
Homework 15 Solution
STAT 509 Statistics for Engineers

Summer 2017 Section 001
Instructor: Tahmidul Islam

1. For the teengamb dataset, use R to calculate the 95% two-sided confidence interval and
prediction interval for gamble when income is 2, and make a detailed interpretation about
these two intervals by the context of the problem. Show me your R code and R output.

The 95% confidence interval and prediction interval can be calculated by the following
code

> library(faraway)

> data(teengamb)

> fit <- lm(gamble ~ income, data=teengamb)

> predict(fit, data.frame(income=2), confidence=0.95, interval="confidence")

fit lwr upr

1 4.716412 -4.454029 13.88685

> predict(fit, data.frame(income=2), confidence=0.95, interval="prediction")

fit lwr upr

1 4.716412 -46.36182 55.79464

A 95% confidence interval is (−4.45, 13.89). It means when the income is 2, we are
95% confident that the mean expenditure on gambling is less than 13.89 pounds per
year. (Remark: negative expenditure is impossible, which should be excluded from the
interpretation.)

A 95% prediction interval is (−46.36, 55.79). It means when the income is 2, we are 95%
confident that the expenditure on gambling for one people in Britain is less than 55.79
pounds per year.

2. There is a gala dataset in faraway package. It concerns the number of species of tortoise
on the various Galapagos Islands. There are 30 cases (Islands) and 7 variables in the
dataset, including

• Species The number of species of tortoise found on the island

• Endemics The number of endemic species

• Elevation The highest elevation of the island (m)

• Nearest The distance from the nearest island (km)

• Scruz The distance from Santa Cruz island (km)

• Adjacent The area of the adjacent island (km2)

Fit a simple linear regression model with Species as response and Elevation as explana-
tory variable. Show me the output.

> fit <- lm(Species ~ Elevation, data=gala)

> summary(fit)

Call:

lm(formula = Species ~ Elevation, data = gala)
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Residuals:

Min 1Q Median 3Q Max

-218.319 -30.721 -14.690 4.634 259.180

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.33511 19.20529 0.590 0.56

Elevation 0.20079 0.03465 5.795 3.18e-06 ***

---

Residual standard error: 78.66 on 28 degrees of freedom

Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291

F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

(a) Calculate Ŷ (a vector) and Ȳ (a number).

> yhat <- predict(fit)

> yhat

Baltra Bartolome Caldwell Champion Coamano Daphne.Major

80.80921 33.22146 34.22542 20.57155 26.79611 35.22938

Daphne.Minor Darwin Eden Enderby Espanola Fernandina

30.00879 45.06820 25.59136 33.82384 51.09197 311.31865

Gardner1 Gardner2 Genovesa Isabela Marchena Onslow

21.17393 56.91494 26.59532 354.08739 80.20684 16.35492

Pinta Pinzon Las.Plazas Rabida SanCristobal SanSalvador

167.35065 103.29794 30.20958 85.02585 155.10232 193.25284

SantaCruz SantaFe SantaMaria Seymour Tortuga Wolf

184.81957 63.34029 139.84212 40.85157 48.68246 62.13554

> ybar <- mean(gala$Species)

> ybar

[1] 85.23333

(b) Calculate SSTO and SSE.

> SSTO <- sum((gala$Species - ybar)^2)

> SSTO

[1] 381081.4

> SSE <- sum((gala$Species - yhat)^2)

> SSE

[1] 173253.9

(c) Draw the scatter plot (with the regression line) and residual plot. Do you think the
equal variance assumption holds?

Both scatter plot and the residual plot indicate that the variance of the error term
ε increases as the fitted value (Ŷ ) increases. The equal variance assumption clearly
breaks.
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par(mfrow=c(1,2))

plot(gala$Elevation, gala$Species, xlab="Elevation", ylab="Species", pch=16)

abline(fit)

plot(yhat, residuals(fit), xlab="Fitted Value", ylab="Residuals")

abline(h=0)

(d) Use qq plot to check whether the normality assumption holds.

It is clear that the tail part of the qq plot doesn’t pass the fat-pencil test. Therefore,
we suspect the normality assumption doesn’t hold perfectly here.

qqnorm(residuals(fit))

qqline(residuals(fit))

(e) Re-fit the model with the transformation log Y , and draw the scatter plot, residual
plot, and qq plot. Make comments to each plot. Does the transformation make your
model better?

After transformation, the scatter plot looks better in the way that not all points are
concentrated in the corner (meaning extreme large values of Species are relatively
smaller due to log transformation.) and magnitude of the variance is more similar.
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From the residual plot, we can confirm this observation. Overall, the model is better
than the original one.

> fit2 <- lm(log(Species) ~ Elevation, data=gala)

> summary(fit2)

(Intercept) 2.5913986 0.2879198 9.000 9.33e-10 ***

Elevation 0.0024895 0.0005194 4.793 4.88e-05 ***

Residual standard error: 1.179 on 28 degrees of freedom

Multiple R-squared: 0.4507, Adjusted R-squared: 0.4311

F-statistic: 22.97 on 1 and 28 DF, p-value: 4.885e-05

par(mfrow=c(1,2))

plot(gala$Elevation, log(gala$Species), xlab="Elevation",

ylab="log-Species", pch=16)

abline(fit2)

plot(predict(fit2), residuals(fit2), xlab="Fit 2 Fitted Value", ylab="Residuals")

abline(h=0)

(f) Re-fit the model with the transformation
√
Y , and draw the scatter plot, residual

plot, and qq plot. Make comments to each plot. Does the transformation make your
model better?

The megaphone shape of the variance still exist observing from the scatter plot and
residual plot. It means the variance goes large when the fitted value goes large. The
squre root transformation doesn’t make the model any better.

4



> fit3 <- lm(sqrt(Species) ~ Elevation, data=gala)

> summary(fit3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.954656 0.874615 4.522 0.000102 ***

Elevation 0.009753 0.001578 6.181 1.13e-06 ***

Residual standard error: 3.582 on 28 degrees of freedom

Multiple R-squared: 0.5771, Adjusted R-squared: 0.562

F-statistic: 38.21 on 1 and 28 DF, p-value: 1.125e-06

par(mfrow=c(1,2))

plot(gala$Elevation, sqrt(gala$Species), xlab="Elevation",

ylab="Sqrt-Species", pch=16)

abline(fit3)

plot(predict(fit3), residuals(fit3), xlab="Fit 3 Fitted Value", ylab="Residuals")

abline(h=0)

(g) Compare the coefficient of determination in the original regression model and the
model with

√
Y transformation. Make comments.

From summary(fit) we find the coefficient of determination in the original model is
0.5454, and from summary(fit3), the one in sqare root transferred model is 0.5771.
Even though the sqre root transformation doesn’t solve the unequal variance as-
sumption problem, it slightly increases the R2. The interpretation for the transferred
model is: Elevation explains the 57.74% variability of the

√
Species.

Note: if you have problem loading faraway package, download the gala dataset
from the course webpage and save it in D drive. Run the following code to
load.

gala <- read.table("D:/galadata.txt", sep="\t")
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