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So far...

One sample continuous data (Chapters 6 and 8).

Two sample continuous data (Chapter 7).

One sample categorical data (Chapter 9).

Two sample categorical data (Chapter 10).

More than two sample continuous data (Chapter 11).

Now: continuous predictor X instead of group.
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Two continuous variables

Instead of relating an outcome Y to “group” (e.g. 1, 2, or 3),
we will relate Y to another continuous variable X .

First we will measure how linearly related Y and X are using
the correlation.

Then we will model Y vs. X using a line.

The data arrive as n pairs (x1, y1), (x2, y2), . . . , (xn, yn).

Each pair (xi , yi ) can be listed in a table and is a point on a
scatterplot.
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Example 12.1.1 Amphetamine and consumption

Amphetamines suppress appetite. A pharmacologist randomly
allocated n = 24 rats to three amphetamine dosage levels: 0, 2.5,
and 5 mg/kg. She measured the amount of food consumed
(gm/kg) by each rat in the 3 hours following.
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Example 12.1.1 Amphetamine and consumption

How does Y change with X? Linear? How strong is linear
relationship? 5 / 37
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Example 12.1.2 Arsenic in rice

Environmental pollutants can contaminate food via the growing
soil. Naturally occurring silicon in rice may inhibit the absorption
of some pollutants. Researchers measured Y , amount of arsenic in
polished rice (µg/kg rice), & X , silicon concentration in the straw
(g/kg straw), of n = 32 rice plants.
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Example 12.2.1 Length and weight of snakes

In a study of a free-living population of the snake Vipera bertis,
researchers caught and measured nine adult females.
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Example 12.2.1 Length and weight of snakes

How strong is linear relationship?
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12.2 The correlation coefficient r

r =
1

n − 1

n∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
.

r measures the strength and direction (positive or negative) of
how linearly related Y is with X .

−1 ≤ r ≤ 1.

If r = 1 then Y increases with X according to a perfect line.

If r = −1 then Y decreases with X according to a perfect line.

If r = 0 then X and Y are not linearly associated.

The closer r is to 1 or −1, the more the points lay on a
straight line.
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Examples of r for 14 different data sets
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Population correlation ρ

Just like ȳ estimates µ and sy estimates σ, r estimates the
unknown population correlation ρ.

If ρ = 1 or ρ = −1 then all points in the population lie on a
line.

Sometimes people want to test H0 : ρ = 0 vs. HA : ρ 6= 0, or
they want a 95% confidence interval for ρ.

These are easy to get in R with the
cor.test(sample1,sample2) command.
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R code for amphetamine data

> cons=c(112.6,102.1,90.2,81.5,105.6,93.0,106.6,108.3,73.3,84.8,67.3,55.3,

+ 80.7,90.0,75.5,77.1,38.5,81.3,57.1,62.3,51.5,48.3,42.7,57.9)

> amph=c(0,0,0,0,0,0,0,0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0)

> cor.test(amph,cons)

Pearson’s product-moment correlation

data: amph and cons

t = -7.9003, df = 22, p-value = 7.265e-08

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.9379300 -0.6989057

sample estimates:

cor

-0.859873

r = −0.86, a strong, negative relationship.
P-value= 0.000000073 < 0.05 so reject H0 : ρ = 0 at the 5% level.
There is a signficant, negative linear association between
amphetamine intake and food consumption. We are 95% confident
that the true population correlation is between −0.94 and −0.70.
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R code for snake data

> length=c(60,69,66,64,54,67,59,65,63)

> weight=c(136,198,194,140,93,172,116,174,145)

> cor.test(length,weight)

Pearson’s product-moment correlation

data: length and weight

t = 7.5459, df = 7, p-value = 0.0001321

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7489030 0.9883703

sample estimates:

cor

0.9436756

r = 0.94, a strong, positive relationship. What else do we
conclude?
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Comments

Order doesn’t matter, either (X ,Y ) or (Y ,X ) gives the same
correlation and conclusions. Correlation is “symmetric.”

Significant correlation, rejecting H0 : ρ = 0 doesn’t mean ρ is
close to 1 or −1; it can be small, yet significant.

Rejecting H0 : ρ = 0 doesn’t mean X causes Y or Y causes
X , just that they are linearly associated.
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12.3 Fitting a line to scatterplot data

We will fit the line
Y = b0 + b1X

to the data pairs.

b0 is the intercept, how high the line is on the Y -axis.

b1 is the slope, how much the line changes when X is
increase by one unit.

The values for b0 and b1 we use gives the least squares line.

These are the values that make
∑n

i=1[yi − (b0 + b1xi )]2 as
small as possible.

They are

b1 = r

(
sy
sx

)
and b0 = ȳ − b1x̄ .
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> fit=lm(cons~amph)

> plot(amph,cons)

> abline(fit)

> summary(fit)

Call:

lm(formula = cons ~ amph)

Residuals:

Min 1Q Median 3Q Max

-21.512 -7.031 1.528 7.448 27.006

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.331 3.680 26.99 < 2e-16 ***

amph -9.007 1.140 -7.90 7.27e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.4 on 22 degrees of freedom

Multiple R-squared: 0.7394, Adjusted R-squared: 0.7275

F-statistic: 62.41 on 1 and 22 DF, p-value: 7.265e-08

For now, just pluck out b0 = 99.331 and b1 = −9.007
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> fit=lm(weight~length)

> plot(length,weight)

> abline(fit)

> summary(fit)

Call:

lm(formula = weight ~ length)

Residuals:

Min 1Q Median 3Q Max

-19.192 -7.233 2.849 5.727 20.424

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -301.0872 60.1885 -5.002 0.001561 **

length 7.1919 0.9531 7.546 0.000132 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.5 on 7 degrees of freedom

Multiple R-squared: 0.8905, Adjusted R-squared: 0.8749

F-statistic: 56.94 on 1 and 7 DF, p-value: 0.0001321

Here, b0 = −301.1 and b1 = 7.19
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Residuals

The ith fitted value is ŷi = b0 + b1xi , the point on the line
above xi .
The ith residual is ei = yi − ŷi . This gives the vertical amount
that the line missed yi by.
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Residual sum of squares and se

SS(resid)=
∑n

i=1(yi − ŷi )
2 =

∑n
i=1 e

2
i .

(b0, b1) make SS(resid) as small as possible.

sy =
√

1
n−1

∑n
i=1(yi − ȳ)2 is sample standard deviation of the

Y ’s. Measures the “total variability” in the data.
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se , sy , and r 2

se =
√

1
n−2

∑n
i=1(yi − ŷi )2 =

√
SS(resid)/(n − 2) is “residual

standard deviation” of the Y s. Measures variability around
the regression line.

If se ≈ sy then the regression line isn’t doing anything!

If se < sy then the line is doing something.

r2 ≈ 1− s2
e
s2
y

is called the multiple R-squared, and is the

percentage of variability in Y explained by X through the
regression line.

R calls se the residual standard error.
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se is just average length of residuals

> sd(weight)

[1] 35.33766

se = 12.5 and sy = 35.3. r2 = 0.89 so 89% of the variability in
weight is explained by length.
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68%-95% rule for regression lines

Roughly 68% of observations are within se of the regression line
(shown above); 95% are within 2 se .
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12.4 The regression model

We assume the underlying model with Greek letters (as usual)

y = β0 + β1x + ε

For each subject i we see xi and yi = β0 + β1xi + εi .

β0 is the population intercept.

β1 is the population slope.

εi is the ith error, we assume these are N(0, σe).

We don’t know any of β0, β1, or σe .
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Visualizing the model

µy |x = β0 + β1x is mean response for everyone with covariate
x .
σe is constant variance. Variance doesn’t change with x .
Example 12.4.4, pretend we know that the mean weight µy |x
given height x is

µy |x = −145 + 4.25x and σe = 20.
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Weight vs. height
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Estimating β0, β1, and σε

b0 estimates β0.

b1 estimates β1.

se estimates σe .

Example 12.4.5. For the snake data, b0 = −301 estimates β0,
b1 = 7.19 estimates β1, and se = 12.5 estimates σe .

We estimate the the mean weight ŷ of snakes with length x as

ŷ = −301 + 7.19x
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Example 12.4.6 Arsenic in rice

If we believe the data follow a line, we can estimate the mean
for any x we want.

b0 = 197.17 estimates β0, b1 = 2.51 estimates β1, and
se = 37.30 estimates σe .

For straw silicon concentration of x = 33 g/kg we estimate a
mean arsenic level of

ŷ = 197.17−2.51(33) = 114.35 µgm/kg with se = 37.30 µgm/kg.
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Arsenic in rice at X = 33 g/kg

ŷ = 197.17− 2.51x

114.35 = 197.17− 2.51(33)
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12.5 Inference for β1

Often people want a 95% confidence interval for β1 and want
to test H0 : β1 = 0.

If we reject H0 : β1 = 0, then y is significantly linearly
assocatied with x . Same as testing H0 : ρ = 0.

A 95% confidence interval for β1 gives us a range for how the
mean changes when x is increased by one unit.

Everything comes from

b1 − β0

SEb1

∼ tn−2, SEb1 =
se

sx
√
n − 1

.

R automatically gives a P-value for testing H0 : β1 = 0.

Need to ask R for 95% confidence interval for β1.
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R code

> amph=c(0,0,0,0,0,0,0,0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0)

> cons=c(112.6,102.1,90.2,81.5,105.6,93.0,106.6,108.3,73.3,84.8,67.3,55.3,

+ 80.7,90.0,75.5,77.1,38.5,81.3,57.1,62.3,51.5,48.3,42.7,57.9)

> fit=lm(cons~amph)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.331 3.680 26.99 < 2e-16 ***

amph -9.007 1.140 -7.90 7.27e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> confint(fit)

2.5 % 97.5 %

(Intercept) 91.69979 106.962710

amph -11.37202 -6.642979

P-value for testing H0 : β1 = 0 vs. HA : β1 6= 0 is 0.0000000727,
we reject at the 5% level. We are 95% confidence that true mean
consumption is reduced by 6.6 to 11.4 g/kg for every mg/kg
increase in amphetamine dose.
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Multiple regression

Often there are more than one predictors we are interested in,
say we have two x1 and x2.

The model is easily extended to

y = β0 + β1x1 + β2x2 + ε

Example: Dwayne Portrait Studio is doing a sales analysis
based on data from n = 21 cities.

y = sales (thousands of dollars) for a city
x1 = number of people 16 years or younger (thousands)
x2 = per capita disposable income (thousands of dollars)
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The data

x1 x2 y x1 x2 y

68.5 16.7 174.4 45.2 16.8 164.4
91.3 18.2 244.2 47.8 16.3 154.6
46.9 17.3 181.6 66.1 18.2 207.5
49.5 15.9 152.8 52.0 17.2 163.2
48.9 16.6 145.4 38.4 16.0 137.2
87.9 18.3 241.9 72.8 17.1 191.1
88.4 17.4 232.0 42.9 15.8 145.3
52.5 17.8 161.1 85.7 18.4 209.7
41.3 16.5 146.4 51.7 16.3 144.0
89.6 18.1 232.6 82.7 19.1 224.1
52.3 16.0 166.5
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R code for multiple regression

> under16=c(68.5,45.2,91.3,47.8,46.9,66.1,49.5,52.0,48.9,38.4,87.9,72.8,88.4,42.9,52.5,

+ 85.7,41.3,51.7,89.6,82.7,52.3)

>

> income=c(16.7,16.8,18.2,16.3,17.3,18.2,15.9,17.2,16.6,16.0,18.3,17.1,17.4,15.8,17.8,

+ 18.4,16.5,16.3,18.1,19.1,16.0)

>

> sales=c(174.4,164.4,244.2,154.6,181.6,207.5,152.8,163.2,145.4,137.2,241.9,191.1,232.0,

+ 145.3,161.1,209.7,146.4,144.0,232.6,224.1,166.5)

> fit=lm(sales~under16+income)

> summary(fit)

Call:

lm(formula = sales ~ under16 + income)

Residuals:

Min 1Q Median 3Q Max

-18.4239 -6.2161 0.7449 9.4356 20.2151

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -68.8571 60.0170 -1.147 0.2663

under16 1.4546 0.2118 6.868 2e-06 ***

income 9.3655 4.0640 2.305 0.0333 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.01 on 18 degrees of freedom

Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075

F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10
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Interpretation...

The fitted regression surface is

sales = −68.857 + 1.455 (under 16) + 9.366 income.

For every unit increase (1000 people) in those under 16,
average sales go up 1.455 thousand, $1,455.

For every unit increase ($1000) in disposable income, average
sales go up 9.366 thousand, $9,366.

91.67% of the variability in sales is explained by those under
16 and disposable income.

σe is estimated to be 11.01.
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Regression homework

12.2.5, 12.2.7, 12.3.1, 12.3.3, 12.3.5, 12.3.7, 12.3.8. Use R
for all problems; i.e. don’t do anything by hand.

12.4.3, 12.4.6, 12.4.8, 12.4.9, 12.5.1, 12.5.3, 12.5.5,
12.5.9(a). Use R for all problems; don’t do anything by hand.
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