Homework 07 Solution
 STAT 509 Statistics for Engineers
 Summer 2017 Section 001
 Instructor: Tahmidul Islam

Question 01

In 1990 the lead concentration in gasoline ranged from 0.1 to 0.5 grams/liter. Let $\mathrm{Y}=$ grams per liter of lead in gasoline. The probability density function for Y is

$$
f(y)=12.5 y-1.25 ; \quad 0.1<y<0.5
$$

(a) What is the probability that a random liter of gasoline would contain between 0.1 and 0.4 grams/liter of lead?
(b) What is the probability that a random liter of gasoline will contain more than 0.3 grams/liter of lead?
(c) Give the cumulative probability function $F_{Y}(y)$. (Hint: you need to discuss the value of y for three cases: $y \leq 0.1,0.1<y<0.5, Y \geq 0.5)$.
(d) Use the cumulative probability function $F_{Y}(y)$ to calculate the probability that a random liter of gasoline will contain less than 0.35 grams of lead.
(e) Calculate the expected value of Y.
(f) Calculate the variance for Y .

Solution:
(a)

$$
\begin{aligned}
P(Y<0.4) & =\int_{0.1}^{0.4} f(y) d y \\
& =\int_{0.1}^{0.4}(12.5 y-1.25) d y \\
& =\left[12.5 \frac{y^{2}}{2}-1.25 y\right]_{0.1}^{0.4} \\
& =\left(\frac{12.5 \times 0.4^{2}}{2}-1.25 \times 0.4\right)-\left(\frac{12.5 \times 0.1^{2}}{2}-1.25 \times 0.1\right) \\
& =0.5625 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(Y>0.3) & =\int_{0.3}^{0.5} f(y) d y \\
& =\int_{0.3}^{0.5}(12.5 y-1.25) d y \\
& =\left[12.5 \frac{y^{2}}{2}-1.25 y\right]_{0.3}^{0.5} \\
& =\left(\frac{12.5 \times 0.5^{2}}{2}-1.25 \times 0.5\right)-\left(\frac{12.5 \times 0.3^{2}}{2}-1.25 \times 0.3\right) \\
& =0.75 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =\int_{0.1}^{y}(12.5 u-1.25) d u \\
& =\left[12.5 \frac{u^{2}}{2}-1.25 u\right]_{0.1}^{y} \\
& =\left(12.5 \frac{y^{2}}{2}-1.25 y\right)-\left(12.5 \frac{.1^{2}}{2}-1.25 \times .1\right) \\
& =6.25 y^{2}-1.25 y+0.0625 .
\end{aligned}
$$

So the CDF can be written as

$$
F_{Y}(y)=\left\{\begin{array}{l}
0 ; y \leq 0.1 \\
6.25 y^{2}-1.25 y+0.0625 ; 0.1<y<0.5 \\
1 ; y \geq 0.5
\end{array}\right.
$$

(d)

$$
\begin{aligned}
P(Y<0.35) & =F_{Y}(0.35) \\
& =6.25 \times .35^{2}-1.25 \times .35+0.0625 \\
& =0.390625
\end{aligned}
$$

(e)

$$
\begin{aligned}
E(Y) & =\int_{0.1}^{0.5} y f(y) d y \\
& =\int_{0.1}^{0.5} y(12.5 y-1.25) d y \\
& =\left[12.5 \frac{y^{3}}{3}-1.25 \frac{y^{2}}{2}\right]_{0.1}^{0.5} \\
& =\left(12.5 \frac{.5^{3}}{3}-1.25 \frac{5^{2}}{2}\right)-\left(12.5 \frac{.1^{3}}{3}-1.25 \frac{.1^{2}}{2}\right) \\
& =0.3666666 .
\end{aligned}
$$

Question 02

Suppose the weight, say, Y, in pounds of a certain packaged chemical is uniform from 48 to 50 pounds. That is the pdf is of the form

$$
f_{Y}(y)=\frac{1}{2} ; 48 \leq y \leq 50 .
$$

(a) What is the mean weight of the chemical?
(b) What is the probability that a randomly chosen package of chemical will weigh between 48.5 and 49.4 pounds?
(c) In the long run, what proportion of packages will weigh more than 49.2 pounds?

Solution:
(a)

$$
\begin{aligned}
E(Y) & =\int_{48}^{50} y 0.5 d y \\
& =0.5 \int_{48}^{50} y d y=0.5\left[\frac{y^{2}}{2}\right]_{48}^{50} \\
& =\frac{1}{4}\left(50^{2}-48^{2}\right) \\
& =49 .
\end{aligned}
$$

Or you can informally arrive at this by observing that 49 is the middle point between 48 and 50 and the distribution is uniform.
(b) $P(48.5<Y<49.4)=(49.4-48.5) \times 0.5=0.45$. (Draw the pdf, identify the interval, then picture area under the curve, here curve is just a line, so area under the curve is just area of a rectangle). This can also be found using the definition $P(48.5<Y<49.4)=$ $\int_{48.5}^{49.4} f_{Y}(y) d y$.
(c) $P(Y>49.2)=(50-49.2) \times 0.5=0.4$. (Using similar technique like above).

