12.1 Introduction
12.2 Correlation coefficient r
12.3 Fitted regression line

Linear Regression

![Graph showing a scatter plot with a fitted regression line representing HDL (mg/dL) vs. Waist Circumference (cm).]
Two continuous variables

- We will relate Y to another continuous variable X.
- First we will measure how linearly related Y and X are using the correlation.
- Then we will model Y vs. X using a line.
- The data arrive as n pairs $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
- Each pair (x_i, y_i) can be listed in a table and is a point on a scatterplot.
Example 12.1.1 Amphetamine and consumption

Amphetamines suppress appetite. A pharmacologist randomly allocated $n = 24$ rats to three amphetamine dosage levels: 0, 2.5, and 5 mg/kg. She measured the amount of food consumed (gm/kg) by each rat in the 3 hours following.

<table>
<thead>
<tr>
<th>Table 12.1.1 Food consumption (Y) of rats (gm/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = \text{Dose of amphetamine (mg/kg)}$</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>112.6</td>
</tr>
<tr>
<td>102.1</td>
</tr>
<tr>
<td>90.2</td>
</tr>
<tr>
<td>81.5</td>
</tr>
<tr>
<td>105.6</td>
</tr>
<tr>
<td>93.0</td>
</tr>
<tr>
<td>106.6</td>
</tr>
<tr>
<td>108.3</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>SD</td>
</tr>
<tr>
<td>No. of animals</td>
</tr>
</tbody>
</table>
Example 12.1.1 Amphetamine and consumption

How does Y change with X? Linear? How strong is linear relationship?
Environmental pollutants can contaminate food via the growing soil. Naturally occurring silicon in rice may inhibit the absorption of some pollutants. Researchers measured Y, amount of arsenic in polished rice (μg/kg rice), & X, silicon concentration in the straw (g/kg straw), of $n = 32$ rice plants.
Example 12.2.1 Length and weight of snakes

In a study of a free-living population of the snake Vipera bertis, researchers caught and measured nine adult females.

<table>
<thead>
<tr>
<th>Table 12.2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length X (cm)</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>67</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>SD</td>
</tr>
</tbody>
</table>
Example 12.2.1 Length and weight of snakes

How strong is linear relationship?

Figure 12.2.1 Body length and weight of nine snakes with fitted regression line
12.2 The correlation coefficient r

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right).$$

- r is a measure of the linear dependence between two variables X and Y.
- $-1 \leq r \leq 1$.
- If $r > 0$ then Y increases with increasing X.
- If $r = 1$ then Y increases with X according to a perfect line.
- If $r < 0$ then Y decreases with increasing X.
- If $r = 0$ then X and Y are not linearly associated.
- The closer r is to 1 or -1, the more the points lay on a straight line.
Examples of r for 14 different data sets

- $|r| > 0.7$, strong correlation
- $0.3 < |r| < 0.7$, moderate correlation
- $|r| < 0.3$ weak correlation
Population correlation ρ

- Just like \bar{y} estimates μ and s_y estimates σ, r estimates the unknown population correlation ρ.
- If $\rho = 1$ or $\rho = -1$ then all points in the population lie on a line.
- Sometimes people want to test $H_0 : \rho = 0$ vs. $H_A : \rho \neq 0$, or they want a 95% confidence interval for ρ.
- These are easy to get in R with the `cor.test(sample1,sample2)` command.
R code for amphetamine data

```r
> cons=c(112.6,102.1,90.2,81.5,105.6,93.0,106.6,108.3,73.3,84.8,67.3,55.3,
> + 80.7,90.0,75.5,77.1,38.5,81.3,57.1,62.3,51.5,48.3,42.7,57.9)
> amph=c(0,0,0,0,0,0,0,0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,5.0,5.0,5.0,5.0,5.0,5.0)
> cor.test(amph,cons)

Pearson's product-moment correlation

data:  amph and cons
t = -7.9003, df = 22, p-value = 7.265e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.9379300 -0.6989057
sample estimates:
cor
-0.859873

r = -0.86, a strong, negative relationship.
P-value = 0.0000000073 < 0.05 so reject $H_0 : \rho = 0$ at the 5% level. There is a significant, negative linear association between amphetamine intake and food consumption. We are 95% confident that the true population correlation is between -0.94 and -0.70.
\[ r = 0.94 \], a strong, positive relationship.
Comments

- Order doesn’t matter, either (X, Y) or (Y, X) gives the same correlation and conclusions. Correlation is “symmetric.”
- Significant correlation, rejecting $H_0 : \rho = 0$ doesn’t mean $\rho$ is close to 1 or $-1$; it can be small, yet significant.
- Rejecting $H_0 : \rho = 0$ doesn’t mean X causes Y or Y causes X, just that they are linearly associated.
12.1 Introduction
12.2 Correlation coefficient $r$
12.3 Fitted regression line
12.3 Fitting a line to scatterplot data

- $b_0$: intercept
- $b_1$: slope
- determine $b_0$ and $b_1$ by minimizing $\sum_{i=1}^{n}[y_i - (b_0 + b_1x_i)]^2$
12.3 Fitting a line to scatterplot data

We will fit the line

\[ Y = b_0 + b_1 X \]

to the data pairs.

- \( b_0 \) is the **intercept**, the fitted value of \( y \) when \( x=0 \).
- \( b_1 \) is the **slope**, the amount of change in \( y \) that occurs with one unit change in \( x \).

The values for \( b_0 \) and \( b_1 \) we use gives the **least squares** line.

These are the values that make \( \sum_{i=1}^{n}[y_i - (b_0 + b_1 x_i)]^2 \) as small as possible.

They are

\[ b_1 = r \left( \frac{s_y}{s_x} \right) \quad \text{and} \quad b_0 = \bar{y} - b_1 \bar{x}. \]
> fit=lm(cons~amph)
> plot(amph,cons)
> abline(fit)
> summary(fit)

Call:
lm(formula = cons ~ amph)

Residuals:
     Min      1Q  Median       3Q      Max
-21.512  -7.031   1.528   7.448  27.006

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  99.331      3.680  26.99   < 2e-16 ***
amph        -9.007      1.140  -7.90  7.27e-08 ***
---
Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1  1

Residual standard error: 11.4 on 22 degrees of freedom
Multiple R-squared:  0.7394,    Adjusted R-squared:  0.7275
F-statistic:   62.41 on 1 and 22 DF,  p-value: 7.265e-08

For now, just pluck out $b_0 = 99.331$ and $b_1 = -9.007$
cons = 99.33 – 9.01 amph.
Here, \( b_0 = -301.1 \) and \( b_1 = 7.19 \).
weight = $-301.1 + 7.19 \text{ length}$. 
The $i$th residual is $e_i = y_i - \hat{y}_i$. This gives the vertical amount that the line missed $y_i$ by.

\[ SS(\text{resid}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2. \]

$s_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$ is sample standard deviation of the $Y$’s. Measures the “total variability” in the data.
$s_e$, $s_y$, and $r^2$

- $s_e = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} = \sqrt{SS(\text{resid})/(n-2)}$ is “residual standard deviation” of the $Y$s. Measures variability around the regression line.

- If $s_e \approx s_y$ then the regression line isn’t doing anything!

- If $s_e < s_y$ then the line is doing something.

- $r^2 \approx 1 - \frac{s_e^2}{s_y^2}$ is called the multiple R-squared, and is the percentage of variability in $Y$ explained by $X$ through the regression line.

- R calls $s_e$ the residual standard error.
\( s_e \) is just average length of residuals

\[ s_e = 12.5 \text{ and } s_y = 35.3. \quad r^2 = 0.89 \text{ so 89\% of the variability in weight is explained by length.} \]
Roughly 68% of observations are within $s_e$ of the regression line (shown above); 95% are within $2s_e$. 

68%-95% rule for regression lines