Nonparametric Estimation with Recurrent Event Data

Edsel A. Pena
Department of Statistics
University of South Carolina
E-mail: pena@stat.sc.edu

Talk at UNCC, 10/12/01

Based on joint works with R. Strawderman (Cornell) and M. Hollander (Florida State)

Research supported by NIH and NSF Grants
A Real Recurrent Event Data
(Source: Aalen and Husebye (‘91), *Statistics in Medicine*)

Variable: Migrating motor complex (MMC) periods, in minutes, for 19 individuals in a study concerning small bowel motility during fasting state.

<table>
<thead>
<tr>
<th>Unit # i</th>
<th>#Complete (K_i=K(i))</th>
<th>Complete Observed Successive Periods (T_ij)</th>
<th>Censored ((\tau_i - S_{iK(i)}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>112 145 39 52 21 34 33 51</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>206 147</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>284 59 186</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>94 98 84</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>67</td>
<td>131</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>124 34 87 75 43 38 58 142 75</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>116 71 83 68 125</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>111 59 47 95</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>98 161 154 55</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>166 56</td>
<td>122</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>63 90 63 103 51</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>47 86 68 144</td>
<td>72</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>120 106 176</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>112 25 57 166</td>
<td>85</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>132 267 89</td>
<td>86</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>120 47 165 64 113</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>162 141 107 69</td>
<td>39</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>106 56 158 41 41 168</td>
<td>13</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>147 134 78 66 100</td>
<td>4</td>
</tr>
</tbody>
</table>
Pictorial Representation of Data for a Unit or Subject

- Consider unit/subject #3.
- $K = 3$
- Gap Times, T_j: 284, 343, 529
- Censored Time, $\tau - S_K$: 4
- Calendar Times, S_j: 284, 343, 529
- Limit of Obs. Period: $\tau = 533$

![Calendar Scale Diagram: T1, T2, T3, T4, S1=284, S2=343, S3=529, τ=533]
Features of Data Set

- Random observation period per subject (administrative constraints).
- Length of period: τ
- Event of interest is recurrent. A subject may have more than one event during observation period.
- # of events (K) informative about MMC period distribution (F).
- Last MMC period right-censored by a variable informative about F.
- Calendar times: S_1, S_2, \ldots, S_K.
- Right-censoring variable: $\tau - S_K$.
Assumptions and Problem

• Aalen and Husebye: “Consecutive MMC periods for each individual appear (to be) approximate renewal processes.”

• *Translation*: The inter-event times T_{ij}’s are assumed stochastically independent.

• *Problem*: Under this IID assumption, and taking into account the informativeness of K and the right-censoring mechanism, to estimate the inter-event distribution, F.
General Form of Data Accrual

<table>
<thead>
<tr>
<th>Unit #</th>
<th>Successive Inter-Event Times or Gaptimes</th>
<th>Length of Study Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$T_{11}, T_{12}, \ldots, T_{1j}, \ldots$ IID F</td>
<td>τ_1</td>
</tr>
<tr>
<td>2</td>
<td>$T_{21}, T_{22}, \ldots, T_{2j}, \ldots$ IID F</td>
<td>τ_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>$T_{n1}, T_{n2}, \ldots, T_{nj}, \ldots$ IID F</td>
<td>τ_n</td>
</tr>
</tbody>
</table>

Calendar Times of Event Occurrences

$$S_{i0}=0 \text{ and } S_{ij} = T_{i1} + T_{i2} + \ldots + T_{ij}$$

Number of Events in Observation Period

$$K_i = \max\{j: S_{ij} \leq \tau_i\}$$

Upper limit of observation periods, τ’s, could be fixed, or assumed to be IID with unknown distribution G.
Observables

<table>
<thead>
<tr>
<th>Unit #</th>
<th>Vector of Observables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\mathbf{D}1 = (K_1, T{11}, T_{12}, \ldots, T_{1K(1)}, \tau_{1-S_{1K(1)}}))</td>
</tr>
<tr>
<td>2</td>
<td>(\mathbf{D}2 = (K_2, T{21}, T_{22}, \ldots, T_{2K(2)}, \tau_{2-S_{2K(2)}}))</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>(\mathbf{D}n = (K_n, T{n1}, T_{n2}, \ldots, T_{nK(n)}, \tau_{n-S_{nK(n)}}))</td>
</tr>
</tbody>
</table>

Main Theoretical Problem

Based on this data, to obtain an estimator of the unknown gaptime or inter-event time distribution, \(F \); and determine its properties.
Relevance and Applicability

• Recurrent phenomena occur in a variety of settings.
 – Nuclear power plant stoppages.
 – Outbreak of a disease.
 – Terrorist attacks.
 – Labor strikes.
 – Hospitalization of a patient.
 – Tumor occurrence.
 – Epileptic seizures.
 – Non-life insurance claims.
 – When stock index (e.g., Dow Jones) decreases by at least 6% in one day.
Limitations of Existing Estimation Methods

• Consider only the first, possibly right-censored, observation per unit and use the product-limit estimator (PLE).
 – Loss of information
 – Inefficient

• Ignore the right-censored last observation, and use empirical distribution function (EDF).
 – Leads to bias.
 – Estimator actually inconsistent.
Review: Prior Results

Complete Data Setting

- T_1, T_2, \ldots, T_n IID $F(t) = P(T \leq t)$
- Empirical Survivor Function (EDF)

$$
\hat{F}(t) = \frac{1}{n} \sum_{i=1}^{n} I(T_i > t)
$$

- Asymptotics of EDF

$$
\sqrt{n} \left(\hat{F} - F \right) \Rightarrow W_1
$$

where W_1 is a zero-mean Gaussian process with covariance function

$$
u_1(t) = \overline{F}(t)F(t).
$$
In Hazards View

• Hazard rate function

\[\lambda(t) = \lim_{h \downarrow 0} \frac{1}{h} P\{t \leq T < t + h \mid T \geq t\} = \frac{f(t)}{F(t)} \]

• Cumulative hazard function

\[\Lambda(t) = -\log\{\bar{F}(t)\} = \int_0^t \lambda(w)dw \]

• Equivalences

\[f(t) = \lambda(t)e^{-\Lambda(t)} \]

\[\bar{F}(t) = e^{-\Lambda(t)} = \prod_{s=0}^{t} [1 - d\Lambda(s)] \]

• Another representation of the variance

\[\nu_1(t) = \bar{F}(t)F(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{\bar{F}(w)} \]
Right-Censored Data

• Failure times: T_1, T_2, \ldots, T_n IID F
• Censoring times: C_1, C_2, \ldots, C_n IID G
• Right-censored data

$$(Z_1, \delta_1), (Z_2, \delta_2), \ldots, (Z_n, \delta_n)$$

with

$$Z_i = \min(T_i, C_i)$$

$$\delta_i = I\{T_i < C_i\}$$

• Product-limit or Kaplan-Meier Estimator

$$\widehat{F}(t) = \prod_{\{i:Z_{(i)} \leq t\}} \left[1 - \frac{1}{n_{(i)}} \right]^{\delta_{(i)}}$$

$Z_{(1)} \leq Z_{(2)} \leq \ldots \leq Z_{(n)}$

$n_{(i)} = \# \text{ at risk at } Z_{(i)}$
PLE Properties

• Asymptotics of PLE

$$\sqrt{n} \left(\hat{F} - \overline{F} \right) \Rightarrow W_2$$

where W_2 is a zero-mean Gaussian process with covariance function

$$\nu_2(t) = \overline{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{\overline{F}(w)\overline{G}(w)}$$

• If $G(w) = 0$ for all w, so no censoring,

$$\nu_1(t) = \nu_2(t)$$
Relevant Stochastic Processes for Recurrent Event Setting

• Calendar-Time Processes for ith unit

\[N_i^\dagger(s) = \sum_{j=1}^{\infty} I\{S_{ij} \leq s; S_{ij} \leq \tau_i\} \]

\[Y_i^\dagger(s) = I\{\tau_i \geq s\} \]

\[\mathcal{F}^\dagger_s = \text{event history up to calendar-time } s \]

\[A_i^\dagger(s) = \int_0^s Y_i^\dagger(v) \lambda(v - S_{iN_i^\dagger(v^-)}) \, dv \]

\[M_i^\dagger(s) = N_i^\dagger(s) - A_i^\dagger(s) \]

Then,

\[M^\dagger(s) = (M_1^\dagger(s), \ldots, M_n^\dagger(s)) \]

is a vector of square-integrable zero-mean martingales.
• **Difficulty:** arises because interest is on $\lambda(.)$ or $\Lambda(.)$, but these appear in the compensator process $A_i^\dagger(s)$ in form

$$\lambda \left(v - S_{iN_i^\dagger(v-)} \right)$$

$v - S_{iN_i^\dagger(v-)}$ is the length since last event at calendar time v

• **Needed:** Calendar-Gaptime Space

For Unit 3 in MMC Data
• Processes in Calendar-Gaptime Space

\[Z_i(s, t) = I\{s - S_{iN_i^+(s-)} \leq t\} \]

\[N_i(s, t) = \int_0^s Z_i(v, t) N_i^+(dv) \]

\[A_i(s, t) = \int_0^s Z_i(v, t) A_i^+(dv) \]

\[M_i(s, t) = \int_0^s Z_i(v, t) M_i^+(dv) = N_i(s, t) - A_i(s, t) \]

\[Y_i(s, t) = \sum_{j=1}^{N_i^+(s-)} I\{T_{ij} \geq t\} + I\{(s \land \tau_i) - S_{iN_i^+(s-)} \geq t\} \]

• \(N_i(s, t) = \# \) of events in calendar time [0,s] for ith unit whose gaptimes are at most t

• \(Y_i(s, t) = \) number of events in [0,s] for ith unit whose gaptimes are at least t: “at-risk” process
• Aggregated processes:

\[N(s, t) = \sum_{i=1}^{n} N_i(s, t); \]

\[A(s, t) = \sum_{i=1}^{n} A_i(s, t); \]

\[M(s, t) = \sum_{i=1}^{n} M_i(s, t). \]

• As \(s \to \infty, \)

\[N_i(s, t) \xrightarrow{a.s.} N_i(\tau_i, t) = N_i(t) = \sum_{i=1}^{K_i} I\{T_{ij} \leq t\}; \]

\[Y_i(s, t) \xrightarrow{a.s.} Y_i(t) = \sum_{j=1}^{K_i} I\{T_{ij} \geq t\} + I\{\tau_i - S_{iK_i} \geq t\}. \]

“Change-of-Variable” Formulas

\[A(s, t) = \sum_{i=1}^{n} \int_{0}^{s} Z_i(v, t) A_i^\dagger(dv) = \int_{0}^{t} Y(s, w) \lambda(w)dw \]

\[\int_{0}^{s} H_i(s, v - S_{iN_i^\dagger(v-)}) M_i(dv, t) = \int_{0}^{t} H_i(s, w) M_i(s, dw) \]
Estimators of \(\Lambda \) and \(F \) for the Recurrent Event Setting

\[
J(v, w) = I\{Y(v, w) > 0\}
\]

By “change-of-variable” formula,

\[
\int_0^t \frac{J(s, w)}{Y(s, w)} M(s, dw) = \sum_{i=1}^n \int_0^s \frac{J(s, v - S_i^{v-}N_i^{v-})}{Y(s, v - S_i^{v-}N_i^{v-})} M_i(dv, t)
\]

RHS is a sq-int. zero-mean martingale, so

\[
E \left\{ \int_0^t \frac{J(s, w)}{Y(s, w)} N(s, dw) \right\} = E \left\{ \int_0^t J(s, w) d\Lambda(w) \right\}
\]

Estimator of \(\Lambda(t) \)

\[
\hat{\Lambda}(s, t) = \int_0^t \frac{J(s, w)}{Y(s, w)} N(s, dw) = \int_0^t \frac{N(s, dw)}{Y(s, w)}
\]
Estimator of F

• Since

\[\hat{F}(t) = \prod_{w \leq t} [1 - \Lambda(dw)] \]

by substitution principle,

\[\hat{F}(s, t) = \prod_{w \leq t} [1 - \hat{\Lambda}(s, dw)] = \prod_{w \leq t} \left[1 - \frac{N(s, \Delta w)}{Y(s, w)} \right] \]

a generalized product-limit estimator (GPLE).

• GPLE extends the EDF for complete data, and the PLE or KME for single-event right-censored data.
Computational Forms

• If T_{ij}’s are distinct,

$$
\hat{F}(s, t) = \prod_{i=1}^{n} \left[\prod_{j: T_{ij} \leq t} \left[1 - \frac{1}{Y(s, T_{ij})} \right] \right] \left\{ j: S_{ij} \leq (s \wedge \tau_i) \right\}
$$

$$
Y(s, T_{ij}) = \sum_{k=1}^{n} \left\{ \sum_{l=1}^{N_k(s-)} I\{T_{kl} \geq T_{ij}\} + I\{(s \wedge \tau_k) - S_{kN_k(s-)} \geq T_{ij}\} \right\}
$$

• If s is large, combine data for all n units taking into account right-censoring of each unit’s last observation. GPLE could be computed like the product-limit estimator. Statistical packages such as SAS, Splus, etc., could be utilized.
GPLE Finite-Sample Properties

- GPLE is positively biased, but with bias disappearing at an exponential rate as sample size increases.

\[
0 \leq \text{Bias}\{\hat{F}(s, t)\} \leq F(t)[\pi_U(t)]^n
\]

\[
\pi_U(t) = \int_0^t \bar{F}(w)dG(w) + \int_0^\infty \int_{z+t}^{z} \bar{F}(w-z)dG(w)dR(z)
\]

\[R(t) = \text{renewal function of } F\]

Special Case

\[F = \text{EXP}(\theta) \text{ and } G = \text{EXP}(\eta): \pi_U(t) = 1 - e^{-(\theta+\eta)t}\]

- Finite-sample variance function estimate:

\[
\text{Var}(\hat{F}(s, t)) = \hat{F}(s, t)^2 \int_0^t \frac{N(s, dw)}{Y(s, w)[Y(s, w) - N(s, \Delta w)]}
\]
Asymptotic Properties of GPLE

\[F^{*j} = j\text{th convolution of } F, j = 1, 2, \ldots \]

\[R(t) = \sum_{j=1}^{\infty} F^{*j}(t) = \text{renewal function of } F; \]

\[G_s(w) = \begin{cases} G(w) & \text{if } w < s \\ 1 & \text{if } w \geq s \end{cases} \]

\[E\{Y_1(s, t)\} = y(s, t) \equiv \tilde{F}(t) \left\{ \tilde{G}_s(t-) + \int_{[t, \infty)} R(w - t) dG_s(w) \right\} \]

\[d(s, t) = \int_0^t \frac{\Lambda(dw)}{y(s, w)} \]

Special Case: If \(F = \text{EXP}(\theta) \) and \(G = \text{EXP}(\eta) \)

\[d(s, t) = I\{t \leq s\} \times \frac{\exp \{((\theta + \eta)w)\}}{1 + \frac{\theta}{\eta} [1 - \exp \{-\eta(s-w)\} - \eta(s-w) \exp \{-\eta(s-w)\}]} \]

\[d(\infty, t) = \frac{\theta \eta}{(\theta + \eta)^2} \{\exp\{(\theta + \eta)t\} - 1\} \]
Weak Convergence

Theorem: If \(s \in (0, \infty) \) and \(t^* \in (0, \infty) \) such that \(y(s, t^*) > 0 \) and if \(\Lambda(t^*) < \infty \), then

\[
\{ W(s, t) = \sqrt{n}[\hat{F}(s, t) - \bar{F}(t)] : t \in [0, t^*] \}
\]

converges weakly to a zero-mean Gaussian process

\[
\{ W^\infty(s, t) : t \in [0, t^*] \};
\]

\[
\text{Cov}[W^\infty(s, t_1), W^\infty(s, t_2)] = \bar{F}(t_1)\bar{F}(t_2)d[s, \min(t_1, t_2)].
\]

The proof of this result relied on a weak convergence theorem for recurrent and renewal settings developed in Pena, Strawderman and Hollander (2000), which utilized some ideas in Sellke (1988) and Gill (1980).
Comparison of Limiting Variance Functions

- **EDF:** \(v_1(t) = \bar{F}(t)F(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{F(w)} \)

- **PLE:** \(v_2(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{F(w)G(w)} \)

- **GPLE** (recurrent event): For large \(s \),

\[
v_3(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{F(w)G(w)} \left\{ 1 + \frac{1}{G(w)} \int_w^\infty R(u - w) dG(u) \right\}
\]

- For large \(t \) or if in stationary state, \(R(t) = t/\mu_F \), so approximately,

\[
v_3(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{F(w)G(w)} \left\{ 1 + \frac{1}{\mu_F} \mu_G(w) \right\}
\]

with \(\mu_G(w) \) being the mean residual life of \(\tau \) given \(\tau \geq w \).
Wang-Chang Estimator
(JASA, ‘99)

\[K_i^* = \begin{cases} 1 & \text{if } K_i = 0 \\ K_i & \text{if } K_i > 0 \end{cases} \]

\[d^*(t) = \sum_{i=1}^{n} \left\{ \frac{I\{K_i > 0\}}{K_i^*} \sum_{j=1}^{K_i} I\{T_{ij} = t\} \right\} \]

\[R^*(t) = \sum_{i=1}^{n} \frac{1}{K_i^*} \left[\sum_{j=1}^{K_i} I\{T_{ij} \geq t\} + I\{r_i - S_{iK_i} \geq t\} I\{K_i = 0\} \right] \]

\[\hat{S}(t) = \prod_{i=1}^{n} \prod_{\{j: T_{ij} \leq t\}} \left[1 - \frac{d^*(T_{ij})}{R^*(T_{ij})} \right] \]

• **Beware!** Wang and Chang developed this estimator to be able to handle correlated inter-event times, so comparison with GPLE is not completely fair to their estimator!
Frailty-Induced Correlated Model

• Correlation induced according to a frailty model:

• U_1, U_2, \ldots, U_n are IID unobserved Gamma(α, α) random variables, called frailties.

• Given $U_i = u$, $(T_{i1}, T_{i2}, T_{i3}, \ldots)$ are independent inter-event times with

$$F(t|U_i = u) = [F_0(t)]^u = \exp\left\{-u\int_0^t \lambda_0(w)dw\right\}.$$

• Marginal survivor function of T_{ij}:

$$F(t) = \mathbb{E}\left\{[F_0(t)]^U\right\} = \left[\frac{\alpha}{\alpha + \Lambda_0(t)}\right]^\alpha.$$
Frailty-Model Estimator

- Frailty parameter, α, determines dependence among inter-event times.
- Small (Large) α: Strong (Weak) dependence.
- EM algorithm is needed to obtain the estimator, where the unobserved frailties are viewed as missing values.
EM Algorithm

• E-STEP: Given $\hat{\Lambda}_0(.), \hat{\alpha}$, estimate Z's via

$$\hat{Z}_i = \frac{\hat{\alpha} + N_i^i(s)}{\hat{\alpha} + \sum_{i=1}^Q \hat{\lambda}_i(s)Y_i(s, t_i)}, \quad i = 1, 2, \ldots, n.$$

• M-STEP: Given \hat{Z}_i's

$$\hat{\lambda}_i(s) = \frac{\sum_{i=1}^n d(t_i; s)}{\sum_{i=1}^n \hat{Z}_iY_i(s, t_i)}, \quad l = 1, 2, \ldots, Q.$$

α is estimated from profile likelihood.

• Resulting Estimator: FRMLE

• Able to prove that the GPLE is inconsistent in the presence of dependence: that is, when the frailty parameter α is finite.
Monte Carlo Studies

- Under gamma frailty model.
- $F = \text{EXP}(\theta): \theta = 6$
- $G = \text{EXP}(\eta): \eta = 1$
- $n = 50$
- # of Replications = 1000
- Frailty parameter α took values in $\{\text{Infty (IID), 6, 2}\}$
- Computer programs: combinations of S-Plus and Fortran routines.
- Black = GPLE; Blue = WCPLE; Red = FRMLE
Simulated Comparison of the Three Estimators for Varying Frailty Parameter

<table>
<thead>
<tr>
<th>Frailty Parameter α</th>
<th>Simulated Bias Function</th>
<th>Simulated RMSE Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty) IID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effect of the Frailty Parameter for Each of the Three Estimators

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Simulated Bias Function</th>
<th>Simulated RMSE Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIDPLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCOPLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRMLE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Three Estimates of Inter-Event Survivor Function for the MMC Data Set

IID assumption seems acceptable. Estimate of α is 10.2.