Moment Generating Function

STAT 509 Summer 2018

Tahmidul Islam
University of South Carolina

May 28， 2018

Moments

Moments: We may be interested in some special quantities like $E[X], E\left[X^{2}\right], E\left[X^{3}\right], \ldots, E\left[X^{r}\right]$. These are called the moments. $E\left[X^{r}\right]$ is the $r^{t h}$ order moment.
For $r=1$, we get the mean μ. For $r=2, E\left[X^{2}\right]=\operatorname{Var}(X)+\mu^{2}$.

$$
E\left[X^{r}\right]=\left\{\begin{array}{l}
\sum_{x} x^{r} P_{X}(x) ; \text { discrete } \\
\int_{-\infty}^{\infty} x^{r} f_{X}(x) d x ; \text { continuous }
\end{array}\right.
$$

Moment Generating Function

Instead of calculating everything from scratch, we can use something called the moment generating function (MGF).

Definition (Moment Generating Function)

The MGF of the random variable X is the expected value of $e^{t x}$ and is denoted by $M_{X}(t)$. That is,

$$
M_{X}(t)=\left\{\begin{array}{l}
\sum_{x} e^{t x} P_{X}(x) ; \text { discrete } \\
\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x ; \text { continuous }
\end{array}\right.
$$

Why MGF?

MGF can generate $r^{\text {th }}$ order moment (as the name suggests).

$$
E\left[X^{r}\right]=\left.\frac{d^{r} M_{X}(t)}{d t^{r}}\right|_{t=0}=\left.M_{X}^{(r)}(t)\right|_{t=0}
$$

That is, if we take $r^{t h}$ order derivative of the MGF and set $t=0$, it will produce $r^{t h}$ order moment.

Examples: Binomal

MGF of binomial distribution. Let $X \sim \operatorname{Bin}(n, p)$.

$$
\begin{gathered}
P_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x} ; x=0,1,2, \ldots, n \\
M_{X}(t)=E\left[e^{t x}\right]=\sum_{x=0}^{n} e^{t x}\binom{n}{x} p^{x}(1-p)^{n-x}
\end{gathered}
$$

Verify $\left.M_{X}^{(1)}(t)\right|_{t=0}=E(X)=n p$.

Examples: Geometric

MGF of geometric distribution. Let $X \sim \operatorname{Geom}(p)$.

$$
\begin{gathered}
P_{X}(x)=p(1-p)^{x-1} ; x=1,2, \ldots \\
M_{X}(t)=E\left[e^{t x}\right]=\sum_{x=1}^{\infty} e^{t x} p(1-p)^{x-1}
\end{gathered}
$$

Verify $\left.M_{X}^{(1)}(t)\right|_{t=0}=E(X)=1 / p$.

Examples: Exponential

MGF of exponential distribution. Let $X \sim \exp (\lambda)$.

$$
\begin{array}{r}
f_{X}(x)=\lambda e^{-\lambda x} ; x \geq 0 \\
M_{X}(t)=E\left[e^{t x}\right]=\int_{-\infty}^{\infty} e^{t x} \lambda e^{-\lambda x} d x
\end{array}
$$

Verify $\left.M_{X}^{(1)}(t)\right|_{t=0}=E(X)=1 / \lambda$.

