Homework 10 Solution
STAT 509 Statistics for Engineers
Summer 2017 Section 001
Instructor: Tahmidul Islam

1. Suppose $X \sim \operatorname{Poisson}(\lambda)$ and we want to find the value of λ. We collect a sample of 20 observations:

$$
\{4,2,1,3,5,3,0,2,3,1,4,2,2,2,2,2,0,4,4,1\}
$$

(a) Because $E(X)=\lambda$, it is reasonable to use sample mean as a point estimator to estimate the value of λ (population mean). Use R to get the value of the estimate.
(b) Because X is a Poisson random variable, we have $\operatorname{Var}(X)=\lambda$. Therefore, it is also reasonable to use sample variance as a point estimator to estimate the value of λ (population variance). Use R to get the value of the estimate.
(c) Some day the oracle tells you the true value of λ is 2.5 . Which estimate is better in this case, sample mean or sample variance?

Solution:
(a) Sample mean $\bar{x}=\frac{\sum_{i} x_{i}}{n}$.
$\mathrm{x}<-\mathrm{c}(4,2,1,3,5,3,0,2,3,1,4,2,2,2,2,2,0,4,4,1)$
mean (x)
[1] 2.35
(b) Sample variance $s^{2}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$.
sd (x)
[1] 1.386969
(c) $\bar{x}-\lambda=2.35-2.5=-0.15$ and $s^{2}-\lambda=1.386969-2.5=-1.113031$. Sample mean is closer to the true value of λ. So sample mean is better estimator in this case.
2. An electrical component's lifetime follows an exponential distribution with a mean time to failure of 6000 hours.
(a) n components are randomly chosen, what is the asymptotic distribution for the average time to failure for these n components? (Hint: Central Limit Theorem)
(b) What is the probability that the average time to failure for 500 randomly chosen components will be less than 5800 hours? (Hint: Sample size 500 is considered large enough to use CLT)

Solution:
Let $\mathrm{X}=$ Failure time. $X \sim \exp (\lambda=1 / 6000)$
(a) Let $\bar{X}=$ Sample mean (average) to failure. By central limit theorem we know, $\bar{X} \sim A N\left(\mu=6000,6000^{2} / n\right)$ for large n .
(b) Since $\mathrm{n}=500$ is large enough to apply CLT, we write $\bar{X} \sim A N\left(6000,6000^{2} / 500\right)$. Now, $P(\bar{X}<5800)$ can be calculated directly.
\# P (Xb < 5800)
pnorm(5800, 6000, 6000/sqrt(500))
[1] 0.2280283
3. Shiwen decides to eat some chocolates, which has p chance to be made by Carolina Reaper. p is unknown. Shiwen randomly eats 8 chocolates, in which 1 of them makes him suffer.
(a) Find a point estimate of p .
(b) What is the standard error of the point estimator \hat{p} ?
(c) Shiwen is not satisfied with the precision level of this result. By the end of the day, he eats 100 chocolates, in which 6 make him suffer. Find a point estimate of p using 100 observations, and find the standard error. Is the standard error smaller?

Solution:
$\mathrm{X}=$ Number of Reaper eaten. $\mathrm{n}=$ Total number of chocolate eaten.
(a) $\hat{p}=\frac{X}{n}=\frac{1}{8}=0.125$
(b) Standard error of $\hat{p}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{0.125 \times 0.875}{8}}=0.0137$.
(c) $\hat{p}=\frac{X}{n}=\frac{6}{100}=0.06$.

Standard error of $\hat{p}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{0.06 \times 0.94}{100}}=0.000564$. Yes, the standard error became smaller.

