A General Class of Models for Recurrent Events

Edsel A. Pena
University of South Carolina at Columbia
[E-Mail: pena@stat.sc.edu]

ENAR Talk, Arlington, VA, 3/18/02

Research support from NIH, NSF
Recurrent Phenomena

Public Health and Medical Settings

- hospitalization of a subject with a chronic disease, e.g., end stage renal disease
- drug/alcohol abuse of a subject
- headaches
- tumor occurrence
- cyclic movements in the small bowel during fasting state
- depression
- episodes of epileptic seizures

Prevalent in other areas (reliability, economics, etc.) as well.
A Pictorial Representation: One Subject

An observable covariate vector: $X(s) = (X_1(s), X_2(s), \ldots, X_q(s))^t$

An intervention is performed just after each event

Unobserved Event

Unobserved Frailty

End of observation period

Observed events

An observable covariate vector: $X(s) = (X_1(s), X_2(s), \ldots, X_q(s))^t$
Features in Recurrent Event Modeling

- **Intervention** effects after each event occurrence.
- Effects of **accumulating event occurrences** on the subject. Could be a **weakening** or an **strengthening** effect.
- Effects of possibly time-dependent **covariates**.
- Possible **associations** of event occurrences for a subject.
- A possibly **random observation period** per subject.
- **Number of observable events** per subject is **random** and is **informative** on stochastic mechanism generating events.
- **Informative right-censoring mechanism** for the inter-event time that covers end of observation period.
Random Entities: One Subject

• $\mathbf{X}(s) =$ covariate vector, possibly time-dependent
• $T_1, T_2, T_3, \ldots =$ the inter-event or gap times
• $S_1, S_2, S_3, \ldots =$ the calendar times of occurrences
• $\mathbf{F}^+ =$ \{ F_s^+ : $0 \leq s$ \} = filtration including info about interventions, covariate, etc. in $[0, s]$
• $Z =$ unobserved frailty variable
• $N^+(s) =$ number of events observed on or before calendar time s
• $Y^+(s) =$ indicator of whether the subject is still at risk just before calendar time s
A General Class of Models

\(\{A^+(s|Z): s \geq 0\}\) is a predictable non-decreasing process such that given \(Z\) and with respect to the filtration \(\mathbb{F}^+\):

\[
\left\{M^+(s \mid Z) = N^+(s) - A^+(s \mid Z): s \geq 0 \right\}
\]

is a square-integrable zero-mean (local) martingale. As in previous works (Aalen, Gill, Andersen and Gill, Nielsen, et al, others) we assume

\[
A^+(s \mid Z) = \int_0^s Y^+(w)\lambda(w \mid Z)dw
\]
Modeling the Intensity Process
[Pena and Hollander, to appear]

Specify, possibly in a dynamic fashion, a predictable, observable process \(\{E(s): 0 \leq s \leq \tau\} \), called the effective age process, satisfying

- \(E(0) = e_0 \geq 0 \);
- \(E(s) \geq 0 \) for every \(s \);
- On \([S_{k-1}, S_k)\), \(E(s) \) is monotone and differentiable with a nonnegative derivative.
Specification of the Intensity Process

\[\lambda(s \mid Z) = Z \lambda_0[E(s)] \rho[N^+(s-); \alpha] \psi[\beta^t X(s)] \]
Model Components

• $\lambda_0(.) = \text{an unknown baseline hazard rate function, possibly parametrically specified.}$

• $E(s) = \textit{effective age}$ of the subject at calendar time s. Idea is that a performed \textit{intervention changes the effective age} of subject acting on the baseline hazard rate.

• $\rho(.;\alpha) = \text{a } +\text{function on } \{0,1,2,\ldots\} \text{ of known form with } \rho(0;\alpha) = 1 \text{ and with unknown parameter } \alpha. \text{ Encodes effect of accumulating event occurrences on the subject.}$

• $\psi(.) = \text{positive link function containing the effect of subject covariates. } \beta \text{ is unknown.}$

• $Z = \text{unobservable frailty variable, which when integrated out, induces associations among the inter-event times.}$
Illustration: Effective Age Process
“Possible Intervention Effects”

Effective Age, $E(s)$

Calendar Time

No improvement

Perfect intervention

Complications

Some improvement

0

τ

s
Special Cases of the Class of Models

• IID “Renewal” Model without frailties: Considered by Gill (‘81 AS), Wang and Chang (‘99, JASA), Pena, Strawderman and Hollander (‘01, JASA).

\[
E(s) = s - S_{N^+(s-)}; Z = 1; \rho(k; \alpha) = 1; \psi(w) = 1.
\]

• IID “Renewal” Model with frailties: Considered by Wang and Chang (‘99), PSH (‘01).

\[
E(s) = s - S_{N^+(s-)}; Z \sim Ga(\gamma, \gamma); \rho(k; \alpha) = 1; \psi(w) = 1.
\]
Generality and Flexibility

- **Extended Cox PH Model:** Considered by Prentice, Williams, and Petersen (PWP) (‘81); Lawless (‘87), Aalen and Husebye (‘91).

\[E(s) = s - S_{N+1}(s) ; Z = 1; \rho(k, \alpha) = 1; \psi(w) = \exp(w). \]

- Also by PWP (‘81), Brown and Proschan (‘83) and Lawless (‘87) called a “minimal repair model” in the reliability literature.

\[E(s) = s; Z = 1; \rho(k, \alpha) = 1; \psi(w) = 1. \]
• A generalized Gail, Santner and Brown (‘80) tumor occurrence model and Jelinski and Moranda (‘72) software reliability model:

\[E(s) = s - S_{N^+(s-)}; Z = 1; \rho(k; \alpha) = \alpha - k + 1; \psi(w) = \exp(w). \]

\[\eta(s) = \sum_{i=1}^{N^+(s)} I_i. \]

• Let \(I_1, I_2, I_3, \ldots \) be IND Ber\([p(s)]\) rvs and \(\Gamma_k = \min\{j > \Gamma_{k-1}: I_j = 1\} \). If

\[E(s) = s - S_{\Gamma\eta(s-)} \]

we generalize the BP (‘83) and Block, Borges and Savits (‘85) minimal repair model. Also considered in Presnell, Hollander and Sethuraman (‘94, ‘97).
Other Models In Class

- Dorado, Hollander and Sethuraman (‘97), Kijima (‘89), Baxter, Kijima and Tortorella (‘96), Stadje and Zuckerman (‘91), and Last and Szekli (‘98):

\[\{A_j : j = 0,1,2,...\} \text{ and } \{\Theta_j : j = 0,1,2,...\} \]

\[E(s) = A_{N^+(s^-)} + \Theta_{N^+(s^-)} \left[s - S_{N^+(s^-)} \right] \]

- Two simple forms for the \(\rho \) function:

\[\rho(k; \alpha) = \alpha^k ; \quad \rho(k; \alpha) = \max \{\alpha - g(k), 0\} \]

\(\alpha = \text{initial measure of “defectiveness” or event “proneness.”} \)
Relevance

• Flexibility and generality of this class of models will allow better modeling of observed phenomena, and allow testing of specific/special models using this larger class.

• **Question:** Is this relevant in biostatistical modeling??

• **Answer:** The fact that it contains models currently being used indicates the model’s importance.

• **However,** a “paradigm shift” is needed in the data gathering since the model requires the assessment of the effective age.

• **But,** this could be provided by the medical or public health experts after each intervention.
On the Model’s *Immediate* Applicability

Most often it is the case of

“**A Data in Search of a Model;**”

but, *sometimes* as in this case, it is

“**A Model in Search of a Data!**”

A modern example of such a situation is that which led to the 1919 Eddington expedition.
Some Issues on Inference

- Need to take into account the *sum-quota data accrual scheme* which leads to an informative random number of events and informative right-censoring (cf., PSH (‘01) in renewal model).
Example: Variances of EDF, PLE, and GPLE

EDF: \(\nu_1(t) = F(t) \bar{F}(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{\bar{F}(w)} \)

PLE: \(\nu_2(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{\bar{F}(w)G(w)} \)

For GPLE in “Renewal (IID) Model” [PSH ‘01, JASA]:

\[
\nu_3(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{\bar{F}(w)\bar{G}(w)} \left\{ 1 + \frac{1}{G(w)} \int_w^\infty R(u - w) dG(u) \right\}
\]
Identifiability: Model without Frailty

If for each \((\lambda_0(.), \alpha, \beta)\), the support of \(E(T_1)\) contains \([0, \tau]\), and if \(\rho(.;.;)\) satisfies

\[
\forall k \in \{0, 1, 2, \ldots\}, \left[\rho(k; \alpha^{(1)}) = \rho(k; \alpha^{(2)}) \right] \Rightarrow \alpha^{(1)} = \alpha^{(2)},
\]

then the statistical model is identifiable.
Other Statistical Issues

• **Parameter Estimation**, especially when baseline hazard is non-parametrically specified. *In progress!*

• **Testing and Group Comparisons.**

• **Model Validation and Diagnostics.**