L10: Sections 5.1, 5.2, 6.2 and 6.3

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

Sampling variability

- A random sample is exactly that: random.
- You can collect a sample of n observations and compute the mean \bar{Y}. Before you do it, \bar{Y} is random.
- If you randomly sample a population two different times, taking, e.g. $n=5$ each time, the two sample means \bar{Y}_{1} and \bar{Y}_{2} will be different.
- Example: sampling $n=5$ ages from Stat 205.
- Variability among random samples is called sampling variability.
- Variability is assessed through a hypothetical "mind experiment" called a meta-study.

Sections $5.1 \&$ 5.2 Sampling distribution for \bar{Y}

Study and meta-study

Meta-study:

Sample of n

Example 5.1.1 Rat blood pressure

- Study is measuring change in blood pressure in $n=10$ rats after giving them a drug, and computing a mean change \bar{Y} from Y_{1}, \ldots, Y_{10}.
- Meta study (which takes place in our mind) is simply repeating this study over and over again on different samples of $n=10$ rats and computing a mean each time $\bar{Y}_{1}, \bar{Y}_{2}, \bar{Y}_{3}, \ldots$
- Because the sample is random each time, the means will be different.
- A (hypothetical) histogram of the $\bar{Y}_{1}, \bar{Y}_{2}, \bar{Y}_{3}, \ldots$ would give the sampling distribution of \bar{Y}, and smoothed version would give the density of \bar{Y}.
- Restated: the sample mean from one randomly drawn sample of size $n=10$ has a density.

The density of \bar{Y}

- \bar{Y} estimates $\mu_{Y}=E\left(Y_{i}\right)$, the mean of all the observations in the population.
- We'll first look at a picture of where the sampling distribution of \bar{Y} comes from.
- Then we'll discuss a Theorem that tells us about the mean $\mu_{\bar{Y}}$, standard deviation $\sigma_{\bar{Y}}$, and shape of the density for \bar{Y}.

Sampling distribution of \bar{Y}

"Meta-experiment..."

Sampling distribution of \bar{Y}

Theorem 5.2.1: The Sampling Distribution of \bar{Y}

1. Mean The mean of the sampling distribution of \bar{Y} is equal to the population mean. In symbols,

$$
\mu_{\bar{Y}}=\mu
$$

2. Standard deviation The standard deviation of the sampling distribution of \bar{Y} is equal to the population standard deviation divided by the square root of the sample size. In symbols,

$$
\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{n}}
$$

3. Shape
(a) If the population distribution of Y is normal, then the sampling distribution of \bar{Y} is normal, regardless of the sample size n.
(b) Central Limit Theorem If n is large, then the sampling distribution of \bar{Y} is approximately normal, even if the population distribution of Y is not normal.

Sampling distribution of \bar{Y} from normal data

If data $Y_{1}, Y_{2}, \ldots, Y_{n}$ are normal, then \bar{Y} is also normal, centered at the same place as the data, but with smaller spread.

(a) population distribution of normal data Y_{1}, \ldots, Y_{n}, and (b) sampling distribution of \bar{Y}.

Example 5.2.2 Seed weights

- The population of weights of the princess bean is normal with $\mu=500 \mathrm{mg}$ and $\sigma=120 \mathrm{mg}$. We intend to take a sample of $n=4$ seeds and compute the (random!) sample mean \bar{Y}.
- $E(\bar{Y})=\mu_{\bar{Y}}=\mu=500 \mathrm{mg}$. On average, the sample mean gets it right.
- $\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{n}}=\frac{120}{\sqrt{4}}=60 \mathrm{mg}$. 68% of the time, \bar{Y} will be within 60 mg of $\mu=500 \mathrm{mg}$.

Sampling distribution for \bar{Y} for Example 5.2.2

$\mu_{\bar{Y}}=500 \mathrm{mg}$ and $\sigma_{\bar{Y}}=60 \mathrm{mg}$.

$\operatorname{Pr}\{\bar{Y}>550\}$ for $n=4$

Recall for $n=4$ that $\mu_{\bar{Y}}=500 \mathrm{mg}$ and $\sigma_{\bar{Y}}=60 \mathrm{mg}$.

> 1-pnorm $(550,500,60)$
[1] 0.2023284

What happens when n is increased?

- As n gets bigger, $\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{n}}$ gets smaller. The density of \bar{Y} gets more focused around μ.
- If Y_{1}, \ldots, Y_{n} come from a normal density, then so does \bar{Y}, regardless of the sample size.
- Even if Y_{1}, \ldots, Y_{n} do not come from a normal density, the Central Limit Theorem guarantees that the density of \bar{Y} will look more and more like a normal distribution as n gets bigger.
- This is in Section 5.3; have a look if you're interested.

Sampling dist'n for \bar{Y} from different sample sizes n

Estimating population parameters

Take a random sample of data Y_{1}, \ldots, Y_{n} from the population; \bar{y} estimates μ and s estimates σ.

Example 6.1.1 Butterfly wings

$n=14$ male Monarch butterflies were measured for wing area (Oceano Dunes State Park, California).

Table 6.1.I Wing areas of male Monarch butterflies

Wing area $\left(\mathrm{cm}^{2}\right)$				
33.9	33.0	30.6	36.6	36.5
34.0	36.1	32.0	28.0	32.0
32.2	32.2	32.3	30.0	

$\bar{y}=32.81 \mathrm{~cm}^{2}$ and $s=2.48 \mathrm{~cm}^{2}$ estimate μ and σ, the mean and standard deviation of all male Monarch butterfly wing areas from Oceano Dunes.

How good are these estimates? Can we provide a plausible range for μ ?

6.2 Standard error of \bar{Y}

- Recall that $\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{n}}$.
- We will usually not know σ (if we don't know μ, how can we know σ ?)
- Simply plug in s for σ.
- The standard error of the mean is

$$
S E_{\bar{Y}}=\frac{s}{\sqrt{n}}
$$

- For the butterfly wings, $S E_{\bar{Y}}=\frac{s}{\sqrt{n}}=\frac{2.48}{\sqrt{14}}=0.66 \mathrm{~cm}^{2}$.
- The standard error $S E_{\bar{Y}}$ gives the variability of \bar{Y}; the standard deviation s gives the variability in the data itself.

Example 6.2.2

Geneticist weighs $n=28$ female Rambouillet lambs at birth, all born in April, all single births.

Table 6.2.I	Birthweights of twenty-eight Rambouillet lambs					
Birthweight (kg)						
4.3	5.2	6.2	6.7	5.3	4.9	4.7
5.5	5.3	4.0	4.9	5.2	4.9	5.3
5.4	5.5	3.6	5.8	5.6	5.0	5.2
5.8	6.1	4.9	4.5	4.8	5.4	4.7

- $\bar{y}=5.17 \mathrm{~kg}$ estimates μ, the population mean.
- $s=0.65 \mathrm{~kg}$ estimates the spread in the sample.
- $S E_{\bar{Y}}=\frac{s}{\sqrt{n}}=\frac{0.65}{\sqrt{28}}=0.12 \mathrm{~kg}$ estimates how variable \bar{y} is, i.e. how "close" we can expect \bar{y} to be to μ.

Birthweight of $n=28$ lambs

Birthweight (kg)

Increasing n sampling from lamb birthweight population

	$n=28$	$n=280$	$n=2,800$	$n \rightarrow \infty$
\bar{y}	5.17	5.19	5.14	$\bar{y} \rightarrow \mu$
\boldsymbol{S}	0.65	0.67	0.65	$s \rightarrow \sigma$
SE	0.12	0.040	0.012	$\mathrm{SE} \rightarrow 0$
Sample distribution	$\square \square_{\square}^{\square}$		s s s	

Example 6.2.4 MAO data using SE's across groups

MAO levels vs. schizophrenia diagnosis (I, II, III) and healthy male and female controls (IV and V).

$\bar{y} \pm S E$ using (a) an interval plot, and (b) a bargraph with standard error bars. Gets at how variable the sample means are.

Example 6.2.4 MAO data using s's across groups

MOA levels vs. schizophrenia diagnosis (I, II, III) and healthy male and female controls (IV and V).

$\bar{y} \pm s$ using (a) an interval plot, and (b) a bargraph with standard deviation bars. Gets at how variable the data are.

Example 6.2.4 MAO data table with all information

Table 6.2.2 MAO activity in five groups of people				
	MAO activity $\left(\mathrm{nmol} / 10^{8}\right.$ platelets $\left./ \mathrm{hr}\right)$			
Group	n	Mean	SE	SD
I	18	9.81	0.85	3.62
II	16	6.28	0.72	2.88
III	8	5.97	1.13	3.19
IV	348	11.04	0.30	5.59
V	332	13.29	0.30	5.50

Confidence interval in one minute...

- \bar{y} provides an estimate of μ, but often we'd like a plausible range for μ.
- Theorem 5.2.1 (p. 152) tells us \bar{Y} is $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. This holds perfectly when the data Y_{1}, \ldots, Y_{n} are normal, otherwise it's approximate.
- We can estimate $\frac{\sigma}{\sqrt{n}}$ by $S E_{\bar{Y}}$.
- The $68 / 95 / 99.7$ rule says that any normal random variable is within 2 standard deviations of its mean 95% of the time.
- Therefore \bar{Y} is within $2 S E_{\bar{Y}}$ of $\mu 95 \%$ of the time.
- Restated μ is within $2 S E_{\bar{Y}}$ of $\bar{Y} 95 \%$ of the time.
- A quick, rough confidence interval for μ is $\left(\bar{Y}-2 S E_{\bar{Y}}, \bar{Y}+2 S E_{\bar{Y}}\right)$.

Confidence interval, known σ, formal derivation

Say we know σ (for now) and the data are normal. Then

$$
\bar{Y} \sim N\left(\mu, \sigma_{\bar{Y}}\right)=N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) .
$$

We can standardize \bar{Y} to get

$$
Z=\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}} .
$$

We can show $\operatorname{Pr}\{-1.96 \leq Z \leq 1.96\}=0.95$. Then

$$
\begin{aligned}
0.95 & =\operatorname{Pr}\{-1.96 \leq Z \leq 1.96\} \\
& =\operatorname{Pr}\left\{-1.96 \leq \frac{\bar{Y}-\mu}{\sigma / \sqrt{n}} \leq 1.96\right\} \\
& =\operatorname{Pr}\left\{-1.96 \frac{\sigma}{\sqrt{n}} \leq \bar{Y}-\mu \leq 1.96 \frac{\sigma}{\sqrt{n}}\right\} \\
& =\operatorname{Pr}\left\{\bar{Y}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{Y}+1.96 \frac{\sigma}{\sqrt{n}}\right\}
\end{aligned}
$$

Confidence interval

- $\bar{Y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ is a 95% probability interval for μ.
- Once we go out and see $\bar{Y}=\bar{y}$, e.g. $\bar{y}=32.8 \mathrm{~cm}^{2}$, there is no probability. Either the interval includes μ or not (more in a minute...)
- We don't actually know $\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{n}}$, but we do know $S E_{\bar{Y}}=\frac{s}{\sqrt{n}}$.
- William Sealy Gosset figured out what $\frac{\bar{Y}-\mu}{S E_{\bar{Y}}}$ is distributed as.

William Sealy Gosset, brewer \& statistician

The t distribution was published by Gosset in 1908 \& related to quality control at Guinness brewery.

Estimating σ by s gives a t distribution

- Instead of normal, $\frac{\bar{Y}-\mu}{S E_{\bar{\gamma}}}$ has a Student's t distribution with $n-1$ degrees of freedom.
- The students t distribution looks like a standard normal, but has fatter tails to account for extra variability in estimating $\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{n}}$ by $S E_{\bar{Y}}=\frac{s}{\sqrt{n}}$.
- However, the confidence interval is computed the same 'formal' way, replacing $\sigma_{\bar{Y}}$ by $S E_{\bar{Y}}$ and using a t distribution rather than a normal.
- R takes care of the details for us! t.test(data) gives a $95 \% \mathrm{Cl}$ for μ.
- For small sample sizes ($n<30$, say), data need to be approximately normal, otherwise the central limit theorem kicks in.

Two student's t curves ($\mathrm{df}=3 \& 10$), and normal curve

t distributions have slightly fatter tails to account for estimating σ by s.

Definition of critical value $t_{0.025}$

We replace " 1.96 " (from a normal) by the equivalent t distribution value, denoted $t_{0.025}$. Table of these on back inside cover.

Example 6.3.1 butterfly data

Wing area of $n=14$ male Monarch butterly wings at Oceano Dunes in California.

This is a small sample size $(n<30)$. We need to check if the data are normal to trust the confidence interval; the histogram looks roughly bell-shaped and the normal probability plot looks reasonably straight.

Confidence interval in R using t. test

```
> butterfly=c(33.9,33.0,30.6,36.6,36.5,34.0,36.1,32.0,28.0,32.0,32.2,32.3,32.3,30.0)
> par(mfrow=c(1,2))
> hist(butterfly)
> qqnorm(butterfly)
> t.test(butterfly)
    One Sample t-test
data: butterfly
t = 49.6405, df = 13, p-value = 3.292e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
    31.39303 34.24983
sample estimates:
mean of x
    32.82143
```

The part we care about right now is just

```
95 percent confidence interval:
    31.39303 34.24983
```

We are 95% confident that the true population mean wing area is between 31.4 and $34.2 \mathrm{~cm}^{2}$.

Other confidence levels

- Sometimes people want a $90 \% \mathrm{Cl}$ or a $99 \% \mathrm{Cl}$. As confidence goes up, the interval must become wider. To be more confident that the mean is in the interval, we need to include more plausible values.
- The corresponding multipliers are $t_{0.05}, t_{0.025}$, and $t_{0.005}$ for $90 \%, 95 \%$, and 99% Cl's, respectively. These are in the table on the inside cover of the back of your book if you construct a Cl by hand.
- In R, use t.test(data,conf.level $=0.90$) for a 90% test Cl t.test(data,conf.level=0.99) for $99 \% \mathrm{Cl}$.

```
> t.test(butterfly,conf.level=0.9)
90 percent confidence interval:
    31.65052 33.99234
> t.test(butterfly)
95 percent confidence interval:
    31.39303 34.24983
> t.test(butterfly,conf.level=0.99)
99 percent confidence interval:
    30.82976 34.81309
```


Interpretation of Cl

- The CI $\bar{Y} \pm t_{0.025} S E_{\bar{Y}}$ is random until we see $\bar{Y}=\bar{y}$.
- Then the Cl either covers μ or not, and we don't know which!
- After we compute the observed Cl , we talk about "confidence" not "probability" (bottom, p. 181).
- If we did a meta-experiment and collected samples of size n repeatedly and formed 95% Cl's, approximately 95 in 100 would cover μ.
- Increasing n only makes the intervals smaller; still 95% of the Cl's would cover μ.
- However, we only get to see one of these intervals, because we only take one sample.

Eggshell thickness $n=5$

Meta-experiment for eggshell thickness where $\mu=0.38 \mathrm{~mm}$ \& $\sigma=0.03 \mathrm{~mm}$.

(a) $n=5$

Eggshell thickness $n=20$

Meta-experiment for eggshell thickness where $\mu=0.38 \mathrm{~mm}$ \& $\sigma=0.03 \mathrm{~mm}$.

(b) $n=20$

Review

- A confidence interval provides a plausible range for μ.
- Since \bar{Y} is normal, the $68 / 95 / 99.7$ rule says μ is within $\bar{Y} \pm 2 S E_{\bar{Y}} 95 \%$ of the time.
- This interval is too small; Gosset introduced the t distribution to make the interval more accurate $\bar{Y} \pm t_{0.025} S E_{\bar{Y}}$;
t.test (sample) in R takes care of the details.
- For $n<30$ the data must be normal; check this with normal probability plot. For $n \geq 30$ don't worry about it.
- Interpretation is important. "With 95% confidence the true mean of population characterstic is between a and b units."

