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Abstract

In many situations one is interested in identifying observations that come

from sources of variation other than the normal background or baseline source.

A simple model for such situations is a two point mixture model where one

component in the mixture corresponds to the baseline model and the second

to the other sources (the contamination component). Here the goal is two-fold:

(i) detect the overall presence of Contamination and (ii) identify observations

that may be contaminated. A locally most powerful test is presented which

gives some insights on how to accomplish this. Surprisingly, the test statistic

can have an asymptotic distribution that is based on a stable law that is not

the normal distribution. Examples and simulations are given to illustrate the

approach.

Keywords: multiple testing, anomaly detection, stable law, false discovery rate

AMS 2000 Subject Classification: Primary 62F03, 62-07

Secondary 62E17, 62F30

∗Research partially supported by NSF Grants DMS-0112069
†Research partially supported by NSF Grants EIA-0131884
‡Research partially supported by NSF Grants DMS-0805809 and DMS-0243594

1



1 Introduction

The point of this paper is to investigate the asymptotic distribution of the

maximum likelihood estimator (MLE) and the locally most powerful (LMP)

test of the parameter p in the two point mixture model

fp(x) ≡ p̄f0(x) + pf1(x), where p̄ = 1− p, and 0 6 p 6 1 (1.1)

The distribution, fp, is the so called contaminated distribution model which

is sometimes used to model outliers from the baseline model f0.

In this simple setting we shall see that, when p = 0, the MLE and the LMP

test have asymptotic distributions that are nonstandard. They exhibit the

Chernoff phenomena (Chernoff, 1954) of being two point mixtures. These two

points mixtures each have point masses at zero where the second component in

the mixture is based on an α-stable law depending on the tail behavior of the

likelihood ratio f1(X)/f0(X) under f0.

In low contaminated situations(p small), these asymptotics suggest using the

LMP test to detect the presence of contamination. If the LMP test rejects p = 0,

then we use the empirical posterior p∗f1(x)
fp∗ (x)

, where p∗ is the mle to investigate

what observations may be contaminated (from f1). Confidence bounds for this

posterior can also be constructed using confidence intervals for p∗.

The asymptotics indicate that the determination of contamination when p

is small can be problematic using classical frequentist approaches, especially if

parameters need to be estimated. In addition, this has similar implications for

multiple testing problems. E.g., in the analysis of microarrays, a mixture model

f0 is the model for the expression levels of the nonexpressed genes and f1 for

the differentially expressed genes. In particular, there can be a justification for

the use of a central t distribution where the degrees of freedom is determined by

the amount of replication in the experiment or a central normal if the degrees

of freedom is large. A similar justification can be used to use noncentral t’s or

noncentral normals to model the differentially expressed genes. Here p is the

proportion of differentianlly expressed genes.
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2 Pooling and mixtures

In many data analytic problems the observations X1, . . . , Xn arise from pooling

data from various sources of variation. In many cases, the pooling model has

the following formulation for two sources of variation. In this formulation, a

configuration C which is a subset of {1, 2, . . . , n} indicates which observations

come from one source and Cc from the other. For example, such a pooling

model might occur in a binary network where the network is modeled by a

Markov random field. In the spread of an infectious disease over the network,

the nodes are partitioned into two groups, C and Cc, where Cc is the collection

of sites that have elevated levels of infections and C is the collection of sites

which are normal. In the normal case the number of infections is governed by

f0 while for the elevated level by f1. Then,

p
(
(C,Cc), X1, . . . , Xn

)
= K exp{E

(
(C,Cc)

)
}
∏
i∈C

f0(Xi)
∏
i∈Cc

f1(Xi)

where E
(
(C,Cc)

)
is related to the energy of the partition (C,Cc) (Huang, 1963)

and where we have suppressed parameters in E((C,Cc)) and the normalizing

constant K. Here we have assumed the positivity condition that all partitions

have positive probabilities.

In general, the pooling model is given as follows.

• Generate a configuration C with probability p(C)

• Given C, for i ∈ C, Xi are iid ∼ f0 and, for i ∈ Cc, Xi are iid ∼ f1

– C and Cc model a spatial or temporal (e.g., a change-point) pattern

– You are ”pooling” observations based on the configuration C where

the configuration Cis a hidden variable

– The likelihood is then∑
C

p(C)
∏
i∈C

f0(Xi)
∏
i∈Cc

f1(Xi)

Throughout we assume that all densities f are absolutely continuous with

respect to a common measure m and absolutely continuous with respect to one

another.

3



The basic data analytic method is as follows:

• Envision that the data are the effects of pooling observations from f0 and

f1 where f0 is the background distribution and f1 is the distribution of

the contaminated observations.

• Treat the data as if it is from a mixture model and use a mixture model

to estimate the mixing proportions for f0 and f1, that is, the proportions

in C and Cc. Use the estimates to test the null hypothesis that one of the

mixing proportions is equal to zero. If this hypothesis is rejected, see if

the fitted mixture model can give insights into which observations came

from f0, that is, into the configuration C

Formally, the basic data analytic model is the simple contaminated model

• X1, . . . , Xn iid ∼ fp = (1− p)f0 + pf1

– f0 is the density of the background mode

– f1 models the contamination

– The likelihood is then

n∏
i=1

{(1− p)f0(Xi) + pf1(Xi)}

=
n∑
j=0

∑
Cj

(1− p)jpn−j
∏
i∈Cj

f0(Xi)
∏
i∈Ccj

f1(Xi)

where Cj denotes a subset of size j from {1, . . . , n}

For low contaminated models one approach is to calculate the mle, p∗, of p.

Use p∗ to test H0 : p = 0 versus H1 : p > 0. If H0 is rejected see if the mixture

model can give insights into the configuration Cj . For example, calculate the

empirical Bayes posterior with prior p(Cj) = (1− p∗)jp∗n−j . Then

p(Cj |X1, . . . , Xn) ∝ (1− p∗)jp∗n−j
∏
i∈Cj

f0(Xi)
∏
i∈Ccj

f1(Xi) (2.1)

Another approach is the following two stage multiple testing type of method

for p ≈ 0. This suggests using the locally most powerful (LMP) test statistic
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(discussed in the next section) for testing H0 : p = 0 versus H1 : p > 0 as a

screening test to detect if contamination is present. If the null hypothesis is

rejected, then further diagnostic tools are used to try to identify which obser-

vations are contaminated. One was given in (2.1) and some others are given

below.

For a mixed distribution fp the assignment function, which is sometimes

referred to as the membership function, of observation Xi to component f0 is

A0(Xi) = (1− p) f0(Xi)fp(Xi)
and A1(Xi) = 1−A0(Xi) is the assignment function to

component f1.

The assignment function can be interpreted as the posterior probability

that an observation came from one of the components of the mixture, and

can be used to decide which observations are contaminated. Related to the

assignment function is the contamination assignment set measure, p1(B) =

pF1(B)
Fp(B) where Fi(B) =

∫
B

fi(x)dm(x) for i = 0, 1, p. The functions A0(x) and

p0(B) = 1− p1(B) with B = (−∞, x] or [x,∞) are also referred to as the local

false discovery rate (FDR) and the FDR in multiple testing situations (Efron,

2007).

Note that when the null hypothesis is rejected, p1(B) (with p replaced by its

mle estimator) could be interpreted heuristically as an empirical Bayes posterior

probability that an observation is contaminated given that it is in B and gives

some indication of the proportion of contamination in B among the background.

Also note that

p1([x, x+ ε)) = p
F1

(
[x, x+ ε)

)
/m
(
[x, x+ ε)

)
Fp
(
[x, x+ ε)

)
/m
(
[x, x+ ε)

) → A1(x) as ε→ 0

The LMP test (next section) suggests the use of f1/f0(Xi) to detect the

contaminated observations. A plot of this quantity should be centered around

1 when there is no contamination. To find a significant collection of spurious

observations consider the following based on the LMP test statistic. Define Li =(
f1(Xi)− f0(Xi)

)
/f0(Xi). Let the order statistics be L(1) < L(2) < . . . < L(n)

and let j(i) denote the inverse rank, i.e., L(i) = Lj(i). For mixture or scanning
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purposes, consider the sets Di = {j(n), . . . , j(n− i+1)} = {k : L(n−i+1) < Lk}.

For mixtures with mle p∗, assign Di to f1 and Dc
i to f0 where i ≈ np∗. For

scanning purposes, look through the increasing sequence of sets Di for a spatial

pattern to emerge.

3 The LMP test

In this section we discuss the LMP and the MLE of the simple contaminated

model (1.1)

To obtain the LMP test we need the following. Recall that fp = (1− p)f0 +

pf1. Let φ(f(X1), . . . , f(Xn)) = φ(f) = log
∏
i f(Xi) denote the log likelihood

of a set of observations from a common distribution f and let

Φp0(f1; f0) ≡ lim
p→p0

φ(fp)− φ(fp0)

p− p0
=

∂

∂p
log

n∏
i=1

fp(Xi)

∣∣∣∣∣
p=p0

=
n∑
i=1

f1(Xi)− f0(Xi)

fp0(Xi)

From the generalized Neyman-Pearson lemma (cf., Ferguson, 1967, Sections

5.1 and 5.5), it is easy to show that the LMP test for testing H0 : p = p0 versus

H1 : p > p0 is based on Φp0(f1; f0) (see Ferguson, 1967, equation 5.78).

The LMP test statistic is related to the gradient plot introduced by Lindsay

(1983a) in the study of mixed distribution models of which (1.1) is a special

case. He uses the gradient plot to determine when the one point mixture mle

(i.e., p = 0) is the global mixture mle. When it isn’t, this suggests that some

contamination is present. However, as shown in the next section, when the sam-

ple size is large and p = 0, the MLE p∗ will be greater than 0 with probability

0.5.

The function Φp(f1; f0) plays a prominent role in the analysis of data from

mixtures models where it is the directional derivative D(θ;Q) = Φ(fθ; fQ) =
n∑
i=1

{
fθ(Xi)
fQ(Xi)

− 1
}

defined below.

Here we have a family of densities {fθ : θ ∈ Θ}. Let M denote the set of

probability measures on Θ. For Q ∈M denote the mixed distribution over the
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family with mixing distribution Q by

fQ =

∫
fθdQ(θ)

For X1, . . . , Xn being iid from fQ, the likelihood and log likelihood are given

by

L(Q) =
∏
i

fQ(Xi) and φ(fQ) = log
∏
i

fQ(Xi)

where fQ =
(
fQ(X1), . . . , fQ(Xn)

)
. The directional derivative of φ at fQ0

towards fQ1 is

Φ(fQ1 ; fQ0) = lim
ε→0

(
φ
(
(1− ε)fQ0 + εfQ1

)
− φ

(
fQ0

))
/ε

=

n∑
i=1

fQ1(Xi)− fQ0(Xi)

fQ0(Xi)
=

n∑
i=1

{
fQ1(Xi)

fQ0(Xi)
− 1

}
=

∫
D(θ;Q)dQ1(θ).

The directional derivative D is used to identify when a k-point MLE, Q∗k,

for L(Q) is the global mle Q∗ (a k-point mle maximizes the likelihood function

restricted to mixtures with k components). The basic idea is that D(θ;Q) = 0

at the support points of the k-point MLE Q∗ and D(θ;Q) 6 0 if and only if Q∗

is the global MLE (Lindsay, 1983a,b).

4 Asymptotic considerations

In this section, we determine the asymptotic distributions of the MLE p∗ of p

and the LMP test statistic for testing H0 : p = 0. When testing H0 : p = p0

and p0 is in the interior of the parameter space, i.e., 0 < p0 < 1, the usual

asymptotics go through, since they are based on sums of bounded random

variables. Therefore, we focus only in the case when testing H0 : p = 0

Section 4.1 considers the case when the true value of the parameter p = 0.

Since p = 0 is on the boundary, this leads to asymptotics under nonstandard

conditions. In particular, the asymptotic distribution of the MLE p∗ is a mixed

distribution, where one of the components is degenerate at 0, and the other is

7



either half normal when the Fisher information I0 = E0

(
[(f1 − f0)/f0]2

)
< ∞

or is a stable law when I0 =∞.

Section 4.2 considers the distribution of the LMP test statistic for testing

H0 : p = 0 when the true value of the parameter 0 < p < 1. The results therein

can be used for power calculations.

Section 4.3 gives the distributional properties of the ratio of two densities

for the cases used in the examples and simulations.

Though out this section, let X1, . . . , Xn be iid with density fp(x) = (1 −

p)f0(x) + pf1(x) where all the random variables are assumed to be defined on

the same probability space. Also let Zi = f1(Xi)/f0(Xi) and Li = Zi − 1 =

f1(Xi)−f0(Xi)
f0(Xi)

. The LMP test statistic from Section 3 corresponding to the null

hypothesis H0 : p = 0 is denoted by Tn =
∑n

i=1 Li. Let I0 = E0

(
L2
i

)
and

Wi = E0

(
|Li|3

)
, i = 0, 1, where the expectations are taken under H0. Note

that I0 is the Fisher information under H0.

Also, though out this section, Gα represents the cumulative distribution

function of a stable law with parameter α ∈ (0, 2], i.e., its characteristic function

is (A.1). Define Ḡα = 1−G.

The next proposition is used in some parts of this section and is the basis

for the claim that when p0 is in the interior of the parameter space the terms

in the LMP test statistic are all bounded.

Proposition 4.1.

f1(x)− f0(x)

(1− p)f0(x) + pf1(x)

is bounded for 0 < p < 1 (hence all its moments are finite).

Proof. Notice that

f1(x)− f0(x)

(1− p)f0(x) + pf1(x)
=

1

p

(
f1(x)

1−p
p f0(x) + f1(x)

)
− 1

1− p

(
f0(x)

f0(x) + p
1−pf1(x)

)

Therefore, ∣∣∣∣ f1(x)− f0(x)

(1− p)f0(x) + pf1(x)

∣∣∣∣ 6 1

p
+

1

1− p
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4.1 First case: p = 0

The next few lemmas show the distribution of the MLE p∗ when p = 0 under

different conditions.

Lemma 4.2. Under H0 : p = 0, p∗ converges to 0 almost surely.

Proof. Let

l(p) ≡ φ(fp)

l′(p) =
∂

∂p
φ(fp) =

∂

∂p
log

n∏
i=1

fp(Xi) =
n∑
i=1

f1(Xi)− f0(Xi)

fp(Xi)

and note that

l′′(p) = −
n∑
i=1

[f1(Xi)− f0(Xi)]
2

fp(Xi)2
6 0.

So l(p) is concave and attains its maximum, p∗, either at 0 or 1 or on (0, 1).

Let Un(p) = l′(p) where Un = Un(0) and note that Un(p) is the sum of n iid

random variables with

E0

(
f1(Xi)− f0(Xi)

fp(Xi)

)
= 0 when p = 0 and < 0 for p > 0 (4.1)

When Un 6 0, Un(p) 6 Un since l(p) is concave. Thus, l(p) attains it

maximum at 0 on {Un 6 0}.

When Un > 0, l(p) attains its maximum on (0, 1]. Since Un(p) has mean less

than 0 for 0 < p < 1, Un(p)/n converges almost surely to a negative number

(because of Proposition 4.1). When Un(p) < 0 and Un > 0, 0 < p∗ < p with

Un(p∗) = 0 since Un(0) > 0 and Un(p) < 0. Thus, lim p∗ < p almost surely on

the set where Un(p)/n converges to its mean. Since p > 0 is arbitrary, this with

the previous paragraph implies that p∗ converges to zero almost surely.

Lemma 4.3. If I0 < ∞ and Wi < ∞, i = 0, 1, then, under H0, n−.5p∗ con-

verges in distribution to X where X = 0 with probability .5 and = |N(0, I−10 )|

with probability .5.

Proof. If p∗ ∈ (0, 1), then l′(p∗) = 0 and

l′(0) = l′(0)− l′(p∗) = −l′′(0)(p∗)− l′′′(p′)(p∗)2

2
(4.2)
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where p′ is between 0 and p∗ and

l′′′(p) = 2
n∑
i=1

[f1(Xi)− f0(Xi)]
3

fp(Xi)3
.

Note that since the derivative of l′′′(p) is nonpositive, l′′′(p) is decreasing

and l′′′(1) 6 l′′′(p) 6 l′′′(0). Thus, since Wi < ∞ for i = 0, 1, the sequence

l′′′(p)/n, n = 1, 2, . . . is bounded almost surely. It follows from (4.2) that when

Un > 0 and Un(1) < 0, p∗ ∈ (0, 1) and

l′(0)√
n

=
−l′′(0)

n

(√
np∗
)
− l′′′(p′)

√
n(p∗)2

2n

=
−l′′(0)

n

(√
np∗
)
(1 +Rn)

(4.3)

where Rn goes to zero almost surely since p∗ converges to zero almost surely, the

sequence l′′′(p)/n, n = 1, 2, . . . is bounded almost surely and −l′′(0)/n converges

almost surely to I0.

When Un 6 0, p∗ = 0. Since Un/
√
n is asymptotically N(0, I0) and Un(1)/n

converges almost surely to a negative number by (4.2), P (Un 6 0) and P (Un >

0 and Un(p) < 0) both converge to 1/2. The second part of this lemma follows

from this and from (4.3) since −l′′(0)/n converges almost surely to E0

(
[(f1 −

f0)/f0]
2
)

= I0 and −l′(0)/
√
n converges in distribution to N(0, I0).

For the next lemma, let an denote a sequence of real numbers and let

Vn(p) =
1

a2n

∑(
f1(Xi)− f0(Xi)

)2
f0(Xi)fp(Xi)

.

Lemma 4.4. If Z1 satisfies (A.2) for some 1 < α 6 2 ( i.e., is in the do-

main of attractation of an α-stable law) and an satisfies (A.3), then, under H0,

anp
∗Vn(p∗) converges in distribution to X where X = 0 with probability Gα(0)

and P (X > d) = Ḡα(d) for d > 0.
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Proof. For p∗ ∈ (0, 1), l′(p∗) = 0 and

l′(0) = l′(0)− l′(p∗)

=

n∑
i=1

(
f1(Xi)− f0(Xi)

)( 1

f0(Xi)
− 1

fp∗(Xi)

)

= p∗
∑(

f1(Xi)− f0(Xi)
)2

f0(Xi)fp∗(Xi)

= p∗a2nVn(p∗).

(4.4)

Note that

l′(0)

an
= anp

∗Vn(p∗)

and l′(0)/an converges in distribution to Gα. Since p∗ = 0 when l′(0) < 0, the

results follows.

From the proof of Lemma 4.4, by setting an =
√
n, we can get the asymp-

totic distribution of p∗ without the third moment assumption given in Lemma

4.3.

Lemma 4.5. If I0 < ∞, then, under H0, α = 2 and p∗
√
nVn(p∗) converges

in distribution to X where X = 0 with probability .5 and = |N(0, I−10 )| with

probability .5. Moreover, Vn(0) converges almost surely to I0

Remark 4.6. When 1 < α < 2, Vn(0) converges in distribution to a stable law

with parameter α/2 (by Corollary A.3). So, one could replace Vn(p∗) with Vn(0)

in (4.4), except that one could not justify this replacement without putting some

condition on l′′′(p)

The next few lemmas show the distribution of the LMP test statistic Tn for

various cases.

Lemma 4.7. If I0 < ∞, then, under H0, Tn/
√
n converges in distribution to

N(0, I0).

Proof. Direct application of the central limit theorem.

Lemma 4.8. If Z1 and an satisfy conditions (A.2) and (A.3), respectively, for

some 1 < α 6 2 , then, under H0, Tn/an converges in distribution to Gα (a

stable law with parameter α).
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Proof. Direct application of Lemma A.1

If f1 has an unknown parameter and p = 0, an identifiability issue surfaces

that makes it impossible to estimate that parameter. In this case, if the pa-

rameter is estimated from the data and used to calculate Tn, it is not clear to

what is the limiting distribution of Tn.

4.2 Case 2: p > 0

The asymptotic distribution of Tn given in Lemmas 4.7 and 4.8 is for p = 0.

The next two lemmas give the asymptotic distribution of Tn when p > 0. For

this, assume that X1 ∼ fp = (1− p)f0 + pf1 and let W ′0 = E0

(
L3
1

)
Lemma 4.9. If I0 < ∞ and W0 < ∞, then (Tn − npI0)/

√
n converges in

distribution to N(0, I0 + pW ′0 − p2I20 ).

Proof. It is easy to prove that Ep(L1) = pI0 and Ep
(
L2
1

)
= I0 + pW ′0. The

result then follows from a direct application of the central limit theorem.

Lemma 4.10. Suppose Z1 and an satisfy conditions (A.2) and (A.3), respec-

tively, for some 1 < α 6 2. If 1 < α 6 2, then I0 < ∞ and (Tn − npI0)/an

converges in distribution to Gα, while if 0 < α < 1, Tn/an converges in distri-

bution to a stable law with parameter α. If α = 1, then (Tn−µn)/an converges

in distribution to a stable law with parameter 1, where µn is defined as in (A.4).

Proof. If 1 < α 6 2 then Ep
(
L1

)
= pI0 is finite and the result follows from the

results in Appendix A.

4.3 Distributional properties of density ratios

In this section, we consider the properties of Z = f1(X)/f0(X) for some fre-

quently used distributions. This properties are required to use the lemmas in

Sections 4.1 and 4.2. Section 4.3.1 considers the case when both, f0 and f1 are

exponential distributions, and Section 4.3.2 considers the case of the normal

distribution.
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4.3.1 Exponential distribution

Suppose fθ(x) = 1
θe
−x/θ1[x>0] and let fj = fθj for j = 0, 1. If X ∼ fθ then

Pθ(Z > z) =


1[z60] +

(
1− (z/β)−α

)
1[0<z<β] when θ1 < θ0

1[z6β] + (z/β)−α1[z>β] when θ1 > θ0

where β = θ0
θ1

and α = θ0θ1
θ(θ1−θ0) .

For θ1 > θ0, z
αPθ(Z > z)→ c = βα as z →∞, in particular, if 0 < α 6 2,

condition (A.2) is satisfied and therefore Z is in the domain of attraction of an

α-stable law. The first two rows of Table 5 can be used to get an appropriate

normalizing constant an which satisfies (A.3).

The mean of the density ratio Z is

Eθ(Z) =


αβ
α−1 when θ1 < θ0 or (θ1 > θ0 and α > 1)

∞ when θ1 > θ0 and α 6 1

and the variance is

varθ(Z) =



αβ2

(α−1)2(α−2) when θ1 < θ0 or (θ1 > θ0 and α > 2)

∞ when θ1 > θ0 and 1 < α 6 2

undefined when θ1 > θ0 and α 6 1

.

In particular, when θ = θ0 the mean becomes Eθ0(Z) = 1 and the variance,

which is actually I0, becomes

I0 = varθ0(Z) =


(θ1−θ0)2
θ1(2θ0−θ1) when θ1 < 2θ0

∞ when θ1 > 2θ0.

For θ = θ1 the mean becomes Eθ1(Z) = varθ0(Z) + 1 and the variance becomes

varθ1(Z) =



θ30(θ1−θ0)2
2θ21(2θ0−θ1)2(1.5θ0−θ1)

when θ1 < 1.5θ0

∞ when 1.5θ0 6 θ1 < 2θ0

undefined when θ1 > 2θ0.
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4.3.2 Normal Distribution

Let ϕ(y) = 1√
2π
e−y

2/2 denote the density of a standard normal distribution.

Suppose now that fµ,σ2(x) = ϕ
(
(x − µ)/σ

)
/σ and let fj = fµj ,σ2

j
for j = 0, 1.

Assume also that X ∼ fµ,σ2 .

Before examining the tail probability of the density ratio, we need the tail

probability of a normal distribution. Let Y be a standard normal distribution

with density ϕ. It is well known that, for y > 0,

y

1 + y2
ϕ(y) < P (Y > y) <

1

y
ϕ(y).

This implies that

y2

1 + y2
<
√

2πyey
2/2P (Y > y) < 1

and thus

lim
y→∞

√
2πyey

2/2P (Y > y)→ 1. (4.5)

The tail probability of the density ratio when σ21 > σ20 is given by

Pµ,σ2(Z > z) = Pµ,σ2

(
f1(X)

f0(X)
> z

)
= Pµ,σ2

(
|X − δ1

δ0
|

σ
>

√
α
(
δ2 −

δ21
δ0
− log(β)

)
+ 2α log z

)

= P

(
Y > −b+

√
α
(
(µ1−µ0)2
σ2
1−σ2

0
− log(β)

)
+ 2α log z

)

+ P

(
Y > b+

√
α
(
(µ1−µ0)2
σ2
1−σ2

0
− log(β)

)
+ 2α log z

)
,

where b =
|σ2

1(µ−µ0)+σ2
0(µ1−µ)|

σ(σ2
1−σ2

0)
, α =

σ2
0σ

2
1

σ2(σ2
1−σ2

0)
and β = σ20/σ

2
1 and . This expres-

sion, combined with (4.5), gives us the tail behavior, i.e., as z →∞,
zα
√

2α log zPµ,σ2

(
f1(X)
f0(X) > z

)
→ c1 when b = 0, and

zα
√

2α log z exp
(
−b
√

2α log z
)
Pµ,σ2

(
f1(X)
f0(X) > z

)
→ c2 when b > 0,

where c1 = 2
exp

[
α
2

(
log(β)− (µ1−µ0)

2

σ21−σ
2
0

)]
√
2π

and c2 =
exp

[
− b

2

2
+α

2

(
log(β)− (µ1−µ0)

2

σ21−σ
2
0

)]
√
2π

Therefore, when σ21 > σ20 and 0 < α 6 2, (A.2) is satisfied and therefore Z

is in the domain of attraction of an α-stable law. The last four rows of Table
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5 can be used to get an appropriate normalizing constant an which satisfies

(A.3).

The mean of the density ratio is

Eµ,σ2(Z) =



e(
1
2 [σ2δ21+2µδ1−δ2]) when σ21 = σ20√
αβ
α−1e

(
1

2σ2
[ α
α−1

(σ2δ1+µ)2−µ2−σ2δ2]
) when σ21 < σ20 or

(σ21 > σ20 and α > 1)

∞ when σ21 > σ20 and α 6 1

where δj =
µj1
σ2
1
− µj0

σ2
0

for j = 1, 2 (for j = 0 let δ0 = 1
σ2
1
− 1

σ2
0
).

The variance is given by

varµ,σ2(Z) =



(
eσ

2δ21 − 1
)
e(σ

2δ21+2µδ1−δ2) when σ21 = σ20√
αβ2

α−2e

(
1

2σ2
[ α
α−2

(2σ2δ1+µ)2−µ2]−δ2
)

− αβ
α−1e

(
1
σ2

[ α
α−1

(σ2δ1+µ)2−µ2]−δ2
) when σ21 < σ20 or

(σ21 > σ20 and α > 2)

∞ when σ21 > σ20 and 1 < α 6 2

undefined when σ21 > σ20 and α 6 1

When fµ,σ2 = f0 the mean reduces to E0(Z) = 1 and the variance, which is

I0, reduces to

I0 = var0(Z) =



e([µ1−µ0]
2/σ2

0) − 1 when σ21 = σ20

σ2
0

σ1
√

2σ2
0−σ2

1

e

(
(µ1−µ0)

2

2σ20−σ
2
1

)
− 1 when σ21 < 2σ20

∞ when σ21 > 2σ20

For fµ,σ2 = f1 the mean becomes E1(Z) = var0(Z) + 1 and the variance

becomes

var1(Z) =



(
e([µ1−µ0]

2/σ2
1) − 1

)
e(2[µ1−µ0]

2/σ2
1) when σ21 = σ20

σ3
0

σ2
1

√
2(1.5σ2

0−σ2
1)
e

(
1.5

(µ1−µ0)
2

1.5σ20−σ
2
1

)

− σ4
0

σ2
1(2σ

2
0−σ2

1)
e

(
2
(µ1−µ0)

2

2σ20−σ
2
1

) when σ21 < 1.5σ20

∞ when 1.5σ20 6 σ21 < 2σ20

undefined when σ21 > 2σ20
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5 Simulations

For the first set of simulations, background and contamination data are gener-

ated from exponential distributions with means θ0 = 166.206 and θ1 = 592.922,

respectively, which are the estimated means for the 2-point mle for the Mining

Data in the next section. Samples of sizes n = 100, 500, 1000 are generated,

with 0, 1 and 5 percent of contamination (p = 0, 1.01, .05). With each sample

we calculate Tn =
∑n

i=1
f1(Xi)−f0(Xi)

f0(Xi)
and Sn =

∑n
i=1

f̂1(Xi)−f̂0(Xi)
f̂0(Xi)

, where f̂0

and f̂1 are estimeted of the densities based on the maximum likelihood estima-

tors of θ0 and θ1. These estimates are used as if they were the true parameters

and a normalizing constant and critical value are calculated based on these es-

timates. The process is repeated N = 10000 times and the number of rejections

of the null hypothesis H0 : p = 0 at the .05 level are recorded.

Following the results from Section 4.3.1, the variance of the terms in Tn cor-

responding to f0 is infinite, but the tail behavior of the density ratio, under H0,

follows that of the first line of Table 5 with α = 592.922/(592.922− 166.206) =

1.3895 and c = (166.206/592.922)1.3895 = 0.1708081. Hence, the normalizing

constant is an = (0.1708081s1.3895n)1/1.3895 = .4881128n0.7196832. From Lemma

A.1, the rejection region defined by Tn/(.4881128n0.7196832) > 4.40186 would

reject the null hypothesis with probability 0.05 if there are no anomalies. A

similar process is done to calculate the rejection region Sn/an > d.05 in each

sample, where the normalizing constant an and the critical value d.05 change

from sample to sample, and are calculated based on either the normal or the

stable distribution1. The results of these simulations are shown in Table 1.

The simulations show that when using the true parameters to calculate Tn

the proportion of samples that rejected the null hypothesis when it is true is

about 0.05, as expected. Notice that with the background and contamination

means fixed at θ0 = 166.206 and θ1 = 592.922, the power increases as the

1if θ̂1 < 2θ̂0, and these are assumed to be the actual parameters, the variance of the terms in Sn

is finite
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Proportion of anomalies

Based on Tn Based on Sn

Sample sizes 0 0.01 0.05 0 0.01 0.05

100 0.0492 0.1646 0.5316 0.2853 0.3898 0.6340

500 0.0483 0.3836 0.9361 0.3248 0.5725 0.9252

1000 0.0544 0.5454 0.9935 0.3387 0.6898 0.9786

Table 1: Proportion of rejections of H0, no anomalies, out of 10000 simulations with

background and contamination generated from exponential distributions with means

166.206 and 592.922, respectively

proportion of anomalies, p, increases and as the sample size increases.

The exact power for the LMP test can be calculated using Lemma 4.10 and

the results from Section 4.3.1 and Table 5, with α = θ0/(θ1 − θ0) = 0.3895003

and c = p(θ0/θ1)
α = 0.6093393p, which gives (csα)1/α = 0.4473926p2.567392.

Rejection occurs when Tn/(.4881128n0.7196832) > 4.40186, which is equivalent

to rejecting if

Tn/(0.4473926p2.567392n2.567392) > 4.802503/(p2.567392n1.847709).

The left hand side of this inequality converges to a stable law with parameter

α = 0.3895003. The power can be obtained for each value of n and p. For

instance, if n = 100 and p = 0.05, the power is the probability that a value

from a stable law is larger than 2.119844, that is, 0.510141. In the case of

n = 500 and p = 0.01, the tail starts at 6.750576, which gives a power of

0.3517792. For n = 1000 and p = 0.05, the power is 0.996379. The simulations

confirm these values.

If estimates are used as if they were the true parameters, rejection occurs

28.5% of the time when there are no anomalies present (p = 0) and n = 100.

This is troubling and indicates that false discovery is a serious problem in this

case. This is not the case when p > 0 and Appendix B indicates the necessary

adjustments that need to be made when estimating parameters.
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For the second set of simulations data are generated from normal distribu-

tions, where the background consists of standard normal variables (µ0 = 0 and

σ20 = 1) and the anomalies consist of a normal with mean µ1 = 0 and variance

σ21 = 3. Samples of sizes n = 100, 500, 1000 are generated, with 0, 1 and 5

percent of the observations being anomalies.

The results from Section 4.3.2 and Table 5 are used to determine the re-

jection region for each sample. Since the variance of f1/f0 is infinite under f0,

the tail behavior of the distribution of the ratio needs to be taken into con-

sideration to see what stable law applies when µ = µ0 = 0 and σ2 = σ20 = 1.

This is described in Section 4.3.2 with α = 3/(3 − 1) = 1.5, β = 1/3, b = 0,

c1 = 2βα/2/
√

2π = 2
(
1
3

)1.5/2
/
√

2π = 0.350025. The rejection region is now

found using the results from Table 5: reject the null hypothesis H0 : p = 0 if

Tn

0.7274158(n/
√

log n)2/3
> 3.824235.

The results of these simulations are found in Table 2. The LMP test seems

somewhat conservative for n = 100, possibly because this sample size is too

small to observe convergence to the stable law. This resulted in a not too

powerful test. For n = 500 and n = 1000, the test seems to perform better.

Proportion of anomalies

Sample sizes 0 0.01 0.05

100 0.0371 0.0788 0.2331

500 0.0447 0.1533 0.5649

1000 0.0408 0.2295 0.7885

Table 2: Proportion of rejections of H0, no anomalies, out of 10000 simulations with

background and anomalies generated from normal distributions with mean 0 and

variances 1 and 3, respectively

The exact asymptotic power can be calculated for these tests by using

Lemma 4.10, Table 5 and Section 4.3.2. Suppose the true proportion of anoma-

lies p is positive (p > 0) and let α = 1/(3−1) = 0.5 and c = p2
(
1
3

)0.5/2
/
√

2π =
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0.6062612p. Thus, to get a stable law we need to normalize Tn by 0.2886751p2(n/
√

log n)2.

A rearrangement of the rejection region (which was normalized originally by

0.7274158(n/
√

log n)2/3) would result in rejections when

Tn

0.2886751p2(n/
√

log n)2
> 3.824235

0.7274158(n/
√

log n)2/3

0.2886751p2(n/
√

log n)2
=

9.636468(log n)2/3

p2n4/3

The exact asymptotic power when n = 100 and p = .05 is the probability

that a stable law variable with parameter 0.5 is greater than 9.636468(log 100)2/3

.0521004/3
=

22.98661. This probability is 0.1652201. Similarly, for n = 500 and propor-

tions p = .01 and p = .05, the probabilities of rejecting the null hypothesis

are 0.08789053 and 0.4189768, respectively, whereas the simulations estimated

these numbers as 0.1533 and 0.5649, respectively.

6 Data Examples

Following the analysis from Grego et al. (1990) of the mining accident data,

Figure 1 has the gradient functions for the 2 and 3-point mixture mle’s where

the mixing is over the mean of an exponential distribution and Figure 2 has

the assignment function for the second component in the 3-point mle. The

estimates of the means and mixing proportions are given in Table 3. The

gradient plot indicates that the 2-point mle is not the global mle but the 3-

point is. The assignment function indicates a distinct difference in the first 53

times and rest of the times. Further analysis by Grego et al indicates that the

first 53 are well fit by a single exponential and the rest by a 3- point mixture.

µ1(p1) µ2(p2) µ3(p3)

2-point mle 592.922 (.175149) 166.206 (.824851)

3-point mle 595.495 (.171379) 171.587 (.805528) 29.0972 (.023093)

Table 3: Maximum likelihood estimates for the mining data

For the mining data we will use an exponential with mean 171.587 as f0

and a 2-point mixed exponential with means 595.495 and 29.0972 and mixing
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Figure 1: Gradient plots of a 2- and 3-point mixtures (mle) of exponentials for the

Mining Data

proportions proportional to .171379 and .023093, respectively, as f1. That

is, f1 = fQ1 where Q1 has point masses at 595.495 and 29.0972 with mixing

proportions .881253 and .118747 and the family, {fµ}, being mixed over is the

exponential with its mean parameterization. These are assumed as the true

parameters and Lemma 4.8 along with Table 5 can be used to calculate critical

values for the LMP test statistic.

The LMP test statistic, Tn, assuming all the parameters are known, is then

given by

Tn = 0.8812528

n∑
i=1

(
1

595.495e
−Xi/595.495

1
171.587e

−Xi/171.587
− 1

)
+0.1187472

n∑
i=1

(
1

29.0972e
−Xi/29.0972

1
171.587e

−Xi/171.587
− 1

)
.

Under the null hypothesis, i.e., Xi ∼ f0, the terms in the first sum have infinite

variance whereas the terms in the second sum have finite variance (see Appendix

4.3.1 for details). Using the notation of Appendix 4.3.1 with θ0 = 171.587

and θ1 = 595.495, let α = 595.495/(595.495 − 171.587) = 1.404774, c =

(171.587/595.498)1.404774 = 0.1741281 and an = 0.5052435n0.7118582. If Tn is

normalized by an, the second sum will quickly converge to zero as n→∞. The
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Figure 2: Assignment function for the second component of the 3-point mixture (mle)

of exponentials for the Mining Data

first sum converges in distribution to a stable law with parameter α = 1.404774.

Therefore Tn/(.8812528an) converges in distribution to the same stable law.

For the mining data, Tn = 574.871 and Tn/(.8812528an) = 45.77311. Using

Table 4 for α = 1.4 we can see that the p-value is between .005 and .001. The

actual p-value is 0.002102145 (calculated using a computer and α = 1.404774).

This indicates that there is strong evidence that some observations come from

f1.

Note that parameters in both f0 and f1 are being estimated based on the

3-pt global mle. These estimates have to be taken into consideration in using

the LMP test statistic to determine if spurious observations are present. As

pointed out in the appendix, it would be impossible to estimate f1 if p = 0,

and hence the distribution of the LMP is not quite clear in this case.

If p > 0, then we only need to check the regularity conditions discussed in

Lemma B.1 and Remark B.2. For the exponential distribution these conditions

reduce to the finiteness of the first three moments.

We now illustrate some of these ideas using gene expression data. The
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approach here will be first use the assignment function to identify possible

anomalies (expressed genes) to get a pooled model. After that, we do the LMP

test.

Efron (2007) compared prostate data of m1 = 50 non-tumor subjects with

m2 = 52 tumor patients for each of n = 6033 genes (see Singh et al., 2002).

For each gene they perform a two-sample t-test to compare the mean gene-

expression between cancer and noncancer subjects.

Let ti for 1 = 1, . . . , n denote the test statistics used for each gene. For

genes that have the same mean expression values for both groups ti will follow

a central t-distribution with m1 +m2 − 2 = 100 degrees of freedom.

Efron defines zi = φ−1(F100(ti)), where Fν denotes the cumulative distribu-

tion function (cdf) of a t-distribution with ν degrees of freedom and φ denotes

the cdf of a standard normal distribution. Then the distribution of zi is stan-

dard normal for those genes that have the same mean expression for both groups

of subjects.

Efron then fits the mixture f = (1 − p)f0 + pf1 as follows. Suppose f is

a 7-parameter exponential family and estimate this density from the z-values,

obtaining f̂ . Suppose f0 is the standard normal density and estimate p by using

log((1− p)f0) as a “quadratic approximation” of f̂ . From this he estimates the

assignment function A0 (false discovery rate). These calculations can be done

using the R package locfdr. He discovered 51 genes using false discovery rate,

declaring an anomaly when A0 < 0.2.

Here we will first use the ratio (f1 − f0)/f0 rather than A0 to discover

anomalies. To estimate f1 output of locfdr is used. Then we plot (f1− f0)/f0

versus the z-values (Figure 3). It can be seen that the maximum of the ratio

(f1 − f0)/f0 is 17649.25. An observation is declared as an anomaly if (f1 −

f0)/f0 > 23, where the ad-hoc cutoff point 23 makes the average of (f1−f0)/f0

close to 0 for (f1−f0)/f0 < 23. This is reasonable since the mean of (f1−f0)/f0

is 0 under f0. This same plot is shown in Figure 4 but with vertical axis scaled

to show only those with (f1 − f0)/f0 below 50. A total of 109 genes have
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Figure 3: Density ratio versus z-values corresponding to the prostate gene-expression

data

(f1 − f0)/f0 > 23, which could then be reported for further analysis.

A second way to analyze this data set is to work directly with the t-values.

Let µi1 and µi2 be the mean expressions of gene i for tumor and non-tumor

subjects respectively. Suppose the variance of the gene-expression for gene i

is σ2i is the same for both groups. Then ti follows a central t-distribution if

µi1 = µi2. When the means are different ti follows a non-central t-distribution

with non-centrality parameter δi = µi1−µi2√
σ2
i

(
1
m1

+ 1
m2

) . In either case the degrees of

freedom are m1 +m2 − 2.

Assume that all non-centrality parameters have the same magnitude, i.e.,

|δi| = δ. For simplicity also assume that half of the non-centrality parameters

are positive and half are negative. If the proportion of t-values that follow a non-

central t-distribution is p, then the distribution of each ti is f = (1−p)f0 +pf1

where f0 denotes the density of central t-distribution and f1 = .5gδ + .5g−δ

denotes the density of the genes with different mean expression and gδ denotes

a t-distribution with non-centrality parameter δ. We shall comment on this

choice of f1 at the end of this section.
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Figure 4: Density ratio versus z-values corresponding to the prostate gene-expression

data

This model only has two parameters to estimate p and δ. Maximum likeli-

hood estimation (mle) could be accomplished using the Expectation-Maximization

(EM) algorithm, however it is hard to work with the density of the t-distribution.

Instead, we use a modified version of the EM-algorithm with an ad-hoc M-step.

The idea is that for each gene, the mle of δi is simply ti by the invariance

property of the mle (replace µi1 and µi2 with their mle’s, the mle σ2i is ap-

proximated by its unbiased version, the pooled variance estimate). One ad-hoc

estimate of δ could be the average of |ti|. A better estimate uses the weighted

average
∑

iwi|ti|/
∑

iwi where wi is the posterior probability of coming from f1

given ti. For the M-step we use this weighted average, calculating the wi for one

iteration using the estimates from the previous iteration as true parameters.

For the prostate data we use as initial values for p, the proportion of t-

values with |ti| > 2, and for δ, the average of the absolute t-values, i.e., (|t1|+

· · · + |tn|)/n. The iterations were stopped when the change in both δ and p

was no greater then 10−8. Convergence was attained in 174 iterations, giving

δ̂ = 2.473228 and p̂ = 0.04612997.
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Figure 5: Histogram of t−values corresponding to the prostate gene-expression data

Figure 5 shows a histogram of the t-values with the estimated densities

superimposed. It can be seen that the central t-distribution f0 (dashed line)

does not fit the t-values very well since the t-values have a heavier tail. The

mixture of the two non-central t-distributions with parameters δ and −δ, f1

(dotted line), help to explain the tails. When these two distributions f0 and f1

are mixed with p as the proportion for f1, then the fitted distribution f (solid

line) fits the histogram quite nicely using only two parameters (compared to

fitting 8 parameters).

To do the LMP test, we need to explore the distribution of the density ratio

f1/f0, and this is quite hard to do with the non-central t-distribution. To work

around this, we suppose that the variance of the ratio is finite and just use the

regular central limit theorem. A random sample of one million values from a

central t-distribution with 100 degrees of freedom was generated and the ratio

f1/f0 was calculated for each value, where the sample variance was 102.2010.

This estimate of the variance of f1/f0 is assumed to be the true variance.

For the prostate data we get Tn =
∑

i
f1(ti)−f0(ti)

f0(ti)
= 27186.5. We assume the

variance of f1/f0 is 102.2010. Then, if all observations are from f0 and the the
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observations were independent then Tn/
√
nσ2 = 34.62255. When compared to

the quantiles of a standard normal distribution, this value indicates very strong

evidence that some of the genes have different mean expression values for tumor

and non-tumor patients.

A t-value is declared as coming from one of the non-central t-distributions if

(f1−f0)/f0 > 43, where the ad-hoc cutoff point makes the mean of (f1−f0)/f0

close to zero for all genes with (f1 − f0)/f0 < 43. With this cutoff point, 88

genes are declared as having different mean expression.

Since Efron (2007) found 51 anomalies, the LMP test is used to verify the

hypothesis H0 : p = p0 = 51/6033 = 0.00845. In this case the test statistic is

Tn =

n∑
i=1

f1 − f0
(1− p0)f0 + p0f1

= 5081.583.

Since Tn is the sum of bounded r.v.’s (Proposition 4.1), the regular central limit

theorem can be used to decide on a rejection region. The sample variance of

(f1 − f0)/
(
(1− p0)f0 + p0f1

)
is 10.67491 from the same sample of one million

t-values as above. This gives us Tn/
√
nσ2 = 20.02397, which is quite significant

when compared to quantiles of a standard normal distribution. Therefore, we

conclude that the proportion of anomalies is greater than 0.00845.

Since the use of t-values gave 88 anomalies, we now repeat the exercise

from the previous paragraph to test the hypothesis H0 : p = p0 = 88/6033 =

0.01459. From the same sample of one million t-values, the sample variance of

(f1− f0)/
(
(1− p0)f0 + p0f1

)
is 7.16. The test statistic is Tn = 3172.833, which

normalized gives Tn/
√
nσ2 = 15.2649. This indicates that the proportion of

anomalies is greater than 0.01459.

A similar test to check if the proportion of anomalies is greater than 109/6033 =

0.01807 gives that Tn/
√
nσ2 = 13.04648. This suggest that a better cutoff for

(f1 − f0)/f0 point is needed to identify anomalies. This will be the subject of

future research.

It is worthwhile to mention that the independence assumption between

genes may not be realistic. With regard to the choice of f1 = .5gδ + .5g−δ,
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note that for this data we are only interested in determining what genes are

expressed and not the direction of the expression. Thus, one would consider

|ti| or, equivalently, doubling the data by including −ti. For this symmetric

situation f1 seems appropriate to model the anomalies and what we would

recommend for future data analysis. This choice worked well for the original

data set, but the biological justification for equal proportions of positive or

negatively expressed genes is not clear to us.

In the next section, we illustrate the LMP test approach for some simulated

data from mixed exponentials and mixed normals.

Appendices

The first appendix simply states some stable distribution results used in Section

4, while the second appendix covers the asymptotics for the standard case when

the parameters of a mixture model are in the interior of the parameter space.

A Generalized central limit theorems

The following two lemmas are well known results which give us the limiting

distributions of
∑
Zi and

∑
Z2
i , properly normalized (see Geluk and de Haan,

2000, and the references therein).

A stable distribution with parameter α, 0 < α 6 2, α 6= 1, is defined by its

characteristic function φα(t) given by

φα(t) = exp
{
−tα

[
1 + i sign(t) tan

(απ
2

) (
|t|1−α − 1

)]
+ it tan

(απ
2

)}
(A.1a)

For α = 1 we will define the characteristic function as

φ1(t) = exp

{
−|t|

[
1 + i sign(t)

2

π
log |t|

]
+ i2tΓ′(1)/π

}
(A.1b)

where Γ′(1) is the derivative of the gamma function evaluated at 1 (the negative

of Euler’s constant). For α = 2 the stable distribution becomes a normal
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distribution with variance 2.

To calculate quantiles and probabilities for this distribution one could use

the R functions qstable and pstable (from package fBasics)2 setting the

parameters as alpha= α, beta= 1, gamma= 1, delta= tan(απ/2) and pm= 0.

In the case of α = 1 then the parameter delta should be set to 2Γ′(1)/π ≈

−0.3674669. Table 4 shows some quantiles for selected values of α.

Let Z1, . . . , Zn be iid with P (Z1 > a) = 1 for some finite a. Suppose that

P (Z1 > z) is regularly varying with index −α, i.e.,

lim
t→∞

P (Z1 > tz)/P (Z1 > t) = z−α. (A.2)

We say that Z1 is in the domain of attraction of an α-stable law if this regular

variation condition is satisfied for some 0 < α < 2. Let

sα = Γ(1− α) cos(απ/2) =
π

2Γ(α) sin(απ/2)
.

Let an be a sequence of real numbers such that

nsαP (Z1 > an)→ 1 as n→∞. (A.3)

Lemma A.1. If 1 < α < 2, then µ = E(Z1) <∞, E(Z2
1 ) =∞, and

1

an

n∑
i=1

(Zi − µ)

converges in distribution to a stable law with parameter α.

Lemma A.2. If 0 < α < 1, then E(Z1) =∞ and

1

an

n∑
i=1

Zi

converges in distribution to a stable law with parameter α.

Corollary A.3. If 1 < α < 2, then(
sα
sα/2

)2/α 1

a2n

n∑
i=1

Z2
i

converges in distribution to a stable law with parameter α/2

2qstable does not work for α < 1 as of version 290.75 of fBasics
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Right tail probabilities

α 0.1 0.05 0.01 0.005 0.001

1 6.7612 13.6373 65.653 129.7645 NA

1.05 -6.3069 -0.5517 40.1627 87.9868 445.4734

1.1 -0.5213 4.355 36.8106 73.2907 330.9228

1.15 1.1151 5.2897 31.5672 59.932 250.189

1.2 1.7651 5.3706 26.929 49.3496 192.8381

1.25 2.0504 5.1874 23.0733 41.0467 151.2448

1.3 2.1718 4.9181 19.8967 34.4791 120.4426

1.35 2.2118 4.628 17.2687 29.2202 97.1814

1.4 2.2089 4.3431 15.0761 24.9537 79.2942

1.45 2.1832 4.074 13.2282 21.4463 65.3058

1.5 2.1457 3.8242 11.6541 18.5251 54.1916

1.55 2.1028 3.5946 10.2983 16.0605 45.2258

1.6 2.0584 3.3845 9.1171 13.9535 37.8839

1.65 2.0147 3.1931 8.0759 12.1273 31.7795

1.7 1.9733 3.0195 7.1466 10.5209 26.6205

1.75 1.9352 2.8631 6.3068 9.0842 22.179

1.8 1.9011 2.7234 5.5394 7.774 18.2669

1.85 1.8716 2.6002 4.8357 6.5525 14.7128

1.9 1.8468 2.4931 4.2054 5.3942 11.3245

1.95 1.827 2.402 3.6825 4.361 7.787

2 1.8124 2.3262 3.29 3.6428 4.3702

Table 4: Quantiles of the stable distribution

For the case when P (Z1 > z) is regularly varying with index −1, we define

an as a sequence of real numbers such that nπP (Z1 > an)/2 → 1 as n → ∞.
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We also define

µn =

∫ 0

min(a,0)
P (Z1 6 t)dt+

∫ an

max(0,a)
P (Z1 > t)dt. (A.4)

Lemma A.4. For α = 1,

1

an

n∑
i=1

(Zi − µn)

converges in distribution to a stable law with parameter 1.

For the normal case, let h(t) =
∫ 0
min(a,0) zP (Z1 6 z)dz +

∫ t
max(0,a) zP (Z1 >

z)dz and let an be a sequence of real numbers such that nh(an)/a2n → 1 as

n → ∞. Note that if the variance of Z1 is finite then h(t) → 2 var(Z1) as

t→∞, so an =
√

2n var(Z1).

Lemma A.5. It h(t) is slowly varying, i.e., regularly varying of order 0, then

µ = E(Z1) <∞ and

1

an

n∑
i=1

(Zi − µ)

converges in law to a normal distribution with mean 0 and variance 2.

If h(t) is slowly varying, we say that Z1 is in the domain of attraction of a

2-stable law (normal distribution with variance 2).

These lemmas above can be specialized to more specific situations. In par-

ticula, Table 5 shows several possible tail behaviors of the distribution of Z1

which will satisty (A.2), along with their corresponding sequence an which

satisfies (A.3).

B Asymptotics for the MLE of a k-point

mixture

The next lemma states the asymptotic distribution for the k-point MLE of the

mixing distribution Q when Q is a discrete probability measure on Θ with k

distinct mass points, θ1, . . . , θk, and respective masses, p1, . . . , pk. Here we as-

sume that θ1, . . . , θk are in the interior of Θ and that all the masses are positive.
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Tail behavior as z →∞ Normalizing constant

zαP (Z1 > z)→ c an = (csαn)1/α

z2P (Z1 > z)→ c an =
√
.5cn log n

zα
√

2α log zP (Z1 > z)→ c an =
(

csαn√
2 logn

)1/α
2z2
√

log zP (Z1 > z)→ c an =
√
cn
√
.5 log n

zα
√

2α log z exp
(
−b
√

2α log z
)
P (Z1 > z)→ c an =

(
csαn√
2 logn

exp
[
b2 + b

√
2 log n

])1/α
2z2
√

log z exp
(
−2b
√

log z
)
P (Z1 > z)→ c an =

√
c
2b
n exp

[
b2 + 2b

√
.5 log n

]
Table 5: Normalizing constants for some specific tail behaviors (0 < c < ∞, b > 0,

0 < α < 2)

The following notation will be used. Let θ = (θ1, . . . , θk), p = (p1, . . . , pk−1)

and η = (η1, . . . , η2k−1) = (θ1, . . . , θk, p1, . . . , pk−1). Then,

f(x; η) = f(x; θ, p) ≡ fQ(x) =

k∑
i=1

pifθi(x) = fθk(x) +

k−1∑
i=1

pi(fθi(x)− fθk(x)).

Let X1, . . . , Xn, be iid from f(x; η) and let η̂
n

denote the mle based on

X1, . . . , Xn. For i, j = 1, . . . , 2k−1 let Iij(η) = covη

(
∂
∂ηi

log f(X1; η), ∂
∂ηj

log f(X1; η)
)

and let I(η) denote the information matrix whose ith-jth entry is Iij(η). .

Lemma B.1. Under suitable regularity conditions,

√
n
(
η̂
n
− η
) D−→MN(0, I−1(η))

Proof. See Lehmann (1983, Section 6.4) regarding suitable regularity conditions

and a proof under those conditions.

Remark B.2. The ”suitable regularity conditions” alluded to in Lemma B.1

involve the usual differentiability assumptions on f(x; ν) and passing derivatives

through expectations as well as the usual assumptions of positive definiteness

of the information matrix. These hold for the examples we consider here. The

main regularity condition that we need to verify is that∣∣∣∣∂3 log f(x; ν)

∂νa∂νb∂νc

∣∣∣∣ 6Mabc(x); a, b, c = 1, 2, ..., 2k − 1 where E
(
Mabc(X1)

)
<∞.
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For mixtures these third order derivatives have been derived in a separate docu-

ment (See http://people.clemson.edu/∼veraf/docs/ThirdDerivativeEquations.pdf)

If pi > 0 for i = 1, . . . , k, then some of the quantities involved in these third

order partial derivatives are bounded (see Proposition B.3 below). Therefore,

a sufficient regularity condition is that the absolute value of functions such as
∂3

∂θ3
i

fθi (x)

fθi (x)
,

∂2

∂θ2
i

fθi (x)

fθi (x)

∂
∂θj

fθj (x)

fθj (x)
,

∂
∂θi

fθi (x)

fθi (x)

∂
∂θj

fθj (x)

fθj (x)

∂
∂θh

fθh (x)

fθh (x)
,

∂2

∂θ2
i

fθi (x)

fθi (x)
,

∂
∂θi

fθi (x)

fθi (x)

∂
∂θj

fθj (x)

fθj (x)
,

∂
∂θi

fθi (x)

fθi (x)
are bounded by functions of X with finite expectation.

The next proposition shows that the derivative of log f(x; θ, p) with respect

to pi is bounded.

Proposition B.3.

fθi(x)− fθk(x)

p1fθ1(x) + · · ·+ pkfθk(x)
, i = 1, . . . , k − 1

is bounded if pj > 0 for j = 1, . . . , k (hence all its moments are finite).

Proof. Notice that

fθi(x)− fθk(x)

p1fθ1(x) + · · ·+ pkfθk(x)
=

1

pi

(
fθi(x)

fθi(x) +
∑

j 6=i
pj
pi
fθj (x)

)

− 1

pk

(
fθk(x)

fθk(x) +
∑

j 6=k
pj
pk
fθj (x)

)
Therefore, ∣∣∣∣ fθi(x)− fθk(x)

p1fθ1(x) + · · ·+ pkfθk(x)

∣∣∣∣ 6 1

pi
+

1

pk

The essence of the proof of Lemma B.1 is a consequence of the following

two Lemmas.

Lemma B.4.

√
n
(
η − η̂

n

)
=

1√
n
Jn
(
η
)(Hn

(
η
)

n

)−1
+Rn

where Rn
P−→ 0, Jn

(
η
)

=

[
n∑
i=1

∂ log f
(
Xi;η
)

∂ηj
: j = 1, 2, ..., 2k − 1

]
, and

Hn

(
η
)

=

[
n∑
i=1

∂2 log f
(
Xi; η

)
∂ηj∂ηl

: j, l = 1, 2, ..., 2k − 1

]
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Since
Hn
(
η
)

n
P−→ −I

(
η
)
, it is immediate that

Lemma B.5.
√
n
(
η̂
n
− η
)

=
1√
n
Jn
(
η
) (
I(η)

)−1
+Qn

where Qn
P−→ 0

This representation for η̂
n

will be needed in the final lemma.

Remark B.6. Note that if n−.5Jn
(
η
)

converges in law to a multivariate nor-

mal distribution then n−qJn
(
η
)

converges in probability to 0 for q > .5, but

convergence may be slow.

We now determine the asymptotic distribution of the LMP test statistic

when parameters in the statistic are estimated by mle’s. To do this we adopt

the following notation. Let θ =
(
θ0, θ1

)
where θ0 =

(
θ01, . . . , θ0l

)
indicates

the parameters governing the background and θ1 =
(
θ11, . . . , θ1m

)
denotes the

parameters activating the spurious observations. The vector p =
(
p
0
, p

1

)
de-

notes the vector of mixing proportions and p =
m∑
j=1

p1j denotes the proportion

assigned to the spurious distributions. Then Q = (1−p)Q0 +pQ1. The k-point

mle of Q is Q̂ = (1− p̂)Q̂0 + p̂Q̂1 where Q̂0 and Q̂1 are the discrete probability

measures putting masses at the mle’s of θ =
(
θ0, θ1

)
and the respective vector

of mle masses are m̂ =
(
p̂
0

1−p̂ ,
p̂
1
p̂

)
.

If Q0 and Q1 were known, then the LMP test statistic for testing H0 : p = 0

versus H1 : p > 0 would be given by

Tn =

n∑
i=1

(
fQ1

fQ0

(Xi)− 1

)
≡

n∑
i=1

R(ν)(Xi)

where ν =
(
θ0, θ1, p0, (p11, . . . , p1m−1)

)
. This suggest using

Sn =

n∑
i=1

(
fQ̂1

fQ̂0

(Xi)− 1

)
=

n∑
i=1

R(ν̂)(Xi)

as the test statistic for the more general formulation of the problem.

For each x, let G(ν)(x) and H(ν)(x) denote the gradient vector and Hessian

matrix of R(ν)(x) at ν and assume that the entries in the Hessian matrix
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satisfies
∣∣Hab(η

′)(x)
∣∣ 6 Nab(x) for a, b = 1, 2, . . . , 2k − 1 and for all η′ in an

open neighborhood of η. Then a second order Taylor’s series expansion gives

R(ν̂)(x) = R(ν)(x) +G(ν)(x) • (ν̂ − ν)t +
1

2

∑
a,b

(ν̂a − νa)(ν̂b − νb)γab(x)Nab(x)

where |γab(x)| 6 1 and • is the inner product. So,

1√
n

(Sn − Tn) =
1√
n

n∑
i=1

{
R(ν̂)(Xi)−R(ν)(Xi)

}
=

1

n

n∑
i=1

G(ν)(Xi) •
√
n(ν̂ − ν)t

+
1

2

∑
a,b

√
n(ν̂a − νa)(ν̂b − νb)

1

n

n∑
i=1

γab(Xi)Nab(Xi)

≡ Gn +Rn

If E|Ga(ν)(Xi)| and E|Nab(Xi)| are finite for all a and b, then

1√
n
Sn =

1√
n
Tn + E

(
G(ν)(X1)

)
•
√
n(ν̂ − ν)t +Rn

where Rn
P−→ 0. Since ν̂ is just a relabeling of η̂ , it follows from Corollary B.5

that

1√
n
Sn =

1√
n
Tn + E

(
G(ν)(X1)

)
•
(

1√
n
Jn(ν) (I(ν))−1

)t
+R′n (B.1)

where R′n
P−→ 0.

Next, we develop the distribution theory for Sn assuming that I0 <∞ and

W0 <∞.

Recall that Tn =
n∑
i=1

fQ1
fQ0

(Xi) and Jn(η) =

[
n∑
i=1

∂ log f(Xi;η)

∂ηj
: j = 1, 2, ..., 2k − 1

]
where Eν

(
fQ1
fQ0

(X1)
)
≡ µ(ν) and Eν

(
∂ log f(X1;ν)

∂νj

)
= 0 for j = 1, 2, . . . , 2k − 1.

Let

c0,0(ν) = varν

(
fQ1

fQ0

(X1)

)
,

c0,j(ν) = cj,0(ν) = cov

(
fQ1

fQ0

(X1),
∂ log f(X1; ν)

∂νj

)
for j = 1, 2, ..., 2k − 1 and

ci,j(ν) = Ii,j(ν) for i, j 6= 0.

The matrix C(ν) of the ci,j(ν)’s is the covariance matrix of the row vec-

tor
(
fQ1
fQ0

(X1),
∂ log f(X1;ν)

∂νj
; j = 1, 2, ..., 2k − 1

)
≡
(
fQ1
fQ0

(Xi), V
)

. From (B.1) we
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need the covariance matrix of
(
fQ1
fQ0

(Xi), V I
−1(ν)

)
. A straightforward cal-

culation shows that this matrix is Σ(ν) of σi,j(ν)’s where σ0,0(ν) = c0,0(ν),

σi,j(ν) = I−1i,j (ν) for i, j 6= 0, and the row vector σ0 = (σ0,j(ν); j = 1, 2, ..., 2k −

1) = (c0,j(ν); j = 1, 2, ..., 2k − 1)I−1(ν) determines σ0,j(ν) = σj,0(ν) for j =

1, 2, ..., 2k − 1.

Thus, by the multivariate central limit theorem,

Lemma B.7.

1√
n

(Tn − nµ(ν), Jn(ν)I−1(ν))
D−→MN(0,Σ(ν)).

The asymptotic distribution of Sn is immediate from Lemma B.7 and iden-

tity (B.1).

Lemma B.8. Let a = (1, E(G(ν)(X1))). Then,

1√
n

(Sn − nµ(ν))
D−→ N(0, aΣ(ν)at)

Next, we develop the distribution theory for Sn when Z1 = (f1(X1) −

f0(X1))/f0(X1) has var(Z1) = ∞. We assume that Z1 is in the domain of

attraction of an α-stable law for some 0 < α 6 2 under ν. Let an be defined as

in Appendix A. Note that n/a2n → 0 since var(Z1) =∞.

Identity (B.1) can be rewritten as

Sn
an

=
Tn
an

+

√
n

an
E
(
G(ν)(X1)

)
•
(

1√
n
Jn(ν) (I(ν))−1

)t
+R′n.

For the next lemma, let bn = nEp(Z1) if 1 < α 6 2, bn = µn (as in (A.4)) if

α = 1, and bn = 0 if 0 < α < 1.

Lemma B.9. If Z1 is in the domain of attraction of an α-stable law, then

Sn−bn
an

converges in distribution to a stable law with parameter α.

Proof. The result follows since
√
n/an → 0.

We now close Appendix B by considering the consistency of the mle at

Q0. To do this, we consider the parameter space P of all discrete probability
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measures on Θ with at most k mass points. Endow P with the Levy metric and

note that with this metric P is closed. Also assume that f(x; θ) is continuous

in θ. Thus, fQ(x) is continuous in Q in the Levy metric. With this framework,

one can apply Wald (1949) proof with minor modifications (in particular, see

Section 4 of that paper) to show that the k-point mle converges almost surely to

Q0 in the Levy metric, dL, when Q0 obtains. Wald’s parameter space (denoted

by Ω in his paper while points in Ω are denoted there by θ not ω) is a subset

of a Cartesian product space but his proof holds for the parameter space P

considered here under his Assumptions 1, 2, 4-6 with his θ’s replaced by our

Q’s.

Regarding Wald’s assumptions with regard to the problem here, note that

his Assumptions 3 and 8 hold since f(x; θ) is continuous in θ (supremums of

lower semi-continuous functions are lower semi-continuous, and hence, mea-

surable). Also Assumption 7 holds since P is closed. Note that the family

{f(x; θ)} being identifiable does not imply that {fQ(x)} is identifiable. E.g,

mixtures over p of n-trial binomials with k > 2n− 1 have an infinite number of

representations. The limiting condition in Assumption 5 for {f(x; θ)} implies

that fQ(x) goes to zero as the points in the support of Q goes to infinity or

minus infinity. This limiting condition lets Wald truncate the parameter space

to a bounded set which is then compact because of Assumption 7. Here the

limiting condition implies tightness of a subset P ′ of P , and hence, compactness

of this subset. The essence of Wald’s proof is to use the compactness to get

construct a finite open cover, I0, I1, . . . , Im for P ′. Without loss of generality,

assume Q0 ∈ I0 but not in Ij for j = 1, 2, . . . ,m. This cover, defined for ρ > 0,

is done in such a way that

1. dL(Q1, Q2) < ρ whenever Q1 and Q2 are in the same Ij ,

2. EQ0 sup{log fQ(x) : Q ∈ I0} > EQ0 sup{log fQ(x) : Q ∈ Ij} for j > 0,

3. EQ0 sup{log fQ(x) : Q ∈ I0} > EQ0 sup{log fQ(x) : for Q outside the cover }.

It follows from the strong law and (1-3) that P
(
lim d(Q̂n, Q0) < ρ

)
= 1
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where Q̂n is the k-point mle. Since ρ is arbitrary, Q̂n converges almost surely

to Q0.
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