(een K289

Cosh Dand o
Enoles - Rorpe LLW " (Wj

1. Introduction Let Xj, X3,... be i.i.d. random variables and let Sy = 0,5, = X; +---+ X,.,n > 1. The
step function and broken line versions of the sample average process may be defined as follows:

{Un(t) = @,:zo} «

and

a(e) = oty (222 0D X
n n
These sample average processes can be considered as processes in BV[0, 1], the space of functions of bounded
variation in [0, 1].

Let ¢(4) = E(ezp(6X,) be finite for 4 in a neighborhood of 0 and lﬂ[&] = log ¢(0). Let J(a) =
sup[fa — (8)] be the large deviation rate function of X;. Let C; = aﬁ_{x;o =L and C,; = a_l.hgw%—jf-. One
can view {Un(t)} and {V,(t)} as processes in BV|0, 1].

The purpose of this paper is to prove that the large deviation principle [LDP} holds for both these sample
average processes with the same large deviation rate (LDR) function I(f) = [ J(f)dt+C f1,[0, 1]+Ca f2,[0, 1]
where _f = %, fa is the absolutely continuous part of f, f = f; — f2 is the Hahn decomposition of f, and
fis and fa, are the singular parts of f; and fa, respectively. The appropriate topology in BV[0, 1] that is
necessary for the LDP depends on whether C, and C, are finite or infinite.

These results are used to obtain the functional forms of the Erdds- Rényi and Shepp laws for the sample
average processes. More specifically, Let

Sm+[a lognfa] — Sm

B wals) =

[log n/a]
and . g /

Bmn.al3) = Sm+{stogn/a] + (slogn/a — [slogn/a]) Xm+(s10g n/a+1]~ Sm
[log n/a]

for 0 < s < 1. Let
Ta={f:I(f) < a}.

We prove that with probability 1 the set of cluster points of Amna(-)is Ty, and for each ¢ > 0
{Amna(),m < n} c (Ts)c eventually

\
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and 3

(Pa) < (Am.n,a(‘}um < ﬂ.});. -
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These results also hold for A
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2. The Large Deviation\Principle - Some General Results Let I be a topological space and 7 be
the Borel o - field in X. Let {#,} be a family of probability measures on (X, 7). The following definitions
which are slight variants of Varadhan (1984) and which may be found in Lynch and Sethuraman (1987) allow
us to state many large deviation results in a concise form.

Definition 2.1 A function I{-) on I is said to be a regular rate function if

-

(2.1) 0 < I(z) 2 oo,

(2.2) I(-) is lower semi — continuous (Isc) and

(2.3) fog{e';uch ¢ < oo, I'. = {x:I(x) <c} is compact.
For any subset A C I, define

(2/4) I(4) = inf I(z).

Definition 2.2 The measures {P,} satisfy the large deviation principle (LDP or LD principle) with
rate function I(-) if

(2.5) I(-) is a regular rate function,
(2.6) for each closed set F,limsup(1/n)log Po(F) < —I(F), and
(2.7) for each open set G,liminf(1/n)P,(G) > —I(G).

Definition 2.3 The measures { P} satisfy the weak large deviation principle (WLDP or WLD principle)
with rate function I(-) if (2.5) and (2.7) of Definition 2.2 together with (2.8) below are satisfied:

(2-8) for each compact set K, limsup(1/n) log Po(K) < —I(K).

Definition 2.4 The measures {P,} are large deviation tight (LD tight ) if, for each M > oo, ther exists
a compact set Kz such that

(2.9) imsup(1/n)log P.(Kjs) < —M.

The following lemma found in Lynch and Sethuraman (1987) demonstrates the usefulness of LD tight-
nesss.

Lemma 2.5. Let {P,} be LD tight and satisfy the WLDP. Then it satisfies the LDP.

A useful consequence of the LDP is the contraction principle stated below.

The contraction principle Let {P,} satisfy the LDP with rate function I(-). Let h, be a continuous
map from I into a topological space Y and let Q, = P,h;!. If h, — h uniformly on compact subsets of

X, then the measures Q,, satisfy the LDP with rate function K(y) = h1[.n§ I(z).
z:h(z)=y

The LDP, along with the above results, has the flavor of weak convergence of probability measures
(Theorems 2.1 and 5.5 of Billingsley(1968)). The following lemma is the analogue of the converse part of
Prohorov’s theorem (Billingsley (1968) Theorem 6.2) and with Lemma 2.5 shows that for Polish spaces the
LDP is equivalent to the WLdo and LD tightness. The proof is similar to Billingsley’s proof of Prohorov’s
theorem and can be found in Lynch and Sethuraman (1987).

Lemma 2.8 If {P,} is a sequence of probability measures which satisfies the LDP, then {P,} is LD
tight.

The following results (see Lynch and Sethuraman (1987)) show how the LD properties for_marginal __ . -

measures carry over to product spaces. These results are used in Section XX Let {P:} be a sequence of

probability measures on a topological space Iu;'), 1= 1.2. Let Pn = Pn? x P? be the product measure on

r = rl ® ,r"}. :}‘ i -~ —
Lemma 2.8 If {P:} is LD tight for ¢ = 1,2, then {P,} is LD tight.
Lemma 2.9 Let {P}} satisfy the WLDP with rate function I*(z‘),i = 1,2. Then {P,} satisfies the

WLDP with rate function I(zy,z2) = i'(z1) + I*(z2).
Corollary 2.10 Let {P.} be LD tight and satisfy the WLDP, ¢ = 1,2. Then P, satisfies the LDP with

[ rate function I(zy, z2) = i*(z1) + I*(z2).
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3. The LDP for averages of i.i.d. random variables We begin with some well known facts about the
LDP of averages of i.i.d. random variables. Let X be a real valued random variable and let
X L

(3.1) $(8) = E(ezp{a’zﬂ)< i Al ’
for § in some open interval about zero. Let y(9) = log ¢(f). Since the mean of X exists and is finite, we
will without loss of generahcy assume that E(X) = 0. Let X, X>,... be i.i.d. copies of X and let P, be the
distribution of X, = (X; + -+ + X,)/n. The following is the oldest theorem in large deviation theory and
is variously referred to as Cra.mer’s Theorem and Chernoff’s Theorem.

Theorem 3.1 (Cramer (1937), Chernoff (1952)). The distribution {P,} satisfy the LDP with rate
function J(a) given by

J(a) = sup{fa — ¢(6)} (3.2)

The following facts concerning the function J(a) are easy to obtain from its defintion (3.2):

(3.3) 0 < J(a) £ o0, J(0) =0 (since E(X) =0), and J(a) — oo as |a] — oo,
(3.4) J(a) = ggg[ﬁa —¢(8)], fora>0

(3.5) J(a) is convex.

(3.8) J(a)/a is nondecreasing.

G].Ln;lo.f(a)/a = C, and aii{x-lm J(a)/|a] =

(3.7)
exists, where 0 < C,C_ < oo (assume X; #0).
(3.8) J(a) is continuous on I' = {a : J(a) < &0}.

The endpoints of I‘ are —A = ess inf X and B = ess sup X and if A < co(B < o) then J(—4) =

—log P(X = ~A)(J(B) = —log P(X = B)) and J is right (left) continuous at —A(B).
Since X, = X Xi- the LDP for X, can also be obtained from the LDP for the bivariate (X7, XT)
and the cont.ra.dlctmu principle. This leads to the LD decon in 1 din. | s A An OnL

In addition to Theorem 3.1, we will also need to estzablish the LDP for the positive and nega.t.we parts ,I',
of X, ?

Let X+ = max(0, X) and X~ = max(0, —X). Let ¢(6,,8;) = E(ef2X7+02X7) and
(51,92] log ¢(61,02). Let Qn be distribution of M,, N,) where M, = (X} + ...+ X})/n and N, =
(X7 +...+ X3 )/n. n
We now estabhsh the multivariate version of Theorem 3.1.
Let Y = (Y1,...,Yx) and let ¢(_ = E(exp Zlﬂ Y:) < oo for § in some open set about 0. Let P(8) =

log é(m_ P /-/—»——»/;
—— 5 : i

(3.9) . = sap{z f;a; — ()} ,_,; Erca St
s ll - ".‘ ) r' -
et d e L AN o~ dr N
Lec Y,, Y, ... beiid coples of Y a.nd let. Qn denote the probabl.hty measure induced on R* by (Y. +
Yy)/n.

Theorem 3.2. The measures Q,, satisfy the LDP with rate function L.
Proof. By the results in Sections 1, 2, and 3 ofB 'Ehadur and Zabell (1979) (in particular, see Theorems
2.1, 2.2, 2.3, 3.1, and 3.2, Lemma 2.5 wiid (1.6), ( (1 12), (3.3) and (3.4), there) it follows that {Qn.}

P



L ™ pum = A

T Lé#a, WL A ]

I

satisfies the weak LD principle (in fact$, lim ;- log Qu(G) = —=L(G) = —infg L(a) if G is open and convex).
Since by Theorem 3.1, the m%rgﬁra'ﬁ'?a.tisfy the LDP, it follows from Lemma 2.9 and 2.6 that {Q,} is LD
tight. The theorem follows thigand Lemma 2.5 since {Qn} satisfies the weak LDPawd/ < LD o A

Let X* = max(0,X) and X~ = max(0,—X). Let ¢(6,,62) = E(exp8: X+ + 0;X~),4(81,62) =
log ¢(61,92)- /

Let Q. be the distribution of iM,, N,,) where M, = (X{ +...X})/n and N, = (Xy +...,X7)/n.
Then, by Theorem 3.2, {Q,} satisfies the LDP. In addition to this we will need to relate the LD rate of
{Qn} to J given in (3.2). This is given next.

Theorem 3.3 The distributions {Q,} satisfy the LDP with rate function L(a;, as) given by

(3.9) L{al,ag) = Stlg‘p {3131 + fzas — gt’:(a],a'z)}‘
81,67

Furthermore, for J(a) given by (3.2),

(3.10) J(a) = inf{L(b,c): b,c>0and b—c = a}
and there exists 6 > 0 and ¢ > 0 and b — ¢ = g with

(3.11) J(a) = L(b,¢).

Proof We've already indicated that {Q,} satisfies the LDP. The rate is given by (3.9).

To see (3.10) and (3.11), without loss of generality let a > 0. Let P, denote the distribution of (M,, N,).
Since Oy = {(b,c): b—c > a} and (a,00) are open convex sets and since there is equality in (2.7) for such
sets for both {P,} and {Q,}

—L(Oa) = ].im% log Qn(od)

= hm;l; log Pn((a, o))
= —J[{a, °°))

Let a € [0, B] from (3.3) and (3.5), J(a) is strictly increasing on [0, B). Consequently, by (3.8), J(a) =
J((a,00)) = L(O,). Thus for a € [0, B), there exists a,, b, and ¢, with a, | @,bp — cp = an,b, and ¢, > 0
and L(bn,cn) — J(a). Since {(b,c): L(b,c) < J(a)+ 1} is compact there exists b and ¢ such that b, — b
and ¢, —¢. Sob—c=a and J(a) < L(b,c) < limL(bn,cn) = J(a) since L is lsc.

Ifa = B < oo, then J(a) = log P(z = a) = log P(X* = a) = L(a,0). Finally, if B < oo and a > B,
then J(a) = co = K(b,c) for all b — ¢ = a.

The final result of this section establishes a decomposition a = (a + ¢(a)) — ¢(a) of a which is referred
to as the (univariate) LD decomposition of a. This decomposition is the basis for the LD decomposition in
Section 5 for the sample average process.

Lemma 3.8 Let I' = {a: J(a) < oo}. There exists a Borel measurable function c(a) on T' such that
c¢(a) and a + c(a) are nonnegative and satisfy

(3.12) L(a +c(a),<(a)) = J(a).

Proof. Let U, = {... < o.g."'] < “g':-]x <...}n=1,2 ... be a sequence of partitions with U, C Up;.

Let An(a) = a}“} fora e [a}“}, a}:)l) and let Cr(a) = c}") where 0 < b = a_('-“] + cg") is a solution of (3.11)
with ¢ = agn}. Furthermore, since U, C Un,; we can choose c\"T1) = (™) if g{**1) ag-").

Let ¢c(a) = imC,(a) and note that lim A,(a) = a. Thus cia] and a + ¢(a) are nonnegative. Since J(a)
is continuous on ' and L is Isc,

J(a) = lim J(An(a))

ot © =lmL(4a(a) + Ca(a), Ca(a))
Mo T 2 Eatcla)e(@) 2 J(e)
4 A )



where the inequality follows from (3.10).

Theorems 3.1 and 3.2 establish the LDP for sums of iid random variables and random vectors. In
Section , the LDP is established for the sample average process. The rate is defined in terms of J,Cy and
C_ (see (3.2) and (3.7)) as follows: For f of bounded variation,

10 = [ s(hee+ e+ C_peml0

where f = %‘%"-,}' = fa + fs is the Lebesque decomposition of f and f, = f} — f; is the Hahn-Jordan
decomposition of f,, the singular part of f.

In the next section, useful properties of the point function I(f) and of the set function I(A) = inf ;¢ 4 I(f)
are established.



4. The Rate Function L In This section we enumerate some facts about the rate function I(-) defined

o

digression. i S (e

-

in (4.3) below. These will be needed in su?bsequent sections. To properly define I(-) we need t.!_'n:e foHowing i {:,:/; spc)

Let BV'[0, 1] denote the space of finite signed measures on ([0, 1], B) where B is the usual Borel §-field
in [0,1]. For each f € BV0, 1] associate the function f(t) of bounded variation on [0, 1] given by letting
f(0) =0, f(t) = f([0,t)) for 0 < ¢t < 1, and f(1) = f([0,1)). We use the same symbol f to denote both
the measure f(A) and the function f(t). Note that with this identification, BV[0,1] € D|0, 1], the space
of functions which are left continuous on (0, 1| and have right hand limits. Here for convenience we have
slightly altered the usual definition of D(0, 1]. (See Billingsley (1968), Section 14.) We note, though, that all
results concerning the Skorahod topology hold with this definition of D[0, 1]. Let C[0, 1] denote the space of
continuous functions on [0, 1].

For f € BV[0,1], f = f4 — f_ will denote any arbitrary decomposition of f into the difference of two
finite measures while f = hy — h_ will denote the Hahn - Jordan decomposition. Let o denote Lebesgue
measure on [0, 1] and for j = + or —, let h; = h} + h} be Lebesgue decomposition of h; with respect to a

with h} << a and h} L . Let f = h, —h_ where h; is the Radon-Nikodym derivative of A2.
Let 0 =ty <t; <...<tx = 1. Both the collections of points {¢g,...,tx} and the collection of i.nterval_s_-,
{[0, 1), (t1,t2], ..., (tk=1, 1]} will be referred to as the partition P. Let §(P) denote §-field generated by P.
The collection of partitions {P} form a directed set under the partial'ordering P’ > P if/JfP)’ D,6(P).
Throughout we will be taking limits of functions indexed by P. These limits will always be along-directed-—
nets such that §(P) — Bg (set limit) with §{Bo) = B. With an abuse of notation we shall write this as
4(P) — B. - Ao
7" For a function f and a partition P = {0 =to,ty,...,ts = 1}, let At =¢t; —t;_; and A;f = flt:) —
f(ti=1)- For T as defined in (3.8), let BV = {f BV[0,1]: A;f €T for all partitions P}. For f € BV, let

o~ a) L(f) = SJ(A: £/ Ast) Ast.

7
r)r;

Denote the restriction of the measure o and the signed measure f to §(P) by a, and f,, respectively. We
may rewrite the definition in (4.1) as

(4.2) L) = /J(ﬁ‘-’) do

dap

Let C+ and C_ be as given in (3.7). For f € BV, let

(4.3) I(f) = f J(f)da + C+h%[0,1] + C_H?|0,1].

s
|-

where we adapt the convention that 0:-co = 0. In particular, if Cy = co = G, K(f] = fJ(f_,Ha if fis
absolutely continous and = oo if not. £

The following lemma relates I,(f) to I(f).

Lemma 4.1. I(f) — I(f) as §(P) — B.

Proof. For f = hy — h_, the Hahn-Jordan decomposition of f, let b = hi +h_. Since h; << b and

h'i‘ L h—: i
A dhy
(4.4) dhi [1 ‘aeb on{%i>0}
' db ~ |0 .aeb on {Li>0} j#£i

Let @ = a® + o’ be the Lebesgue decomposition of a wi(}h respect to b where a® << b and o® L b. For

A and B defined in (3.8) let i

Y

P FE S dJ(d~') i d> Bl

* == g 9+(d)={ B-'J(B) ifg=B"'>0
Co— - : C,{,. if = B_I ] 0

et SO el -

}
h o
8.
A

-
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-
and

{ 1) fgd<-—-A"
g9- (3 1J'( A) fd=-4"1<0
{ C. if?:-A‘1=0

RPT e,

Then since J(0) =0 and f, << bpd

* Since fﬁa&:% - Qé’!f-, it follows similarly from (4.4) that

(4.6) I(f) = fﬁ)o g4(3)3b + f%w g (=5)3b

where & is the Radon-Nikodyn derivative of a® with respect to b.

The following facts are needed concerning {9h;p/8b,}, {3 f,/8b,}, {60:,_,/6&9} a.nd {8fp/8a,}. Since
h; << b, {32 g(p)-& B} is a martingale with 2hia " — 28 36, b. So, {aa ) ( P); 2 e

,;1{ is a martingale

ab, ? gk ab

Witvh i "' o ———

- e .
. o T P e i

3fp _0H.p dh_p _ 3f

4.7 =
4.3) b,  ab,  ab,  ob

a.e.b

where 3L = 28+ _ 8- The collections {Q-'t'-'-“ B(P)} are also martingales with

a6 = “ab day
dH; . ab .
4.8 —2 — ky L ~bae. o
(4.8) Fo h; and 3a, ae a
So, from (4.8), {{h ,§(P)} is a martingale
- 3
(4.9) s o fae c.
dap
Finally, ab 582,8(P)} is a martingale with
(4.10) e
3,

Now if I(f) = oo, then by (4.3) eltherf.}'(f)ac: =ooor CLhP[0,1]+C_A%[0,1] =

oo. Since J(-) is Isc,

it follows from (4.9) that hmJ[-‘?i-’:-‘-} > J(f) a.e. @ So in the former case it follows from (4.2) and Fatow’s =

lemma that lim/[,(f) =
In the latter case, by (4 6),

w=1(1)= [

(i) Cy=c0o=C_,h%=h" =0

(i) C+ <0 and C_ =0 or Cy =co0 and C_ < oo,

(iil) C+ < co and C_ < oo.

—7 Case (i). Since Cy = 0o = C_,h; << a for i = + and —. Thus we can adjoin (£ B to the ma.rtmga.le
{aa ,f{P } to form a martingale. It follows from (3.5), (3. 8) and Jensen’s inequality’ tha.t.
— H

4 Jogiyes 0

z“

CLE fﬁ(o oo =)

Since g is continuous (in the extended sense on [B~1,00) and g- on (—oo, A 1], by another application
of Fa.to;‘r s lemma it follows from (4.4), (4.5), (4.7) and (4.10) that imI,(f) =
This to complete the proof we rna.y assume that J(f) < oo and cons:der t.he followmg three cases:

_&g‘h t.— :I-‘"



A

while from (4.9), the lower semicontinuity of J and Fa.to“ﬁ’s Lemma

-

"__.—_-—-I-.

/J’{f}aa < ume(g—i)aa

Case (if). Without loss of generality assume that C; = oo and C. < co. Let Jy(a) = J(a) if a > 0 and
=0 if ¢ < 0. Note that

(4.12) J+ is nondecreasing and convex on (—oo, B|, continuous on (—oo, B)
) and left continuous at B where B ma.}équal co.
-~

Since C4 = oo, hy << a. So, similar to (4.5) and (4.6),

a =
(4.12) Tlf= fm f")a + a‘;"g ((g{f) 1%‘:)3&,%<0
and .
~ . . . {::'
(413) 1= [sthpas [ s@an i

- : Jz
Since hy Lh,B> L2 — fae aand f=hy ae aon{f>0},hs <B, andso‘i%—hﬂ 8(P); hs, B}
is a martingale because h+ << a, by (4.11) an argument like that in Case (i) shows that™ /

[J af” <hme.,. ah“")aa

dap

=/J+(h+]a“
=fJ+(JE)a°‘

since —f-l < Zhsa f = hy ae. aon {f >0} = {hy >0} ae. a and Ji+(a) = 0 for a £ 0. By (4.9), (4.11)
and Fatofs Iemma.

7 [.I+( ]acz(h_rn/J_'_ af,,) S
%p
Thus,
dap,
i\ ‘., . g~ '-.‘..'\-'.‘__&-_._
Since C_ < o, A = oo. Thus, ;‘})’."' o t
(4.15) g- is continuous on (—oo,0) left continuous at 0 with 0 < g < C_ by (3.6).

Thus, since —1 < 31-“ <Owith 2z - 2 = _1ae bon {4 < 0}, it follows from (4.10), (4.15) and the
bounded convergence theorem that.

A pr % —laap __,f »
i [ e ()5 )= ], -t

Combining (4.14) and (4.16) with the identities in {4.12) and (4.13) completes the proof for Case (ii).
Case (iii). The proof follows from (4.5) and (4.6) by using the argument in the last paragraph of Case (ii).
As an immediate corollary we have
Corollary 4.2. I(f) =sup, I,(f)-

-
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Another consequence of Lemma 4.2 is

Lemma 4.3. Let {f. ,}"’=0§'BV. If fo — fo at continuity points of fo and f,(1) — fo(1), then
im (f,) > 1(f).

Proof. Let P = {0 = to,ty,...,tx = 1} be a partition such that ¢,,...¢x are continuity points of f.
Since fo(0) =0 for n =0,1,2,..., it follows that A;f, — A;fo for ¢ = 1,2,..., k. Thus, since J is Isc., it
follows from Lemma 4.1 and (4.1) that

& Ko imI(fa) > liml,(f)
R > I,(fo) = I(fo)

as §(P) — B through partitions P with ty,...,tx—; continuity points of fy.

" The next series of results involve topological considerations. In addition to the appearance or nonap-
pearance of h;- in the rate function I when Cj is finite or infinite, the finiteness of C; will also play a role in
these considerations.

Let M[0,1] ¢ BV|[0,1] denote the space of finite measure on [0,1]. Let uo,u1,... be a sequence of
measures in M0, 1]. We say that K, coverges to ug in the weak topology if

g

ffaun —»/fa;.co for all f € CJ0, 1.

We note that this is equivalent to p,(+) — uo(+) at continuity points of po and is better known as
convergence in “distribution’ amongst statisticians and probabilists.

Let 2 = {A: X is continuous and strictly increasing on [0, 1] with A(0) = 0 and A(1) = 1}. We say that
En _converges to uo in the Skorohod topology if there is a sequence Ay, Az,... in N for which

AN
/ ’ An(t) — t uniformily

and

Bn(An(t)) = mo(t) uniformily.

It is well known that M|0, 1] with either topology is separable and metrizable and that the metric can be
chosen so that M0, 1] is complete. (See Billinsley (1968), Section 14 for the case of the Skorohod topology.)
Let d,, and d, denote, respectively, these two metrics and note that d, is a stronger metric than d,.

Using 4y, and d, we define a metric d on BV[0, 1] as follows: For j = + or —, let

dy ifCj< oo
d, ifC; =00

d; =
For f,g € BV, let
d(f,9) = inf{ max d;(fy,9;): f = f+ — f- and g =g — g}

We mpte tja§ d is a metric and that BV with this metric is a Polish space since M0, 1] with the metric d;
is a Polish space.

Since fn — fo in the metric d implies that f, — fo at continuity points of fo, we have an immediate
consequence of Lemma 4.3. that

Lemma 4.4. I(-) is d-lsc.

Let T. = {f: I(f) < c}.

Lemma 4.5. I'; is d compact.

Proof. We only consider the case when Cy = oo and C_ < co. The proofs of the other cases will
follow from the technique of proof for this case.

Let f € Ic. Then, since Ay L h_ and j is convex with J(0) = 0,

¢ > I(f) = /J{h+)da +/J(L}da +C_h2[0,1]

(4.18)
> fJ(£+)da + J(—h2[0, 1ﬁ+ C-AL[0,1].

4
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Let M = M[0,1]() BV. Let
A;={p€M’:u<<aand[J{,d)Sc},
Az ={peM:J(-pl0,1]) <c} and .
Ay={ueM:C_pu0,1 <c}

Clearly A; is weak compact since C_. € (0,0) while A, is weak compact since I/ ={a:J(a) € ¢} is

compact. If we show that A; is Skorohov compact, then, since A, and Az are weak compact, it will follow

from (4.18) that any sequence in I'g has a d-convergent subsequence. Since T'c.is d-cloased by Lemma 4.3, "=

the limit of the subsequence is in ' This suffices to show that”l"c:._'i:s'ij:ggmpa_gt:fﬂ 4 B e e 3 ;
Let u€ Ay. Ford >0and A€ B, let 44 = {t: p(t) < d} and By = A — A4. Then, Sionce J(a)/a is

nondecreasing in a < 0,
u(A) =/ ;lda+f pda
Agq By

< da(A) + %d] f J(&)da

de
< da(d) + —.
s
Since d/J(d) — 0 as d — oo, it follows from (4.19) that A, is uniformily absolutely continuous and hence
equicontinuous. Since u(0) = O for every u € Ay, it follows from the Theorem that A, is
compact in the uniform topology and hence in the Skorohov topology. A vzela -As coJs _
The following is a minimax theorem for I,(f). = =naias
Thereom 4.8. If F is d-close_;f then
(4.20) sup I,(F) = I(F)
P

where for any set A

= j I(A) = inf I(f).
I,(4) !125 Ip(f) and I(4) ng{; (f)
Proof. From Corollary 4.2 we immediately have

sup I(F) < I(F).

Suppose (4.20) were not true. Then there exists and N < oo such that

(4.21) sup I,(F) < N < I(F).

Thus, for each partition P = {0 = to,t;,...,¢ = 1}, we can find fp € F such that I,(f,) < N. For a finite
measure u, the 7, called the P-linear form of u, be given by

k
A;p
B4) = Y = alA[)(ti-1, 1) .
1 At dec’oﬁfos‘J "‘,or\ \'_‘f'/

Note that fi,(t) agrees with u(t) for t € P. For f, = hp+ — hp—, the Hahn-Jordan deecempesicat, of f,, let
Bl e
where hy; is the P-linear form of hpje
Since i
N > I(fp) = L(f) = 1(/5), /ﬂ —

5
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{fo} is a set in the d-compact set T, it will follow that there is a clustegéc';{nht fo of {fp} in Tp,. If we can
show that fp is a cluster point of {f,}; then it will follow that f, € F since F is d-closed. Since I(fo £ N,
this will contradict (4.21) and will establish (4.20).

As in the proof of Lemma 4.5, we shall only consider the case when C; = oo and C_ < oo. The
arguments given for this case can be used to prove the other cases.

From the proof of Lemma 4.5, there a decomposition of fo, fo = fo+ — fo—, withéﬁ.;. << a such that

/4‘(04. is a c=luster point of {ftp.,.} in the sup norm topology and f; is d,,-cluster point of {}‘zp_} when these

two sets are viewed as sets in M.

Fix € > 0. Since fo+ is continuous, there is a partition P! = {0 = ¢}, ¢},...,t! = 1} with ¢}, . coady it
continuity points of fo such that max;{fo4 (¢:) — fo4+(t:i-1) < €/2. Note that for h € M,

sug |h(t) = fo+ ()| < maz;|fos (t:) = fos (tic1)| + D [h(t:) = fo+9t:)]

€
< = +max h(t:) — fou ()]
It is easy from the above to see from this that the sets

Npe ={f: n}‘:;._x|h,-{t;] — fo;(t:)] < €}

from a basis at fo for the d-open neighborhoods. of fo for any decomposition fo = fo+ — fo—. Thus it
suffices to show that for each P" > P, there is a P > P with s € Ny

Since fo is a cluster point of {f,}, ther is a P > P" such that fo € Npi . Since hy;(t) = hyj(t) for
t € P, it follows from the definition of Np: . that fo € Npi .

sl =



5. The Large Deviation Decomposition. Let f € BV and P = {0 = to,ty,...,tx = 1} be a partition.
For a decomposition f = f, — f_ of f, let

Ko(f+, f- ZL(AAf:, AAf;)ﬂit -

=f )

K(f+,f-) = =up "Kp(f+, f-)

(5.1)

where L(-,-) is given in (3.9). Let

.--""
where the supremum is over all partitions P where ¢;,..., 2, are continuity points of both f; and f_.
Let
(5.3) K(f)—inf{K(fs,f-): f=fyr—f-}

In this section we establish some important rela.tlonshxps between the rate function I defined in {4.3)
and Kp(-), K(,-) and K(:) defined above. In particular it is shown that

(5.4) I(f) = K(f) = K(l,1-)

where f =l —l_ is a particular decomposition of f where in light of (5.4) it will be referred to later as the
large deviation (LD) decomposition. These results will be crucial to obtaining the lower bound (2.7) in the
LDP for X,(-) and Y, ().

Note that by (3.10), Lemma 4.1 and (5.1) I(f) < K(f+, f-). So

(5.5) I(f) < K(f).

Consequently, (5.4) holds whenever I(f) = co for any decomposit.ion f=Ff+—f-.

To establish (5.4) and identify the decomposition f = Iy — [_ in general, we need the following. Let
c(") be the Borel measurable function given in Lemma 3.3. When f <<  with I(f) <oo,let i_=¢(f)>0
and Iy = f +¢(f) > 0. When f << a with I(f) = o0, let f =1, —I_ be any decomposition of f for which
[; << afor j =+ and —.

Lemma 5.1. Let f << c and let I, and I_ be as defined above. Then I, and I_ are finite absolutely
continuous measures for which f = [, —[_.

Proof. We only need to prove that [,[0,1] and [_[0,1] are finite when I(f) < oo, since the other
statements follow immediately from the definitions of I, and {_. It follows from Lemma 3.3 and (4.3),

(5.6) f L(is, )90 = f I f)gaw.If) < .

Since L(-,-) is convex by Theroem 3.2, the set C = {(b,c): L(b,c) < oo} is convex. By (5.6), a({t: (i1 (t),I_(t) ﬁ/‘\:‘.’"

C) =1, so Jensen’s inequality is in action and it follows by (5.6) that
(140, 1],1_[0, 1) € {(b,c): L{b,¢) < I(f)}.

which is compact since L(-,-) is a regular rate function by Theorem 3.2. This proves the finitines if l4 and
-

Now for f € BV, let f = hy—h_ denote the Hahn-Jordan decomposition of f. Let h; = h$+h}, A} <<
and h} L o, be the Lebesque deomposition of hy. For h® = h — h%, let h* =12 — |2 be the decomp031t10n
of A% § given by Lemma 5.1. Let [y =% + A% and - =1l + h. Then F= E.,. — I_. It follows from the
following lemma that K(f., f-),f = f+ f_, attains its mimimum at (I,[_). It is because of this that
f =14 —1— is referred to as the large deviation decomposition of f.

Lemma 5.2. Let f =l —I_ be the LD decomposition of f. Then I(f) = K(f) = K (4,1

1 —*



Proof. From the discussion above we know that lemma is true if J(f) = co. Thus we assume that

I(f) < oo and consider first the case when f << a. & - 5,{,{ . SM?X
—, Since I} << a and I_ << a, the collection {(%,%ﬂ) ,/(P); (i4,i-); B} is a vector-valued martin-

ugale. Consequently, by a careful application of Jensen’s inequality (see the proof of Lemma 5.1), -

8l,, al_
Kp(:+,z_)=f;:(f, aa")aa
p p

(5.7) < fL(z;,f_)aa
= [Jthea=110),

since L(', ) is convex by Theorem 3.2 and where the second identity follows since I{f)<oocand f=1,-1_
is the LD decomposition. This shows that

K(l4,1-) < I(f).

Combining them with (5.3) and (5.5) proves the lemma when f << a.
Now suppose I(f) # K(f). Then, by (5.3) and (5.5) ther is an n < co with

(5.8) I(f) < n < K(f) < K(l4,1-).

For each partition P, let [, denote the P-linear form of l;,;j =+ and —. Let f, = I, — I, and note
that f, << a. Let f, = lp+ — lp— denote the LD decomposition of f,. It is easy to see that I+p and Ip_ are
(P) measurable. So, for P > P

> 07
J-j: (5.9) Ko (lp+, Ip)s Kp(lp=,1p-)
Kllpr bp-) = I(f) = L(N <IN S o %
where the second identity follows from the first part of the proof since fp << J 2nd the third identity and

the inequality follow from (4.2) and Lemma 4.1, respectively.
Since L is convex, another (careful) application of Jensen’s inequality with (5.9) gives

L(lp4[0,1},1,-[0,1] < fL(:',,+,f,,-)aa =K

= Kllpr1lp-) < 1.
Since T} is compact, it follows that the net {(’+,15-)} is compact in the product weak® topology. Let
(lo+,%0~) denote a cluster point of this net. Let P' = {0=1t5,¢],...,t} denote a partition where t;,... ¢!

are continity points of both lo4 and lo—. Note that P’ are continuity points of lp+ and l,_ since these
measures are absolutely continuous. Thus, since L is Isc, it follows from (5.1) and (5.9) that

Kp' ('{0+| !0-) ..<... 7y

and hence K(lp4,lo-) < n by (5.2). Further since fp(t) agrees with f(t) for t € P, f = lp; — lp—. So
K(f) < K(lo+,lo-) < n which contradicts (5.8).



6. The LDP for the Sample Average Process X,(-). As in Section 3, throughout the remaining
sections X, X»,... are iid with mean E(X,) = 0 and m.gf. ¢(#) finite in some open interval about zero.
Recall that from (3.2), J(a) = sup{f, — log $(6)} is the large deviation rate of X.,,.

Let X,(t) = S(nt)/n. We view X () as taking values in BV[0, 1] with the metric 9 defined in (4.7).
With this setting we establish the LDP for {Xa()}.

Theorem 8.1. Let P, denote the probability measure induced on the Polish space BV with metric &.
Then {P,} satisfies the LDP with rate function

(6.1) I(f) = fJ[f)aa +C4h%[0,1] + c-h2[0,1],

where f, h%,h*,C4,C_ are defined in Section 4.
Proof. If follows from Lemmas 4.4 and 4.5 that I(f) is a regular rate function. Thus to complete the

proof we only need to establish the upper and lower bounds ((2.6) and (2.7), respectively) in the LDP.
————==_ Proof of the upper bound. Let F be/xclosed and let P = {0 = to,¢t1,...,tx = 1} be a partition.

Then, by the definition of I,(F), p
(6.2) P(Xn() € F) < P(I,(Xa (") 2 L(F)).
Let Z,, = f,,(tl) and Z;, = x_\(,,(t‘-_l,t,‘] fori=1,2,..., k. It follows from the Contraction Principle that
{Z,,} satisfies the LDP with rate J(a/&;t)Ast. Thus, since Zi,,..., Zx, are independent, it follows from
Lemma 2.6 and Corollary 2.10 that, for Z,, = (Zin, .-, Zxn), {Z,} satisfies the LDP with rate oty oy i) ==
5 J(a:/Ait) At B

For I as defined in (3.8), let I'; = A;tT. Then, Iy = I'; x [z x...x T'x. Endow 'y with the relative
topology and note that there is a topologically equivalent metric under which Ty is complete. (See (3.8)).

Thus, I(a,,...,a,) is continuous (in the extended sense) on I'g and hence, the set, G = {a € Ty: I{a) >
I,(F)} is a closed subset of T'g. Thus, by (6.2)

_h.r;% log P(X.() € F)
(6.3) < Tim-- log P(2, € C)
- <
< :2—&1(3) < —Ip(F)

~ since G is closed and {Z,} satisfies the LDP with rate I(a). The upper bound then follows from the minimax
——+ theorem, Theorem 4.6, bypr'taking the supremum over P in (6.3).
7 Proof of the lower bound. As in Section 5 we will only consider the case when C, = oo amd
C_ < 0. The other cases will follow from the arguments for this case.
A < Let G be ﬁ{open set and let f € G. Let f = Iy — I be the LD decomposition of f. Since G
is J-open, there is a neighborhood of f, Npe © G, given by (4.22) with for = l4 and fo— = I_. Let
G* = {(b,c) € B**: max; |b; — Ly (t;)| < € and max; |c; — I_(t;)| < . Note that G* is an open subset of R%*.
For Xa() = X, () = Xa() the Hahn-Jordan decompostion of X (), let My, = X, (t:) and Ny, =
X, (t1) and fori=2,...,k let X" ((t;_l, c1|) and Ny = X, ((ti1, t:]). Let (M, Np) = (Min, .., Min,
Niny...,Nkn). Since (Min, N1p),..., (Mkn, Ni,) are independent, it follows from Theorem 3.2 and the
contraction principle that {(Mp,, Ny,)} satisfies the LDP with rate 3 ; L(f:_’;, a)Ast. Thus

Iim%log P(X.()eq)

1 == A
> bim— - 2
> hmn log P(X,(-) € Hp.d{é

(6.4) = I.im}ll log P((M,,N,,) € G*)
k b c.
> - B D2
2 —Kp(ly,1-).

il —
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where the last inequality follows by (5.1). The lower bound follows from (5.2) and Lemma (5.2) by taking
the inf in (6.4) over partitions P, with ty,...,t,_; continuity points of both [, and I_.
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7. The LDP for Y,.(-) when limjg|—~co J(a)/|a| = co. Let Y () be the sample average process given by
Y.(t) = P(nt)/n. Then Y,(-) takes values in C = C[0,1] N BV. Endow C with the topology given by the
metric definded in (4.17) when C} = oo = C_. We note that this metric is topologically equivalent to the
metric (actually a norm) .

(7-1) 8(f,9) = inf{ max ||fi —gill: f=fs~f andg=gs g}

where || - || is the sup norm. (See Billingsley (1968), Section 14.) Note that wi t‘{his metric, C is a Polish

space.

In this section, we established, we established the LDP for {¥,()} under the strongest that

\?

(7.2) lim J(a)/|a|] = ce.

la|—ca

The proof hinges on the following lemma.
Lemma 7.1 Under 7.1

fim & log P{|X,| > ne) = —co for e > 0.
n

Proof. For § > 0,1 log P(X; > ne) < —+[nef — log $(6)] by Markov’s inequality. Taking the inference
over § > 0, by (3.4) we get

~ 108 P(X, 2 n¢) € ~J(ne)/n — —oo

under condition (7.1). Similarly,

lim 2 log P(X; < —ne) = —co.
n

As an immediate corollary we have that
Corollary 7.2. Let P, be the distribution of X,/n. Then, {P,} satisfies the LDP with rate

5= {5 §alo

Theorem 7.3. Let P, be the probability measure induced on C by Ya(-). Then, under condition (7.1),
{P.} satisfies the LDP with rate

I(f) = {fj[f]dcx if f << a, and
oo if not.

Proof. It follows from Lemmas 4.4 and 4.5 that I(f) is a regular rate function. Thus to complete the
proof we only need to establish the upper and lower bounds in the LDP.

Proof of the upper bound. Let F be closed and let P = {0 =to,¢1,...,t = 1} be a partition. Let
Y;n = 0if [nt;] equals an integer and Xint;]+1/n if not. Then it follows from the Contradiction Principle, The-
orem 3.1, Corollary 7.2, Lemma 2.6 and Corollary 2.10 that the vectors {Z'} = (8 2 25 ia)) =
{(Fallo, 2ul) v, T, ((lntaltL Imtal) w4} satisfy the LDP with rate T e/ Ai) A+ 2o (5:)
since the components of the vector Z,, are independent. Another application of the Contraction Principle to
{Z'} shows that the vectors {Z,} = {(Zin, s Zua) H(Yn ([0, t1]), Y (81, t2]), - - -, Vi [tk 1]) satisfy the
LDP with rate :

k
D J(a:/At)A)it.

Now the rest of the proof is exactly the same as the proof of the upper bound in Theorem 6.1.

Proof of the lower bound. Let G be an open set and f € G. It follows that there is a neighborhood
of f, Np C G, given by (4.22).

Let Y,() = ?:[) ~Y,, denote the Hahn-Jordan decomposition of ¥ ,(-). Let M}, =
?:{(m;‘-‘l,mt—nm]], and N}, = ?;[(-{-”—t’f‘,l"—tﬂi—l-]) and Y;, be as defined in the proof of the upper

1
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bound. Then, it follows from the Contraction Principle, Theorem 3.2, Corollary 7.2, Lemma 2.6 and
Corollary 2.10 that the vectors {[M:‘, N7, Y,.)} satisfy the LDP with rate Et L('&%: ) + I Jo(as)
since(M],,N; )7 =1,...,kand Yj,,7=1,...,k — 1 are independent. Another application of the Contrac-
tion Principle to the above sequence of vectors shows that the vector {(My,, Nin, Man, Non, ..., Min, Nin)}

satisfies the LDP with rate .

bl' cy
—, A
; L(A"t, A"t}A

where M;n = Y7 ((t;-1,t;]) and Njn = ¥,7((t;=1,t;]),7 = 1,..., k. Now the rest of the proof is exactly the
same as the proof of the lower bound in Theorem 6.1.

¢



8. Functional E-R Laws. Recall the definitions of A p4(-) and Al n.a() in the Introduction. In this
section, we establish versions of the Shepp’s law and of the Erdds and Reds law for the functionals A
and A7 (). R\eny;‘,-‘;_.../

Note that A . 4(') takes values in BV[0, 1] while Al . 4(") can be viewed as taking values in BV[0, 1]
or C[0,1]. Throughout d will denote either the metric defined in (4.17) when the relevant space is BV|0, 1]
or the sup norm when the relevant space is C[0, 1].

The key to proving these functional laws are having large deviation approximations for {4, . 4(-)} and
{4l nu()}. These are available from the results in Sections 6 and 7 since Amoae() and ?[a“lognl(') or
Binnal) and Yia-116g ny () have the same distributions. These are stated below.

Let P, denote the probability measure induced on BV [0, 1] (with metric d) by —}-{',,{) Let P! denote
the measure induced on BV[0, 1] by Y ,.(-). Recall the definition of BV given in Section 4 and of C given in
Section 7.

Theorem 8.1. The sequence {P,} satisfies the LDP with rate function

m.n.a(']

I(f) = {fJ(f') + C4h%[0,1] + C_k%[0,1] if f € BV, and
co otherwise.

If, in addition, (7.2) is satisfied, then {P.} and {Q,} satisfy the LDP with rate function

I(f)-_—.{f*f(f}dﬂ f feC,and f<<a
oo

otherwise.

Proof. This is immediate from the Contraction Principle and Theorem 6.1 and 7.3 since the identity
maps from BV — BV/[0,1] and from C — C[0,1] are “continuous”. In the latter case mes that the metric
given by (7.1) is stronger than the sup norm. hote e
As before let Tg = {f : I(f) < a} where I(-) one of the rate functions defined in Theorem 8.1. For a
~., et A, let A, = {g:d(f,g) <efor some f € A}. The functional analogues of Shepp’s (1964) and :
én yj:pﬂén;'i’s (1970) Laws can be stated as follows g —. S =
Theorem 8.2. The set of cluster points of {A,,n, a()
then the set of cluster points of {AZ, . ()} is also I,.
Theorem 8.3. Let € > 0 with probability one,
(i) {Amuna():m<n}c (T's)e eventually
and ) 5 -
(i) TaC {Amna():m<n}e. / m; Eolsa— RM'?'-JOM
(iii) In particular, the set of cluster points of the triangllar array {A,, n.ol ) M S HFs T,

I, in addition, (7.2) is satisfied then (i), (ii), and (iii) also hold for {AlL nal’) :m < n}

To prove these theorems we need the following lemma.

Lemma 8.4. (i) For each ¢ > 0 ther exists a ¢ > a for which T, C (Ca)e and (ii) ', equals the closure
of {f:I(f) < a}.

Proof. (i) Suppose not. Then for every ¢ > a there exists an f, € T, with fe € (Ta)e. Fix b > a. Since
I’y is compact the net {f. :a < ¢ < b} has a subnet {fa} which converges, say, to fo, as d | a. By lsc of I(-)
it follows that I(fo) < limaj4 I(f4) < @, and so fo € I',. But fe & (Ta)e implies that d(fo, fo) > € for every
¢ which contradicts that {f;} converges to f,.

(ii) Fix f € T with I(f) = a. (If no such ¢ there is nothing to prove.) It suffices to show that I{af) < a
for 0 < & < 1. This is immediate since I is convex with I(0) = 0, where O denotes the function which is
identically zero. ||

Proof of Theorems 8.2 and 8.3. We only prove the theorems for {Am.n.a} since the proof for
{a! } is the same.

m,n,a

Fix a > 0 and € > 0. We first show that

(8.1) all any f € Ty, d((An,n.a("), f < €) infinitely often a.s..
Let 0 = {g:d(g, f) < ¢}. Note that since 0 is open, a - f €0 for some € (0, 1). By the LDP,
limn™!log P(X, €0) > —I(af).

1
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Since (') is convex with I(0) = 0 and « € (0, 1), I{af) < aI(f) € aa. Thus

(8.2) P(Amnna() €0) 2 nmdtta(t)
Since Zn® = oo, for a'e(a, 1) fixed it follows from Lemma (3.1) of Shepp (1964) that there exists a se-
- quence {n(k)} with n(k + 1) = n(k) + [a~! log n(k)] such that En(k)~*' = co. This with (8.2) shows that
ZP(An(k)n(k).a(") €0) = oo. Statement (8.1) follows from this and the divergent part of the Borel-Cantelli
lemma since the events {An(k).n(x),a(-) €0}, k=1,2,... are independent.
We now show that, with probability 1,

(8.3) {Am,na() : m < n} c (T4)c eventually.
For all sufficiently large integer k, let K = e**% and let 1(k) = K — 1 if K is an integer and = [K] if

not. Then, since k = [a™*log!(k)], for 1(k— 1) < n < 1(k), Bmnal) = Amixy.al’) for m < n. Thus, to
prove (8.3), it suffices to show that

— CBA) P(Am i(x),a() € (Tu)e for some m < 1{k) i.0.) = 0.
I,(‘ By Lemma 8.4, (i) there exists ?é > a such that I', ¢ T, .. Thus I{(T2)¢) = c. So by the LDP,
limn~" log P(Xa(-)e((Ta)€)° < —I((Ta)e)®

. = Cage T
— since ([g)¢ is closed with ((T's).)¢ € I'C. Thus, for k¥’ sufficiently large,

Y P(Bmige).al)e((Ta)e)® for some m < 1(k))

k>k’
Z l(k]',-ck(HO{l)) = Z ¢®ela—cl(1+0(1))k -
K>k E>k!

So (8.4) follows from the convergent part of Borel-Cantelli lemma. This completes the proof of (8.3).
Since Ty is closed, I's,c | T4 as € | 0. This with (8.1) and (8.3) completes the proof of Theorem 8.2 and

(i) of Theorem 8.3.
To prove (ii) of Theorem 8.3, let ¢ > 0. Then, by Lemma 8.4 (ii), there is a finite collection {f, ..., fr}subset{f
I(f) < a} such that T, Ur_i{f:}e/a-
Since {fi}/2 is an open et] by the LDP,
e —— et

o limn~Ylog P(X, € {fi}ep2) 2 —I({f:}e2) 2 —1(f:).
vy
So, \

Since I(f;) < a fori =1,...,k, it follows that ZP(Ts ¢ {Amane:m < n}e/2) < oo. This with the
convergent part of the borel-Cantelli lemma completes the proof.



9. Some Final Comments. (i) We note that the metric d defined in (4.17) induces a finer topology on
BV [0,1] than the weak® topology (which is, by the wa: » ot metrizable). Furthermore, when Cy =po.=CL,
the topology induced on BV[0,1] or on C by d is stronger than the Skorohod Topology on either of these
spaces. (Note that in the latter case this is just the topology of uniform convergence). Thus, the large
deviation results in Sections 6, 7, and 8 imply the LDP for {Xa(-)} or {Y.(-)} when taking values in these
topological spaces.

(i) We rate that lower bound for open sets in the LDP established in Sections 6 and 7 actually holds
for open sets in the finer topology given by the metric

d(f1, f2) = Bl o d;(1;,15)

where f; = I — I is the LD decomposition of f; and d; is the metric defined in Section 4.

Lrassen’s (i) As with Sirgsaéer’s LIL, it is important for the E-R functional laws that T, be “compact”. The
EfmpIe at the end of Section 3 in Lynch and Sethuraman (1987) shows that if C4 or C_ is finite I', cannot
be compact in the stronger topology induced by the metric d defined in (4.17) when Cy, = c0o = C_. In
particular, if C, or C_ is finite, the LDP holds for {?,,[)} with the weak® topology on BV[0, 1] but not

for the Skorhqg topology.
v) It would appear that the work of Azencott and Ruget (1977) (see_also Azencott (1980)) could
be used to establish the LDP for {Xa()} or {¥a()}. It would seem for Y.() when Cy = 0o = C_

(Condition (7.2)). However, if Cy or C_ is finite, the singular part of the rate function is crucial (especially
for compactness). This part does not appear in Azencott and Ruget’s rate function which would be in our

case
1 [J(flde f<<a
k() {co if not.

The same example cited in Comment (iii) gives a situation where I'0 = {f : Io(f) < a} is not weak® closed.
Hence I'J is not weak® compact on Skorkod compact. SMJ_\—-’" Pointing ~—
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