Homework 02 Solution
 STAT 509 Statistics for Engineers
 Summer 2017 Section 001
 Instructor: Tahmidul Islam

Question 01

A and B are two events in the sample space S. Assume $P(A)=0.25$ and $P(B)=0.4$ and $P(A \cup B)=0.6$. Calculate the following probabilities. Clearly state what probability rules you used. (Hint: You can draw Venn Diagrams to help you visualize the relationship among two events and the sample space.)
a $P(\bar{A})$.
b $P(A \cap B)$.
c $P(\bar{A} \cup \bar{B})$.
d $P(B \mid A)$.
e Are A and B are independent events? Why or why not?
Solution:
(a) $P(\bar{A})=1-P(A)=1-0.25=0.75$.
(b) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

So $P(A \cap B)=P(A)+P(B)-P(A \cup B)=.25+0.4-0.6=0.05$.
(c) DeMorgan's Law: $P(\bar{A} \cup \bar{B})=P(\overline{A \cap B})=1-P(A \cap B)=1-0.05=0.95$.
(d) $P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}=\frac{0.05}{0.25}$.
(e) $P(A) P(B)=0.25 \times 0.4=0.1 \neq P(A \cap B)$. So not independent.

Or,
$P(B \mid A)=0.25 \neq P(B)$. So, not independent.
OR,
Find $P(A \mid B)$ and compare with $P(A)$.

Question 02

Transactions to a computer database are either new items or changes to previous items. The addition of an item can be completed in less than 100 milliseconds 90% of the time, but only 20% of changes to a previous item can be completed in less than this time. If 30% of transactions are changes, what is the probability that a transaction can be completed in less than 100 milliseconds? (Try to draw a tree diagram).

Solution:
$P($ Change $)=0.30 ; P($ New $)=0.70$.
$P(T<100 \mid$ New $)=0.90, P(T<100 \mid$ Change $)=0.20$.
Using law of total probability,
$P(T<100)=P(T<100 \mid$ Change $) P($ Change $)+P(T<100 \mid$ New $) P($ New $)$
$=(.2 \times .3)+(.9 \times .7)=0.69$.

Question 03

The probability that a randomly chosen automobile will need an oil change is 0.25 ; the probability that it needs a new oil filter is 0.40 ; and the probability that both the oil and filter need changing is 0.14 .
a What is the probability that a car will need an oil change or new filter?
b If the oil had to be changed, what is the probability that a new oil filter is needed?
c If a new oil filter is needed, what is the probability that the oil has to be changed?
d Are oil filter and needing an oil change independent of one another. Why?
Solution:
(a)

$$
\begin{aligned}
P(\text { Oil } \cup \text { Filter }) & =P(\text { Oil })+P(\text { Filter })-P(\text { Oil } \cap \text { Filter }) \\
& =0.25+0.40-0.14=0.51
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(\text { Filter } \mid \text { Oil }) & =\frac{P(\text { Filter } \cap \text { Oil })}{P(\text { Oil })} \\
& =\frac{0.14}{0.25}=0.56
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(\text { Oil } \mid \text { Filter }) & =\frac{P(\text { Filter } \cap \text { Oil })}{P(\text { Filter })} \\
& =\frac{0.14}{0.40}=0.35 .
\end{aligned}
$$

(d)
$P($ Filter \mid Oil $) \neq P($ Filter $)$. So not independent.
Or
$P($ Oil \mid Filter $) \neq P($ Oil $)$. So not independent.
Or
$P($ Oil $) \times P($ Filter $)=0.25 \times 0.40=0.1 \neq P($ Filter \cap Oil $)$. So not independent.

