estimate the 𝑝-value of the test statistic when one assumes a
beta mode model.
Empirical evidence from simulation studies (supplementary Figure S3) suggest that this bootstrap procedure can esti-

mate the tail of the null distribution of 𝑄(�̂�;) well enough to preserve the right size of the proposed score tests. Besides
howwell one can estimate certain percentiles of a null distribution, operating characteristics of the score tests also depend
on the extent of distortion onmoment estimation when an inadequatemodel is assumed.More empirical evidence on this
aspect are presented next, along with the performance of maximum likelihood estimation and predictions based on syn-
thetic data generated from various regression models.

4 SIMULATION STUDY

Source code to reproduce the results in this section is available as Supporting Information on the journal’s web page
(http://onlinelibrary.wiley.com/doi/xxx/suppinfo).

4.1 Design of simulation experiments

In all experiments, we simulate a bivariate covariate,𝐗 = (𝑋1, 𝑋2)T, as the predictor in a regressionmodel. When carrying
out regression analysis, we assume a linear predictor, 𝜂(𝐗) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2, and the logit link 𝑔(𝑡) = 1∕(1 + 𝑒−𝑡) in
(2.3), despite the true data generating process.
When conducting regression analysis assuming a beta mode model, we first simulate 𝑋2 from Bernoulli(0.5), and then

generate data for 𝑋1 according to 𝑁(𝐼(𝑋2 = 1) − 𝐼(𝑋2 = 0), 1). Given covariates data, responses are generated from each
of the following four conditional distributions:

(B1) 𝑌|𝐗 ∼ beta(1 + 𝑚𝜃(𝐗), 1 + 𝑚{1 − 𝜃(𝐗)}), where 𝜃(𝐗) = 1∕[1 + exp{−𝜂(𝐗)}], with 𝜂(𝐗) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2;
(B2) 𝑌|𝐗 ∼ beta(1 + 𝑚𝜃(𝐗), 1 + 𝑚{1 − 𝜃(𝐗)}), where 𝜃(𝐗) = 1∕[1 + exp{−𝜂(𝐗)}], with 𝜂(𝐗) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2

1 +
𝛽3𝑋2;

(B3) 𝑌|𝐗 ∼ beta(1 + 𝑚𝜃(𝐗), 1 + 𝑚{1 − 𝜃(𝐗)}), where 𝜃(𝐗) = 0.5Φ[2{𝜂(𝐗) + 2}] + 0.5Φ[2{𝜂(𝐗) − 2}], with 𝜂(𝐗) = 𝛽0 +
𝛽1𝑋1 + 𝛽2𝑋2;

(B4) 𝑌|𝐗 ∼ GBP(𝜃(𝐗), 𝑚), where 𝜃(𝐗) = 1∕[1 + exp{−𝜂(𝐗)}], with 𝜂(𝐗) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2.

When a GBP mode model is assumed for regression analysis, we consider the following four regression models accord-
ing to which responses are generated after data for 𝑋1 are simulated from 𝑁(0, 1) and data for 𝑋2 are simulated from
Bernoulli(0.5):

http://onlinelibrary.wiley.com/doi/xxx/suppinfo
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TABLE 1 Averages of MLEs for parameters in a beta mode model and a GBP mode model across 300 Monte Carlo replicates generated
according to (B1) and (G1), respectively, and averages of the corresponding estimated standard deviations (ŝ.d.) in comparison with the
empirical standard deviations (s.d.)

MLE ŝ.d. s.d. MLE ŝ.d. s.d.
(B1) 𝑛 = 50 𝑛 = 100
𝛽0 0.973 (1.40) 0.225 (0.34) 0.243 1.011 (0.93) 0.162 (0.15) 0.161
𝛽1 0.983 (1.01) 0.173 (0.27) 0.174 1.000 (0.80) 0.123 (0.13) 0.138
𝛽2 1.005 (2.49) 0.411 (0.77) 0.431 0.982 (1.80) 0.290 (0.34) 0.311
log𝑚 2.413 (1.50) 0.224 (0.04) 0.260 2.347 (0.83) 0.159 (0.02) 0.144
(G1) 𝑛 = 50 𝑛 = 100
𝛽0 0.994 (0.49) 0.069 (0.12) 0.085 0.994 (0.31) 0.050 (0.06) 0.054
𝛽1 0.984 (0.44) 0.063 (0.13) 0.076 0.993 (0.29) 0.045 (0.07) 0.049
𝛽2 0.986 (0.74) 0.109 (0.19) 0.128 1.004 (0.47) 0.079 (0.08) 0.081
log𝑚 2.356 (0.81) 0.142 (0.01) 0.141 2.322 (0.61) 0.100 (0.01) 0.105

Numbers in parentheses are 100× (Monte Carlo standard errors) associated with the averages. The true parameter values are 𝜷 = (𝛽0, 𝛽1, 𝛽2)T = (1, 1, 1)T, and
log𝑚 = log 10 ≈ 2.303.

(G1) 𝑌|𝐗 ∼ GBP(𝜃(𝐗), 𝑚), where 𝜃(𝐗) = 1∕[1 + exp{−𝜂(𝐗)}], with 𝜂(𝐗) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2;
(G2) 𝑌|𝐗 ∼ GBP(𝜃(𝐗), 𝑚), where 𝜃(𝐗) = 1∕[1 + exp{−𝜂(𝐗)}], with 𝜂(𝐗) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2

1 + 𝛽3𝑋2;
(G3) 𝑌|𝐗 ∼ GBP(𝜃(𝐗), 𝑚), where 𝜃(𝐗) = 0.5Φ[2{𝜂(𝐗) + 2}] + 0.5Φ[2{𝜂(𝐗) − 2}], in which 𝜂(𝐗) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2;
(G4) 𝑌|𝐗 ∼ beta(1 + 𝑚𝜃(𝐗), 1 + 𝑚{1 − 𝜃(𝐗)}), where 𝜃(𝐗) = 1∕[1 + exp{−𝜂(𝐗)}], with 𝜂(𝐗) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2.

These simulation settings are designed to cover a wide range of scenarios that are of theoretical and practical inter-
est. For instance, cases (B1)–(B4) allow correlated covariates, whereas covariates in (G1)–(G4) are independent. More
importantly, we include three sources of model misspecification in this experiment that are frequently discussed in the
literature on parametric regression models. In particular, (B1) and (G1) create scenarios where the assumed model coin-
cides with the true model, and the other cases give rise to scenarios where we implement maximum likelihood esti-
mation under a misspecified model. Under (B2) and (G2), the assumed models misspecify the linear predictor; under
(B3) and (G3), the assumed models involve a misspecified link function for the mode; and under (B4) and (G4), the
assumed conditional distribution of 𝑌 given covariates is not from the same family that the true conditional distribution
belongs to.

4.2 Covariate effects estimation

Given each of the above data generating processes, we generate datasets {(𝑌𝑖, 𝑋1𝑖, 𝑋2𝑖)}𝑛𝑖=1 with 𝑛 = 50, 100. Under each
simulation setting, we repeat maximum likelihood estimation using 300 Monte Carlo datasets.
When the assumed model matches the true model, the MLE for 𝛀 is expected to be consistent estimator. Table 1 pro-

vides summary statistics for these MLEs and the estimated standard deviations associated with these estimates based
on data generated according to (B1) and (G1), respectively, with 𝑚 = 10 and 𝜷 = (1, 1, 1)T, where the estimated standard
deviations result from sandwich variance estimation for M-estimators (Boos & Stefanski, 2013, Section 7.2.1). The close
agreement between the MLE of𝛀 and the truth and the resemblance between the estimated standard deviations and the
empirical standard deviations suggest that the first twomoments of the asymptotic distribution of theMLEs are estimated
reasonably well.

4.3 Performance of model diagnosis methods

Besides covariate effects estimation, we also monitor operating characteristics of the model diagnostics tools proposed
in Section 3. Assuming a beta mode model, Figure 3 demonstrates the half-normal residual plots obtained based on one
dataset of size 𝑛 = 100 generated from each of (B1)–(B4), where 𝑚 = 80 in (B1)–(B3) and 𝑚 = 10 in (B4). Here setting
𝑚 = 80 for (B1)–(B3) is to make sure that the conditional variance under the beta model is similar to that under the GBP
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F IGURE 3 Half-normal residual plots with simulated envelopes based on one random sample of size 𝑛 = 100 when one assumes a beta
mode model for data generated from (B1)–(B4), shown in (a)–(d), respectively

model with 𝑚 = 10. Under (B1), where the assumed model matches the true data generating process, very few residuals
fall outside of the envelope. In contrast, a large proportion of the residuals are outside of the envelope under (B2), where
the linear predictor is misspecified. The plots under (B3) and (B4) also witness rather high proportions of residuals outside
of the envelope. These empirical evidence indicate that the half-normal residual plot is an effective graphical indicator of
various sources of model misspecification.
Assuming a GBP mode model, Figure 4 demonstrates the half-normal residual plots using one dataset of size 𝑛 = 100

generated from each of (G1)–(G4), where 𝑚 = 10 in (G1)–(G3), and 𝑚 = 80 in (G4). Again setting 𝑚 = 80 for (G4) is
to make sure that the conditional variance under the beta model is similar to that under the GBP model with 𝑚 = 10.
Similar to what one sees in the previous figure, in the absence of model misspecification as in (G1), most residuals are
within the envelope. A much larger proportion of residuals fall outside of the envelope in the presence of linear predictor
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F IGURE 4 Half-normal residual plots with simulated envelopes based on one random sample of size 𝑛 = 100 when one assumes a GBP
mode model for data generated from (G1)–(G4), shown in (a)–(d), respectively

misspecification as in (G2). The plots also exhibit a moderate to high proportion of residuals outside of the envelopes
under (G3) and (G4). Hence, the effectiveness of the half-normal residual plot for detecting various sources of model
misspecification is also evident when one assumes a GBP mode model.
Figure 5 presents the empirical power of the score tests proposed in Section 3.2 when a beta modemodel or a GBPmode

model is assumed, where the empirical power of a test is defined as the rejection rate of the test at significance level 0.05
across 300Monte Carlo replicates under each truemodel specification. Given one simulated dataset, we use 300 bootstrap
samples to estimate the 𝑝-value associated with a score test. These empirical power indicate that the size of the score tests
remain close to the nominal level in the absence of model misspecification, and, as the sample size grows, their power to
detect any one of the three sources of model misspecification increases. Under each assumed mode model, the proposed
score test has the highest power to detect a link misspecification, moderate power in response to a misspecified linear
predictor, and the lowest power when the conditional distribution family is misspecified. The low power to detect the
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F IGURE 5 Rejection rates across 300 Monte Carlo replicates associated with the score tests under (B1)–(B4) when a beta mode model
is assumed (in (a)), and under (G1)–(G4) when a GBP mode model is assumed (in (b)). True model settings are: solid lines for (B1) and (G1),
dashed lines for (B2) and (G2), dotted lines for (B3) and (G3), and dashed-dotted lines for (B4) and (G4). Red horizontal long-dashed lines are
reference lines at nominal level 0.05

last type of model misspecification, especially when a beta mode model is assumed, may suggest that, given a GBP mode
model, there exists a member in the family of beta mode models that can approximate the GBP mode model well enough
to produce reasonable estimates for the first two moments. Lastly, these numerical evidence of model misspecification
match nicely with the graphical evidence from half-normal residual plots in that a higher rejection rate observed for the
score test under one scenario usually goes with a higher proportion of residuals outside of the envelope in the half-normal
residual plot in the same scenario.

4.4 Predictions

Predicting an outcome is often one of the ultimate goals in regression analysis, such as in ADNI where accurate prediction
of ADprogression is amajor goal. Suppose𝒙 is the covariate value atwhich onewishes to predict a bounded outcome, such
as one’sADAS-11 score. Inwhat follows, at a nominal coverage probability 𝑞 ∈ (0, 1), we first construct a prediction interval
based on an estimated mode, denoted by 𝜃(𝒙, 𝑞), then we formulate a prediction interval based on an estimated mean,
denoted by𝜇(𝒙, 𝑞), and a prediction interval based on an estimatedmedian, denoted by𝜈(𝒙, 𝑞). Define 𝑒 = 𝑌 − 𝜃(𝒙)
as the mode residual, and denote by 𝑓𝑒(𝑒|𝒙) the pdf of 𝑒 given 𝐗 = 𝒙.
Under an assumed mode regression model, following maximum likelihood estimation of𝛀, one obtains the MLEs for

𝜃(𝒙) and 𝜇(𝒙), as well as an estimated pdf of 𝑒 given𝐗 = 𝒙. Denote these MLEs by �̂�(𝒙) and �̂�(𝒙), respectively, and denote
by 𝑓𝑒(𝑒|𝒙) the estimated pdf. Then, based on these estimates, the narrowest 𝜃(𝒙, 𝑞) is [�̂�(𝒙) + 𝑒1, �̂�(𝒙) + 𝑒2], where
𝑒1 < 0 < 𝑒2 satisfy 𝑓𝑒(𝑒1|𝒙) = 𝑓𝑒(𝑒2|𝒙) and ∫

𝑒2
𝑒1

𝑓𝑒(𝑒|𝒙) 𝑑𝑒 = 𝑞.
To formulate a (100 × 𝑞)%mean-based prediction interval, we first make sure that �̂�(𝒙) ∈ 𝜇(𝒙, 𝑞), then we construct

an interval with the desired coverage probability that is close to �̂�(𝒙) as much as possible in order to achieve the narrowest
𝜇(𝒙, 𝑞). Clearly, if �̂�(𝒙) already falls in 𝜃(𝒙, 𝑞) constructed above, which is the narrowest by construction, then one
may also use this interval as 𝜇(𝒙, 𝑞). Otherwise, we construct 𝜇(𝒙, 𝑞)with �̂�(𝒙) on one of the boundaries depending
on how �̂�(𝒙) compares with �̂�(𝒙). In particular, if �̂�(𝒙) ≥ �̂�(𝒙), then we set 𝜇(𝒙, 𝑞) = [�̂�(𝒙) − 𝑐, �̂�(𝒙)], where 𝑐 > 0 is

chosen such that ∫ �̂�(𝒙)
�̂�(𝒙) − 𝑐 𝑓𝑌|𝐗(𝑦|𝒙)𝑑𝑦 = 𝑞, in which 𝑓𝑌|𝐗(𝑦|𝒙) is pdf of the assumed distribution of 𝑌 given 𝐗 = 𝒙

evaluated at �̂�. If �̂�(𝒙) < �̂�(𝒙), then we let 𝜇(𝒙, 𝑞) = [�̂�(𝒙), �̂�(𝒙) + 𝑐], where 𝑐 > 0 satisfies ∫ �̂�(𝒙) + 𝑐
�̂�(𝒙) 𝑓𝑌|𝐗(𝑦|𝒙)𝑑𝑦 =
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F IGURE 6 Prediction intervals based on data from the beta mode model in (B1). Top panels (a) and (b) depict average empirical coverage
probabilities (across 300 Monte Carlo replicates) of mode-based prediction intervals (solid lines), those of mean-based prediction intervals
(dashed lines), and those of median-based prediction intervals (dotted lines) versus nominal coverage probabilities. Red dash-dotted lines
are 45◦ reference lines. Lower panels (c) and (d) depict ratios of the average width of mean-based prediction intervals over that of mode-
based prediction intervals (solid lines) and ratios of the average width of median-based prediction intervals over that of mode-based prediction
intervals (dashed lines) versus nominal coverage probabilities. Red dash-dotted horizontal lines are reference lines at value one. Panels (a) and
(c) are for 𝑛 = 50. Panels (b) and (d) are for 𝑛 = 100

𝑞. A (100 × 𝑞)% median-based prediction interval can be similarly constructed once an estimated median, denoted by
�̂�(𝒙), is obtained.
With the assumed model being a beta mode model, Figure 6 depicts in upper panels averages empirical coverage prob-

abilities of 𝜃(⋅, 𝑞), 𝜇(⋅, 𝑞), and 𝜈(⋅, 𝑞) versus nominal coverage probabilities 𝑞 when 300 Monte Carlo replicate
datasets are generated from (B1) with 𝜷 = (3, 1, 1), 𝑚 = 10 and 𝑛 = 50, 100, where 𝑞 ranges from 0.05 to 0.5. The empir-
ical coverage probability of each type of prediction intervals is obtained via fivefold cross-validation. Take 𝜃(⋅, 𝑞) as
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an example, its empirical coverage probability based on one dataset is defined as 𝑛−1 ∑5
𝑘=1

∑
𝑖∈𝑘

𝐼{𝑌𝑖 ∈ (−𝑘)
𝜃 (𝐗𝑖, 𝑞)},

where (−𝑘)
𝜃 (𝐗𝑖, 𝑞) is the (100 × 𝑞)% mode-based prediction interval constructed using data excluding the 𝑘th testing

dataset corresponding to the index set 𝑘, for 𝑘 = 1,… , 5. The lower panels of Figure 6 compare the average width of the
three types of prediction intervals.
According to these figures, mode-based prediction intervals, mean-based prediction intervals, and media-based predic-

tion intervals achieve similar empirical coverage probabilities that become closer to the nominal coverage probability as
𝑛 increases. More importantly, the mode-based prediction interval tends to be narrowest among the three, and the mean-
based prediction interval is the widest. By construction, it is expected that 𝜃(𝒙, 𝑞) = 𝜇(𝒙, 𝑞) = 𝜈(𝒙, 𝑞) when 𝑞 is
not low since 𝜃(𝒙, 𝑞) with a moderate or high coverage probability is very likely to include the estimated mean and
the estimated median. Certainly, these prediction intervals are also expected to be more similar when the conditional
distribution for the response is less skewed.
To demonstrate the impact of outliers on the aforementioned prediction intervals, we contaminate each of 300 Monte

Carlo replicate datasets generated from the beta mode model by replacing 5% of randomly chosen responses with random
numbers simulated from uniform(0, 𝑡), where 𝑡 is the 0.001th quantile of the true conditional distribution of the response.
This contamination produces data with a heavier (left) tail than the distribution specified in (B1). Despite the model
misspecification, we fit the resultant data assuming a betamode regressionmodel and construct prediction intervals based
on the three central tendency measures. Figure 7 shows the comparison between different types of prediction intervals
in regard to empirical coverage probability and width. From there, one can see that a direct consequence of fitting (and
making predictions based on) a beta mode model to data from an underlying distribution with a heavier (than assumed)
tail is inflated coverage probabilities, despite the choice of central tendency measure for prediction. Interestingly, even
though the empirical coverage probability of themode-based prediction interval is higher than those of the other two types
of prediction intervals, the mode-based prediction interval remains the narrowest among the three. In conclusion, even in
the presence of severe outliers, the conditional mode still yields more reliable and precise predictions than the conditional
mean or median does. Parallel pictures when data are generated from (G1), with or without outliers contamination, and
one assumes a GBP mode model are provided in supplementary Figures S4 and S5.

5 APPLICATION TO ADNI DATA

There has been a consensus amongmedical researchers that regional brain atrophy in themedial temporal lobe structures,
such as the entorhinal cortex (ERC) and hippocampus (HPC), are correlated with clinical alterations in the predementia
phase of mild cognitive impairment (MCI) and various dementia phases of AD (Devanand et al., 2007; Jauhiainen et al.,
2009). While early detection and intervention in MCI subjects has been actively pursued by many researchers, there are
mixed opinions among them regarding the roles volumetricmeasures of ERC andHPC play in predicting anMCI subject’s
risk of developingAD (deToledoMorrell et al., 2004;Hämäläinen et al., 2007; Jack et al., 1999; Killiany et al., 2002;Whitwell
et al., 2008).
Using one’s ADAS-11 score as a surrogate for one’s severity of cognitive impairment, we apply the proposedmode regres-

sion models to data from the ADNI database (http://adni.loni.usc.edu) to study the association between one’s ADAS-11
score at month 12 and the volumetric changes in ERC and HPC at month 6 compared to their baseline measures. In par-
ticular, the dataset we consider consists of a cohort of 245 subjects who were diagnosed with LMCI when they entered the
ADNI Phase 1 study and were followed up at least at both months 6 and 12. The original response variable is a subject’s
ADAS-11 score at month 12, which has a bounded support on [0, 70]. We rescale the support to the unit interval by dividing
ADAS-11 scores by 70.
Besides carrying out mode regression analysis, we also adopt the beta mean regression model for a rate or proportion

response proposed by Ferrari and Cribari-Neto (2004) to study the association. In their proposed regression model, the
authors reparameterized the beta distribution by setting 𝛼1 = 𝜇𝜙 and 𝛼2 = (1 − 𝜇)𝜙, where 𝜇 ∈ [0, 1] is the mean param-
eter and 𝜙 is a positive shape parameter, with a larger 𝜙 resulting in a smaller variance, and they incorporated the linear
predictor 𝜂(𝐗) by letting 𝜇 = 𝑔{𝜂(𝐗)}. In a preliminary analysis, we fit the beta mean model, beta mode model, and GBP
mode model to the data using various link functions 𝑔(𝑡). Based on values of log-likelihood, we choose the log-log link in
the regression models for further analysis.

http://adni.loni.usc.edu
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F IGURE 7 Prediction intervals based on beta mode regression using data from the beta mode model in (B1), with outliers replacing 5%
of the original data. Top panels (a) and (b) depict average empirical coverage probabilities (across 300 Monte Carlo replicates) of mode-based
prediction intervals (solid lines), those ofmean-based prediction intervals (dashed lines), and those ofmedian-based prediction intervals (dotted
lines) versus nominal coverage probabilities. Red dash-dotted lines are 45◦ reference lines. Lower panels (c) and (d) depict ratios of the average
width of mean-based prediction intervals over that of mode-based prediction intervals (solid lines) and ratios of the average width of median-
based prediction intervals over that of mode-based prediction intervals (dashed lines) versus nominal coverage probabilities. Red dash-dotted
horizontal lines are reference lines at value one. Panels (a) and (c) are for 𝑛 = 50. Panels (b) and (d) are for 𝑛 = 100

Panels (a) and (b) in Figure 8 provide the half-normal residual plots associatedwith the betamodemodel andGBPmode
model based on this dataset. Having majority of the residuals from GBP mode regression falling outside of the envelope
suggests a poor fit of the GBP model for the data, and the beta mode model is more adequate for the current data. The
score test when the null hypothesis states a betamodemodel yields an estimated 𝑝-value of 0.45, while the score test when
one assumes a GBP mode model gives an estimated 𝑝-value of 0. Gathering these graphical and numerical diagnosis, we
conclude that the betamodemodel potentially captures the underlying conditional distribution better than the GBPmode
model does.
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F IGURE 8 Half-normal residual plots with simulated envelope for the ADNI data associated with the beta mode model (in (a)) and the
GBP mode model (in (b))

TABLE 2 Maximum likelihood estimates corresponding to each regression model for the ADNI data

Parameter Beta mean model Beta mode model GBPmode model
𝛽0 (Intercept) −0.555 (0.020) −0.697 (0.026) −0.971 (0.017)
𝛽1 (ERC.change) −0.102 (0.043) −0.125 (0.052) −0.117 (0.028)
𝛽2 (HPC.change) −0.170 (0.084) −0.216 (0.107) −0.112 (0.109)
𝜙 or log𝑚 17.990 (1.609) 2.772 (0.099) 1.826 (0.068)

Numbers in parentheses are estimated standard errors associated with the MLEs.

Table 2 providesMLEs of unknown parameters in each of the three considered regressionmodels. According to Table 2,
inference for the covariate effects from all three regression models suggest that the volumetric change in ERC is a
statistically significant predictor for one’s cognitive impairment. However, results from the GBP mode model does not
indicate that the volumetric change inHPC is significantly associatedwith the response (with a𝑝-value of 0.303), although
inference from both beta mean and beta mode model imply a significant effect of the change in hippocampal volume on
the ADAS-11 score (with 𝑝-values 0.042 and 0.043, respectively).
Figure 9 presents the histogram ofmean residuals and the histogram ofmode residuals resulting from betamean regres-

sion and beta mode regression, respectively. Both histograms suggest a right-skewed distribution of the ADAS-11 score
conditional on the two volumetric measures, and the two residual distributions are overall similar. Despite such similar-
ity, it is worth stressing that, in general, interpretations of a covariate effect inferred by the two models are different even
though we use the same notations in Table 2 for regression coefficients under different regression models. To avoid such
abuse of notation, let us write themean function under the betamean regressionmodel as𝜇(𝐗) = 𝑔(𝑏0 + 𝒃T

1𝐗), in contrast
to the mode function under the beta mode regression model, 𝜃(𝐗) = 𝑔(𝛽0 + 𝜷T

1𝐗). Under the parameterization leading to
the beta meanmodel, the mode function is 𝜃(𝐗) = {𝜙𝜇(𝐗) − 1}∕(𝜙 − 2). This indicates that, when 𝜙 is large, in particular,
much larger than one, one has 𝜃(𝐗) ≈ 𝜇(𝐗). Similarly, under the parameterization for the beta mode model, the mean
function is 𝜇(𝐗) = {𝑚𝜃(𝐗) + 1}∕(𝑚 + 2), suggesting that, when 𝑚 is much larger than one, 𝜇(𝐗) ≈ 𝜃(𝐗). According to
Table 2, �̂� ≈ 17.99 and �̂� ≈ 15.99, both fairly large compared to one, which can be the reason for the similarity between
the MLEs of the two sets of covariate effects under the two models, �̂�1 and �̂�1, in terms of magnitude and statistical sig-
nificance. This serves as an example where beta mean regression and beta model regression perform similarly in terms of
identifying influential predictors. With the rich data information for a large collection of biomarkers available in ADNI,
one may consider carrying out variable selection based on beta mode regression, which is beyond the scope of the current
study. In the follow-up project, we will give variable selection based on mode regression a more careful treatment, where
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F IGURE 9 Histograms of residuals when fitting a beta meanmodel (in (a)) and when fitting a beta mode model (in (b)) to the ADNI data

TABLE 3 Fivefold cross-validated coverage probabilities of mode-based prediction intervals, 𝜃(⋅, 𝑞), mean-based prediction intervals,
𝜇(⋅, 𝑞), and median-based prediction intervals, 𝜈(⋅, 𝑞), under each regression model for the ADNI data

𝒒 Beta mode model GBPmode model
𝜃 𝜇 𝜈 𝜃 𝜇 𝜈

0.1 0.127 (0.021) 0.086 (0.022) 0.094 (0.022) 0.078 (0.020) 0.098 (0.028) 0.151 (0.025)
0.2 0.233 (0.043) 0.216 (0.044) 0.224 (0.043) 0.159 (0.041) 0.253 (0.053) 0.269 (0.048)
0.5 0.531 (0.114) 0.531 (0.114) 0.531 (0.114) 0.522 (0.114) 0.527 (0.117) 0.522 (0.114)

Numbers in parentheses are the average widths of the prediction intervals.

we formulate flexible regression models built upon the currently proposed beta or GBP mode model that allow heavier
tails (to capture severe outliers) and multimodality. By then, we will have a fairer comparison with the variable selection
procedure proposed by Wang et al. (2017) applying to ADNI data that is based on nonparametric mode regression.
We next construct prediction intervals based on the estimated densities from beta mode regression and GBP mode

regression following the method described in Section 4.4. For each regression model, we compare the mode-based predic-
tion interval, the mean-based prediction interval, and the median-based prediction interval, that is, 𝜃(⋅, 𝑞), 𝜇(⋅, 𝑞),
and 𝜈(⋅, 𝑞), for a given 𝑞 in regard to their empirical coverage probabilities and widths. A fivefold cross-validation pro-
cedure is used to obtain the empirical coverage probability of a considered type of prediction interval. Among the three
types of prediction intervals based on different central tendencymeasures, the narrower interval that also has an empirical
coverage probability close to 𝑞 is more preferable. Table 3 reports summary statistics of these prediction intervals. Com-
paring the three types of prediction intervals with a fixed 𝑞 under each mode regression model, one can see that 𝜃(⋅, 𝑞)
tends to be the narrowest among the three when 𝑞 is small, while all possessing empirical coverage probabilities close to
the nominal level. Hence, in this application of assessing an LMCI subject’s extent of cognitive impairment in the near
future, using the mode tends to provide more accurate prediction than when using the mean or median.

6 DISCUSSION

We propose two classes of regression models for studying the association between a bounded response and covariates via
inferring the conditional mode of the response. Among all existing regression methodology, only a small subset of them
are designed for mode regression, and an even smaller collection of them are in the parametric paradigm. The two mode
regression models proposed in our study contribute new regression platforms for association studies when a bounded
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response is of interest. Under each proposed mode regression model, we have developed model diagnostic tools to detect
various forms of inadequate parametric assumptions.
Besides allowing the mode to depend on covariates, one may consider covariate-dependent shape parameter 𝑚(𝐗)

to expand the class of mode regression models. A more flexible family of mode regression models can be formulated as
mixtures of beta or GBP distributions, ormixing beta or GBPwith a uniform distribution bymimicking the construction of
beta rectangular distributions (Hahn, 2008). These mixture distributions will allow inclusion of multimodal distributions
and distributions with heavier tails than those of beta or GBP distributions.
The family of GBP distributions is a rare distribution family that directly includes the mode in the parameterization,

which makes it especially suitable for mode regression. If, unlike responses in our current study, the support of the
response is unknown, then we have additional parameter(s) in the GBP density relating to the support, resulting in a
nonregular model. In this case, maximum likelihood estimation can break down or leads to estimators that do not possess
properties one usually sees in anMLE under a regularmodel (Cheng&Amin, 1983). Parameter estimations and properties
of MLEs for parameters in a nonregular GBP regression model demand systematic investigations.
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