Estimating Load-Sharing Properties in a Dynamic Reliability System

Paul Kvam, Georgia Tech
Edsel A. Peña, University of South Carolina
Modeling Dependence Between Components

Most reliability methods are intended for components that operate independently within a system. It is more realistic, however, to develop models that incorporate stochastic dependencies among the system’s components. Options for modeling dependent systems:

- Shock models.
- Load-share models.
Load Sharing Models

- Load share models dictate that component failure rates depend on the operating status of the other system components and the effective system structure function.

- Daniels (1945) originally adopted this model to describe how the strain on yarn fibers increases as individual fibers within a bundle break.

- A bundle of fibers can be considered as a parallel system subject to a steady tensile load.
The Load-Share Rule

The most important element of the load-share model is the rule that governs how failure rates change after some components in the system fail.

- **Equal Load Share Rule**: A constant system load distributed equally among the working components.

- **Local load sharing rule**: A failed component’s load is transferred to adjacent components.

- **Monotone load sharing rule**: The load on any individual component is nondecreasing as other items fail.

Past research has stressed reliability estimation based on known load share rules.
Examples of Load-Share Systems

- **Textile Engineering**: Failure of one back-up system adversely affects another
- **Nuclear Reactor Safety**: Discovery of a major software defect can help reveal or conceal other existing bugs
- **Civil Engineering**: Welded joints on large support structures
- **Materials Testing**: Fatigue and crack growth
- **Population Sampling**: Capture/Recapture methods
- **Combat Modeling**: Loss of component in combat affects death rate of others
An Unknown Load-Share Rule

- Past research emphasizes load-share modeling based on known load share rules.
- In these examples, the load-share rule might be unknown.
- Our focus: Case in which the system is governed by an unknown equal load-share rule.
- General set up: Observe component lifetimes in parallel systems of identical components.
Observe n i.i.d. systems of k components.

For $i = 1, 2, 3, \ldots$, let $S_{i,1} < S_{i,2} < \ldots$ be the successive component failure times for the ith system.

F represents the baseline component failure time distribution function.

Hazard function corresponding to F is $R(x) = - \log(1 - F(x))$.

Hazard rate is $r(x) = f(x)/[1 - F(x)]$, where $f(x)$ is the density of F.
Load Share Parameters

Until the first component failure, the failure rate of each of \(k \) components in the system equals the baseline rate \(r(x) \).

Upon the first failure within a system, the failure rates of the \(k-1 \) remaining components jump to \(\gamma_1 r(x) \), and remain at that rate until the next component failure.

After this failure, the failure rates of the \(k-2 \) surviving components jump to \(\gamma_2 r(x) \), and so on.
Load Share Parameters

The (equal) load share rule can be characterized by the \(k - 1 \) unknown parameters \(\gamma = \gamma_1, \gamma_2, \ldots, \gamma_{k-1} \) and the unknown baseline distribution or hazard function.

For example, a system with a constant load would assign

\[
\gamma_j = k/(k-j), \quad j = 1, \ldots, k-1
\]
Maximum Likelihood Estimation of R and γ

In the ith system, the conditional hazard function of the $(j + 1)$ smallest component lifetime $S_{i,j+1}$, given the first i component failure times $S_{i,1}, \ldots, S_{i,j}$, is (for $s > S_{i,j}$)

$$R^* (s | S_{i,1}, \ldots, S_{i,j}) =$$

$$\gamma_j R(s) + (\gamma_{j-1} - \gamma_j) R(S_{i,j}) + \ldots + (1 - \gamma_1) R(S_{i,1})$$

The corresponding likelihood function, in terms of R^*, is

$$\prod_{i=1}^{n} \prod_{j=1}^{k} dR^*(S_{ij}) \exp\{ -R^*(S_{ij}) \}.$$
Computing the MLE

Standard approach for finding the MLE:

1. Fix γ.
2. Maximize likelihood with respect to R to obtain $\hat{R}(\cdot; \gamma)$
3. Plug $\hat{R}(\cdot; \gamma)$ in to obtain the profile likelihood for γ
4. Compute the MLE $\hat{\gamma}$; final estimator of $R(\cdot)$ is $\hat{R}(\cdot; \hat{\gamma})$

To understand properties of the nonparametric MLE, we model the load-share system using counting processes.
Notation for Counting Processes

- $N_i(t) = \sum_{j=1}^{k} I(S_{i,j} \leq t)$, \hspace{1em} i = 1, 2, \ldots, n

- $\gamma[N_i(w)] = \sum_{j=0}^{k-1} \gamma_j I(N_i(w) = j)$

- $Y_i(w) = (k - N_i(w-)) I(\tau \geq w)$

- $A_i(t) = \int_0^t \gamma[N_i(u-)] r(u) Y_i(u) du$

If γ is known, then analogous to the derivation of the the Nelson-Aalen estimator (with $J(w) = I(\sum_{i=1}^{k} Y_i(w) > 0)$), we obtain the estimator

$$\hat{R}(s; \gamma) = \int_0^s \frac{J(w) dN(w)}{\sum_{i=1}^{n} Y_i(w) \gamma[N_i(w-)]}$$
MLE using Counting Processes

To obtain the estimator of $R(\cdot)$ for the more general case where γ is unknown, we first obtain the profile likelihood for γ by plugging in $\hat{R}(\cdot; \gamma)$ into the likelihood function.

$$L_p(s; \gamma) = \prod_{i=1}^{n} \prod_{0 \leq w \leq s} \left[\frac{Y_i(w)\gamma[N_i(w^-)]}{\sum_{l=1}^{n} Y_l(w)\gamma[N_l(w^-)]} \right] dN_i(w).$$

Once $\hat{\gamma}$ is obtained, the estimator of R becomes

$$\hat{R}(s) = \hat{R}(s; \hat{\gamma}).$$
MLE using Counting Processes

By virtue of the product representation of \(\bar{F} = 1 - F \) in terms of \(R \) given by
\[
\bar{F}(s) = \prod_{0 \leq w \leq s} \left[1 - R(dw) \right],
\]
we then obtain an estimator of \(\bar{F} \) via

\[
\hat{F}(s) = \prod_{0 \leq w \leq s} \left[1 - \hat{R}(dw) \right].
\]
Solving the MLE

The MLE can be computed by solving the set of k nonlinear equations

\[
U(\tau; \gamma) = \sum_{i=1}^{n} \int_{0}^{\tau} \left[\frac{Q_i(w)}{\gamma'Q_i(w)} - \frac{Q(w)}{\gamma'Q(w)} \right] dN_i(w) = 0
\]

where

- $Q_{i,j}(t) = Y_i(t)I(N_i(t-) = j)$, $1 \leq i \leq n$, $0 \leq j \leq k - 1$;
- $Q_i(t) = (Q_{i,0}(t), \ldots, Q_{i,k-1}(t))'$, $1 \leq i \leq n$;
- $Q(t) = (\sum_{i=1}^{n} Q_{i,0}(t), \ldots, \sum_{i=1}^{n} Q_{i,k-1}(t))'$;

(Solve with an iterative scheme; e.g. Newton-Raphson.)
Suppose we have that

\[\hat{\rho}(t; \gamma) = \sum_{i=1}^{n} \gamma * Q_i(t)/\gamma'Q(t); \]

\[\delta_i(t) = (\delta_{i,0}(t), \ldots, \delta_{i,k-1}(t))', \text{ with} \]
\[\delta_{i,j}(t) = I(Q_{i,j}(t) > 0), 1 \leq i \leq n; \]

\[\Upsilon(s; \gamma) \equiv \int_{0}^{s} [D(\rho(w; \gamma)) - \rho(w; \gamma)\rho(w; \gamma)'] \gamma'q(w)dR(w). \]
Lemma:

If \(\{N_i(\cdot), i = 1, \ldots, n\} \) are independent and identically distributed, and

\[
\inf_{0 \leq w \leq \tau} \sum_{j=0}^{k-1} (k - j) \gamma_j P(N_1(w-) = j) > 0,
\]

then \(U(s; \gamma) = \sum_{i=1}^{n} \int_{0}^{s} [\delta_i(w) - \hat{\rho}(w; \gamma)] (dN_i(w) - dA_i(w)) \)

is a square-integrable martingale with quadratic variation process \(\langle U(\cdot; \gamma) \rangle(s) \) whose in-probability limit is \(\Upsilon(s; \gamma) \).

Furthermore, \(n^{-1/2} U(\cdot; \gamma) \) converges weakly to a zero-mean Gaussian process with covariance matrix function \(\Upsilon(\cdot; \gamma) \).
Theorem 1

Under the conditions of the Lemma,

(i) $\hat{\gamma}$ converges in probability to γ; and

(ii) $\sqrt{n}(\hat{\gamma} - \gamma) \overset{d}{\to} N(0, \Sigma(\tau, \gamma))$ where

$\Sigma(\tau, \gamma) = D(\gamma) \Upsilon(\tau, \gamma)^{-1} D(\gamma)$, and with

$$\Upsilon(\tau, \gamma) \equiv \int_0^\tau \left[D(\rho(w; \gamma)) - \rho(w; \gamma) \rho(w; \gamma)' \right] \gamma' q(w) dR(w).$$

where

- $\rho(t; \gamma) = E[\sum_{i=1}^{n} \gamma * Q_i(t)] / E[\gamma' Q(t)] = \gamma * q(t)(\gamma/q(t))^{-1}$ and

- $q(s) = (q_0(s), \ldots, q_{k-1}(s))$, with $q_j(w) = E(Q_{i,j}(w)) = (k - j)P(\tau \geq w, N_1(w-) = j)$.
Theorem 2

Under the conditions of the Lemma, if \(\tau \) is such that \(\gamma'q(\tau) > 0 \), then

\[
\left\{ \sqrt{n}(\hat{R}(s) - R(s)) : 0 \leq s \leq \tau \right\}
\]

converges weakly to a zero-mean Gaussian process with variance function

\[
\Xi(s; \gamma) \equiv \int_0^s \{\gamma'q(w)\}^{-1}dR(w) + \varrho(s; \gamma)'[\Upsilon(\tau; \gamma)]^{-1}\varrho(s; \gamma),
\]

where \(\varrho(s; \gamma) = \int_0^s \rho(w; \gamma)dR(w) \).
Corollary

Under the conditions of Theorem 2,

\[
\left\{ \sqrt{n} (\hat{F}(s) - \bar{F}(s)) : 0 \leq s \leq \tau \right\}
\]

converges weakly to a zero-mean Gaussian process \(\{Z(s) : 0 \leq s \leq \tau \} \) whose variance function is \(\text{Var}\{Z(s)\} = \bar{F}(s)^2 \Xi(s; \gamma) \).
3-Component Parallel System:

2000-2001 Boston Celtics

Paul Pierce
Kenny Anderson
Antoine Walker
Estimated Cumulative Hazard: Minutes Played Until 2nd Foul

Nonparametric Estimate of Hazard Function

Time (t)

Cumulative Hazard (Rhat(t))
Estimated Survivor Function of Minutes Played

Nonparametric Estimate of Survivor Function

Survivor Function ($F_{Bar}(t)$) vs. Time (t)
Confidence Regions (50%, 90%, 95%) for (γ_1, γ_2)