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Abstract

Ergodicity questions about the chain are related to the almost sure (a.s.) and L1
behavior of areversed supermartingal referred to as the likelihood ratio trajectory and to the
zero-oneness of the tail o-field of the chain. Implications are that (i) convergence of the
Markov simulation method is related to the a.s. convergence of the corresponding trajectory
and that (ii) the variation norm between the distributionsin the likelihood ratio regul ates,
through Doob's inequality, how far the trgjectory of the simulation isfrom itslimit.
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1. Introduction and Statement of Main Results

The ergodicity of general state Markov chainsis considered in this paper. More
specifically, variation norm ergodicity questions about the chain are related to the almost
sure (a.s.) and L1 behavior of areversed supermartingal referred to as the likelihood ratio
trgjectory. Implications arethat (i) convergence of the Markov simulation method is related
to the a.s. convergence of the corresponding trgjectory and that (ii) the variation norm
between the distributionsin the likelihood ratio regulates, through Doob's inequality, how
far the trgjectory of the smulation isfromitslimit. The following is needed to precisely
state these relationships.

Let {X,B} be ameasurable space and let P(x,B) be atransition function on
{X,B}, i.e, P(x,B) is

() aprobability measure (p.m.) on { X,B} for each x(OX and
(i) { X,B} measurable for each B[IB .

From Tulceas Theorem (see Neveu, 1965, Proposition V.1.1) it follows that there

existsaunique p.m. Pxon{Q,A} = ] {X, B} such that for every measurable rectangle
t=0

n
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For pap.m. on {X,B} let P, denote the p.m. on {Q,A} given by
Pu(A) = [ Px(A)u(dx)

The mappings Xn: { Q,A} - {X,B},n=0,1,..., where Xn(w)=xp, define a
Markov chain {Xp}under P, since

P(Xn+1DB|Xn,,XO) = P(Xn+]_|:|B|Xn) as. PlJ

= P(Xp,B) as. Py



The m-step transition function of the chain is given by Pn(x,B) where
P1(x,B) = P(x,B) and

Pm(X,B) :I P(y,B) Pm'l(X!dy)
Expectations of the Markov chain { Xp} under P, will be denoted by E,.
When there exists a stationary initial probability measure or equilibrium
distribution, 1, on {X,B} for P(x,B), i.e,

(1.1) 1(B) ={ P(x,B)m(dx),

the chain {Xp} is stationary under Pr, i.e.,
Pr{(Xn,Xn+1,---)0A) = Pr((X0,X1,...)0A) for every AOA.

Let S:Q- Q denote the shift operator on Q, i.e., S((Xg,X1,X2,...)) =
(X1,X2,X3,...) and let | ={ A:STA=A} denote the o-field of invariant subsets of A. If | isa
0-1 o-field under P, then the stationary processis said to be ergodic. The classical
ergodic theorem can be stated as follows for the context considered here. Note that, in the
classical ergodic theorem, the sample averages remove any periodic behavior of the chain
while reducibility information of the chain is contained in the invariant o-field, 1.

The Ergodic Theorem Let f: X = R be a Borel measurable function for which
En([f(Xo)[) < . Then,

9 Efxoll) s P

I

|
If the chain is ergodic, then E(f(X)|l ) = Ex(f(X)) a.s. Prand

¢ f(Xo)

igo 1 Ern(f(X)) as. Prn.

For the statement and proof of the ergodic theorem considered here, denote the
distribution and expectations of the Markov chain { X, m=0,1,2,...} initiated with
distributions 1 and po by Pry, Pug Er, and Ey, respectively. Let in(B) =
Pro(XmOB) and pum(B) = Puo(XmUB) for BOB . Let



AB)= 3 o(To(B)Hn(B)).

Then, 1, and i, are absolutely continuous with respect to A. Denote their densities

(Radon-Nikodym derivatives) with respect to A by Ti(y) and pn(y), repectively. Let Lim(y)

= umw; where Ly(y) is defined to be zero if Tiy(y)=0. The sequence {Lm(Xm):

m=1,2,...} will be referred to as the likelihood ratio trajectory of the Markov chain

{Xm}.
Let

(1.29) Am = [lum() - Tin(*)]| = SUPIUm(B) - Tin(B)|

denote the variation norm between um and 14,,. Note that
— [ _ + — _ “m(y) +
(1.2b) Am O(Tm(Y) - Hm(Y))*A(dy) [}](1 — ) T(y)A(dy)
] Tim(y)

= ETro(l'Lm(X m))*.

The main results are stated in the following theorem and lemmawhile their proofs

are deferred to Section 4.



Ergodic Theorem In general, Lm(Xm) - Lo as. Py and in L1 and
(i@  Am= Em(l-Lm(Xm))* > Emy(l-Le)* and

(ib)  1im um(Tm(Xm)>0) = Eng(L o)

(i) Am - Oif and only if Leo=1 a.s. Pry,.

In addition if pm << T4y, then

_1

(iii)  Am= > Eng(I1-Lm(Xm)l)
and if pum << 1y for every m, then

1 1
Am = 5 Eng(-Lm(Xm)D) ~ 5 Eng(l1-Loo ).

Three examples are given that elucidate the behavior of Ay and of Ly(Xm) when
the chainis periodic or reducible or null recurrent.

Examples (a) Periodicity Let X ={0,1}and consider the two state Markov
chain with transition funtion P(x,{y}) = 0 if y=x and = 1 if y#x. Then, T[({x}):% , XOX,

isthe equilibrium distribution for the chain. Let po=mtand mg=80g where &g isthe Dirac
deltafunction and indicates that the processisinitiated in state 0. Then, uy=1t and T,=d¢
if niseven and ;=901 if nisodd. So,

(L.3) Loy =)o 1

Th(x)  25(X)

wherej=0if nisevenand =1if nisodd. Notethat in (1.3) Ln(X)=0 if T12(X)=0 since the
observations from the chain are taken under 1p. Under 11, Ln(Xn):%, and so,

1
An = Eng(1-Ln(Xn))* = 5.



(b) Reducibility Here X ={0,1} but P(x,{y}) = 1if y=x and = 0 if y£x. Here

every initial distribution is an equilibrium distribution. So, Ly(x) = EIEX; If T=dp, then
X

Pr(Xn=0)=1 and Ln(Xn) = ‘:8 = 1(0). S0, A = 1-41(0) = (D).

n
(c) Gaussian Random Walk (suggested by J. Berger) Let Xp=Xp+ Y7Z;
i=1

where Z1,Z»,... are iid standard normal random variables. Fix mOX. Let mg=0yn and po
be standard normal. Then, i, is norma with mean m and variance n while i, is normal

with mean 0 and variance n+1. Then,

1/27\2 1/2 2
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where Z is a standard normal random variable and d denotes that the two random
variables have the same distribution. Thus, since (1-x)* is bounded and continuous,
An— 0. Notethat in this example there is no stationary initial distribution but thereisan
invarient measure, Lebesgue measure on the real line. [ |

The above ergodic theorem can be used for chains with a stationary distribution Tt
by choosing pm = Pm(x,B) and 1y, = Tt In this case, a useful notion of ergodicity is

Variation Norm Ergodicity (VN-ergodicity):

IPm(X,+) - ()|l = ES’léEDPm(X,B)-ﬂ(B)D - 0.

Thisis particularly useful for situations where oneis interested in the dynamics of the chain
under P, where (1.1) holds but p is not the equilibrium distribution 1. For example, in the
Markov simulation method (see Athreya et a,1996, for a thorough discussion concerning
this method) { X,B} ={YxZ,B1xBy}, and one isinterested in simulating from 1t. The
p.m. Ttis the equilibrium distribution for the transition function, P((y,z),(dy',dz)) =
m(dy'[z") T(dz'ly) where the two terms on the right are the conditional p.m.'sy|z and z|y,
respectively.

The classical ergodic theorem does not apply to the dynamics of the ssimulation
since Xo=(y,2) (i.e., under Py 7)), but variation norm ergodicity is particularly appropriate
since, when {X,B} isaBorel space, there exists random variables, U and V, have joint
distributions with marginals Py(x, ) and 11, respectively, such that ||Pn(X,) - T1(+)|| =



P(U ¥ V). Thus, the variation norm indicates just how indistiguishable the Markov
simulation isfrom one for the desired distribution Tt In particular, by reversing the roles
Tim(Xm)
Pm(XmlX)’
variation norm regulates how far the Markov ssimulation is from the desired equilibrium

distribution. Namely,

of Pm(x,B) and 1tin the likelihood ratio trgjectory { Lm(Xm)}, Lm(Xm) = the

Lemma 1.1 SPX(Slip(l-Lm(Xm))+2 £) < Ex(1-Ln(Xp))* = An.
m2n

Lemma 1.2 Let um << Ty, for every m>n. Then,

SPX(%EH'Lm(Xm) > €) < Ex(|1-Ln(Xn)]) = 24n

and

€Px(;1w>ﬁ||—oo‘Lm(xm)|Z €) < Ex(lLoo-Ln(Xn))

where Lm(Xm) - Le as.

The proofs of these results are given in the Section 4. They depend on showing
that {Lm(Xm),Fm} , Fm = o(Xm,Xm«+1,--.), iS areversed supermartingale which is
established in Section 2. The roles of the remote o-fields in the ergodicity of the chainis
discussed in Section 3. Thereit is shown that in the countable state space case the chainis

ergodic iff and only if the tail o-field is zero-one.

2. Martingale properties of {Lm(Xm),Fm}

Lemma 2.1 Under Pry, {Lm(Xm): m=1,2,...} isanonegative reversed
supermartingal e adapted to the fields F i,y = o(Xm,Xm+1,...) and isareversed martingal if
Mn << T, for each n.

Proof Letj<m. Since{Xmn: m=12,..} isaMarkov chain,

E(Li(XpIFm) = E(Lj(X})IXm)
Then, for BOB
Erg(Li(Xi))1(XmOB)) = Emp(Lj(XpI(XmOB,Ttin(Xm)>0))



= Eng(Erp(Lj (X)) (XmOB,Tin(Xm)>0))IX;)

= Enp(Lj(Xj) Eng(l(XmUB, Tin(Xm)>0))[X}))
= Eng(Lj(X))Pm (X, XmOB,Tin(Xm)>0))

= [Lj)Pm-(y, X mOB, Tin(Xm)>0) g (y)A(dly)

= [Py X 3B i (Xm0 AV A cly)
T5(Y)

= [Py XmOB, Tim(Xm)>0)j (y)A(dy)

- Puo(T5(X))=0,Tim(Xm)>0,X mIB)
= Pm(X,XmOB,Tin(Xm)>0)

- Puo(T5(X))=0,Tim(Xm)>0,X mB)
= [IyDB,Tim(y)>0)m(y)A(dy)

- Puo(T5(X))=0,Tim(Xm)>0,X mOB)

= hiyoer Y vacy)
Tim(y)

- Puo(T5(X)=0,7tm(X m)>0,X mB)
= En(Ln(Xm)I (XmOB)) - Puo(5(Xj)=0,Ttn(Xm)>0,XmIB)
< Enp(Lm(Xm) (XmB))
Thus,
(2.1) 0< Emp(L1(X1lFm) < Erg(Lj(XDIFm) < Lm(Xm)
where the inequalitiesin (2.1) are equalities if | << 1 since

Pug(T5(X})=0,Tin(Xm)>0,XmB) = 0 in this case. n

Thefollowing is an immediate consequence of convergence theorems from

martingale theory.

Corollary 2.2 Lm— Lw asPgyandin Ll If yy <<, for every n, then



Proof If {LmFm} isareversed nonegative supermartingale, then it isimmedate
from the upcrossing inequality that Lm— Lo asPry. It follows from Fatou's lemma that
Erp(Leo) < lim Eg(Lm(Xm)) and from (2.1) that Tim Ey(Lm(Xm)) < Eng(Lw). Thus,
E(Lm) - E(Lw) anditfollowsthat Lyj— Lo inLlsince Lyy— Lo as. The statementin

the second sentence isimmediate since Ly = Er(L1(X12|Fm)- [

3. The Role of the Remote o-fields

Here we investigate the relationship of the tail o-field (the remote future o-field) to
the ergodicity of the Markov chain, { X}, when it has an equilibrium distribution Tt To
investigate this relationship it will be convenient to assume that the chain is stationary and,
without loss of generality, doubly infinite. Let {3\( n. h=.,-1,0,1,...}, >A<n:x-n, denote
reversed chain. Under P, the reversed chain is stationary with equilibrium distribution Tt

For n>0, let F.,, = 0(X.n,X.n-1,...) and Fp = 0(X,Xp+1,...). Let
Fo= nro;(x_n,x_n_l,...) and F, = nro;(xr,,xn+1,...). The o-fields F.,, and F,, are just
the remote past and future o-fields. The next three theorems indicate the role of the
remote o-fieldsin the ergodicity of the chain. In particular, Theorem 3.3 shows that V N-
ergodicity and F,, being zero-one are equivaent under an absol ute continuity condition
(which holds, for example, for countable state spaces) and indicates that reducibility and
periodicity information about the chain is measurable with respect to these o-fields. This
result should be contrasted with Orey's (see Durrett, 1996, Theorem 5.8) which states that
for a countable state irreducible recurrent Markov chain thetail o-field is just the o-field
generated by the periodic classes.

To present these results, we need to define the weaker and more traditional notion

of ergodicity, namely,

Markovian Ergodicity (M-ergodicity): Pm(x,B) — m(B) as. Pr.



Theorem 3.1 If {ﬁ\(n}is M-ergodic, then Fy, is zero-one.
Proof Since { Xp} is Markovian,

By M-ergodicity,

(32) P(Xot BXn) 3 P(Xn € BIX0) = PRn e BRo) = P(X0,B) - m(B)as.

Since 1(B) is a constant, it follows from (3.1) and (3.2) that
P(Xo € B|IF» ) = T(B) as.

Thus, Xo and F, are independent. Since{Xp: n< 0} and F« are conditionally
independent given Xo, it followsthat { Xy: n < 0} and F, are independent. A similar
argument shows that { Xp: n < k} and Fo are independent for every k. Thus, { X} and Fe
areindependent . By considering the reversed chain the same argument shows that { X}
and F_ are independent. Since of(...,X-1,X0,X1, ...) 0 Fe and F—«, F& and F—, are
zero-one. [

Theorem 3.2 If Fo is zero-one, then Lyn—» En(Lo ) asPrandin L,
Furthermore, if Er{L )=1, then { X} is VN-ergodic.

Proof Thefirst result follows from Corollary 2.2, Lo=Ej{L» ) &S Prif F iS
zero-one. If Er{L« )=1, then {Xn}isVN-ergodic by (ia) of the ergodic theorem. [ |

Theorem 3.3 Let po=P(X, ) and assume that pup<<ttfor every n. Then, under
Prw {Xn}isVN-ergodic if and only if Fe IS zero-one.

Proof Note that, since pp<<ttfor every n, by Corollary 2.2,

(3.3) Er{L o) = Ef{L-o0) = Er{Lm)=1.

The proof of the"if part”" follows from (3.3) and Theorem 3.2 since F, iS zero-one.



Since{ X} isVN-ergodic, it isM-ergodic. Thus, from Theorem 3.1, iSF— IS
zero-one. By Theorem 3.2 and (3.3), {ﬁ\(n} is VN-ergodic, and hence, M-ergodic. This
and another application of Theorem 3.1 shows that F« iS zero-one. [ |

Application - Countable State Spaces Let the state space, X, be countable.

Let D={y: m(y)>0}. Fix x(ID and let p"(y|x) denote the n-step transition density.

Suppose p(y[x)>0. Then, Tily) = p"(y|2)T(2) > p(y[¥)T(X) > 0. Thus, pn =
z[ID

P(x, )<<mt. Thus, by Theorem 3.3, lim p(y|x) = 1(y) if and only ifF iS zero-one. H

4. Proofs of Main Results

Proof of the Ergodic Theorem (i) Since Lm(Xm)-Le asPry by Corollary

3.2,
Am = Ep(1-Lm(Xm))* - Eny(l-Lle)*
by (1.2) and the bounded convergence theorem. This proves (ia).

Statement (ib) follow from the identity

(4.1) Er(Lm(Xm)) = [ Lm(Y)Tm)A(dY)) = [1(Tim(y)>0)Hm(y)A(dy)

= Um(TMm(Xm)>0) .
since Lm(Xm) - Lo inLL

(i) Statement (ii) follow from (ia) and (1.2) since Lm(Xm) - L« asPrandin
L1by Corollary 2.2.

(iii) Notethat since Pm << Ty, Am = % Erg(I1-Lm(Xm)]). Since Lm(Xm) - Lo

in L1by Corollary 3.2, it follows that 1-Lm(Xm) - 1-L inL1and, from (4.1), that
M Pm(Tn(Xm)>0) = Erp(Lw). Thus,

10



[EEN

1
Am= 5 Erg(L-Lm(Xm)) — 5 Enlli-Les .

This proves (iii). [ |

Proofs of Lemma 1.1 and 2 Lemma 1.1 follows directly from Doob's

inequality since { 1-L m(Xm),Fm} isareversed submartingale and f(x)=(x)* isan
increasing convex function. Since {|1-Lm(Xm)|,Fm} and {|Leo-Lm(Xm)|,Fm} arereversed
submartingales because { 1-L m(Xm),Fm} and { Leo-L m(Xm),Fm} are reversed martingales

and f(xX)=|x|isa convex function, Lemma 1.2 also follows from Doob'sinequality. &
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