L21: Chapter 12: Linear regression

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

So far...

- One sample continuous data (Chapters 6 and 8).
- Two sample continuous data (Chapter 7).
- One sample categorical data (Chapter 9).
- Two sample categorical data (Chapter 10).
- More than two sample continuous data (Chapter 11).
- Now: continuous predictor X instead of group.

Two continuous variables

- Instead of relating an outcome Y to "group" (e.g. 1, 2, or 3), we will relate Y to another continuous variable X.
- First we will measure how linearly related Y and X are using the correlation.
- Then we will model Y vs. X using a line.
- The data arrive as n pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Each pair $\left(x_{i}, y_{i}\right)$ can be listed in a table and is a point on a scatterplot.

Example 12.1.1 Amphetamine and consumption

Amphetamines suppress appetite. A pharmacologist randomly allocated $n=24$ rats to three amphetamine dosage levels: $0,2.5$, and $5 \mathrm{mg} / \mathrm{kg}$. She measured the amount of food consumed ($\mathrm{gm} / \mathrm{kg}$) by each rat in the 3 hours following.

Table I2.I.I			Food consumption (Y) of rats $(\mathrm{gm} / \mathrm{kg})$
	$X=$ Dose of amphetamine $(\mathrm{mg} / \mathrm{kg})$		
	0	2.5	5.0
	112.6	73.3	38.5
	102.1	84.8	81.3
	90.2	67.3	57.1
	81.5	55.3	62.3
	105.6	80.7	51.5
	93.0	90.0	48.3
	106.6	75.5	42.7
	108.3	77.1	57.9
Mean	100.0	75.5	55.0
SD	10.7	10.7	13.3
No. of animals	8	8	8

Example 12.1.1 Amphetamine and consumption

How does Y change with X ? Linear? How strong is linear relationship?

Example 12.1.2 Arsenic in rice

Environmental pollutants can contaminate food via the growing soil. Naturally occurring silicon in rice may inhibit the absorption of some pollutants. Researchers measured Y, amount of arsenic in polished rice ($\mu \mathrm{g} / \mathrm{kg}$ rice), \& X, silicon concentration in the straw (g / kg straw), of $n=32$ rice plants.

Example 12.2.1 Length and weight of snakes

In a study of a free-living population of the snake Vipera bertis, researchers caught and measured nine adult females.

Table 12.2.1

	Length $X(\mathrm{~cm})$	Weight Y (g)
	60	136
	69	198
	66	194
	64	140
	54	93
	67	172
	59	116
	65	174
	63	145
Mean	63	152
SD	4.6	35.3

Example 12.2.1 Length and weight of snakes

How strong is linear relationship?

Figure 12.2.1 Body length and weight of nine snakes with fitted reoression line

12.2 The correlation coefficient r

$$
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) .
$$

- r measures the strength and direction (positive or negative) of how linearly related Y is with X.
- $-1 \leq r \leq 1$.
- If $r=1$ then Y increases with X according to a perfect line.
- If $r=-1$ then Y decreases with X according to a perfect line.
- If $r=0$ then X and Y are not linearly associated.
- The closer r is to 1 or -1 , the more the points lay on a straight line.

Examples of r for 14 different data sets

Population correlation ρ

- Just like \bar{y} estimates μ and s_{y} estimates σ, r estimates the unknown population correlation ρ.
- If $\rho=1$ or $\rho=-1$ then all points in the population lie on a line.
- Sometimes people want to test $H_{0}: \rho=0$ vs. $H_{A}: \rho \neq 0$, or they want a 95% confidence interval for ρ.
- These are easy to get in R with the cor.test (sample1, sample2) command.

R code for amphetamine data

```
> cons=c(112.6,102.1,90.2,81.5,105.6,93.0,106.6,108.3,73.3,84.8,67.3,55.3,
+ 80.7,90.0,75.5,77.1,38.5,81.3,57.1,62.3,51.5,48.3,42.7,57.9)
>amph=c(0,0,0,0,0,0,0,0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0)
> cor.test(amph,cons)
```

Pearson's product-moment correlation

```
data: amph and cons
```

$\mathrm{t}=-7.9003, \mathrm{df}=22, \mathrm{p}$-value $=7.265 \mathrm{e}-08$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.9379300-0.6989057
sample estimates:
cor
-0.859873
$r=-0.86$, a strong, negative relationship.
P-value $=0.000000073<0.05$ so reject $H_{0}: \rho=0$ at the 5% level.
There is a signficant, negative linear association between amphetamine intake and food consumption. We are 95% confident that the true population correlation is between -0.94 and -0.70 .

R code for snake data

```
> length=c(60,69,66,64,54,67,59,65,63)
> weight=c(136,198,194,140,93,172,116,174,145)
> cor.test(length,weight)
    Pearson's product-moment correlation
data: length and weight
t = 7.5459, df = 7, p-value = 0.0001321
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.7489030 0.9883703
sample estimates:
    cor
0.9436756
```

$r=0.94$, a strong, positive relationship. What else do we conclude?

Comments

- Order doesn't matter, either (X, Y) or (Y, X) gives the same correlation and conclusions. Correlation is "symmetric."
- Significant correlation, rejecting $H_{0}: \rho=0$ doesn't mean ρ is close to 1 or -1 ; it can be small, yet significant.
- Rejecting $H_{0}: \rho=0$ doesn't mean X causes Y or Y causes X, just that they are linearly associated.

12.3 Fitting a line to scatterplot data

We will fit the line

$$
Y=b_{0}+b_{1} X
$$

to the data pairs.

- b_{0} is the intercept, how high the line is on the Y-axis.
- b_{1} is the slope, how much the line changes when X is increase by one unit.
- The values for b_{0} and b_{1} we use gives the least squares line.
- These are the values that make $\sum_{i=1}^{n}\left[y_{i}-\left(b_{0}+b_{1} x_{i}\right)\right]^{2}$ as small as possible.
- They are

$$
b_{1}=r\left(\frac{s_{y}}{s_{x}}\right) \text { and } b_{0}=\bar{y}-b_{1} \bar{x}
$$

```
> fit=lm(cons~amph)
> plot(amph,cons)
> abline(fit)
> summary(fit)
Call:
lm(formula = cons ~ amph)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-21.512 & -7.031 & 1.528 & 7.448 & 27.006
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lllll} 
(Intercept) & 99.331 & 3.680 & \(26.99<2 e-16\) & \(* * *\) \\
& -9.007 & 1.140 & -7.90 & \(7.27 e-08 * * *\)
\end{tabular}
\begin{tabular}{llll} 
amph & -9.007 & 1.140 & -7.90 \\
\(7.27 e-08\) & \(* * *\)
\end{tabular}
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 11.4 on 22 degrees of freedom
Multiple R-squared: 0.7394, Adjusted R-squared: 0.7275
F-statistic: 62.41 on 1 and 22 DF, p-value: 7.265e-08
```

For now, just pluck out $b_{0}=99.331$ and $b_{1}=-9.007$

$$
\text { cons }=99.33-9.01 \mathrm{amph} .
$$

```
> fit=lm(weight~length)
> plot(length,weight)
> abline(fit)
> summary(fit)
Call:
lm(formula = weight ~ length)
Residuals:
    Min 1Q Median 3Q Max
-19.192 -7.233 2.849 5.727 20.424
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -301.0872 60.1885 -5.002 0.001561 **
length 7.1919 0.9531 7.546 0.000132 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 12.5 on 7 degrees of freedom Multiple R-squared: 0.8905, Adjusted R-squared: 0.8749 F-statistic: 56.94 on 1 and 7 DF, p-value: 0.0001321
```

Here, $b_{0}=-301.1$ and $b_{1}=7.19$

Residuals

- The i th fitted value is $\hat{y}_{i}=b_{0}+b_{1} x_{i}$, the point on the line above x_{i}.
- The i th residual is $e_{i}=y_{i}-\hat{y}_{i}$. This gives the vertical amount that the line missed y_{i} by.

Residual sum of squares and s_{e}

- $\operatorname{SS}($ resid $)=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n} e_{i}^{2}$.
- (b_{0}, b_{1}) make SS(resid) as small as possible.
- $s_{y}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}$ is sample standard deviation of the Y 's. Measures the "total variability" in the data.

s_{e}, s_{y}, and r^{2}

- $s_{e}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}=\sqrt{\mathrm{SS}(\text { resid }) /(n-2)}$ is "residual standard deviation" of the $Y \mathrm{~s}$. Measures variability around the regression line.
- If $s_{e} \approx s_{y}$ then the regression line isn't doing anything!
- If $s_{e}<s_{y}$ then the line is doing something.
- $r^{2} \approx 1-\frac{s_{e}^{2}}{s_{y}^{2}}$ is called the multiple R-squared, and is the percentage of variability in Y explained by X through the regression line.
- R calls s_{e} the residual standard error.

s_{e} is just average length of residuals

[1] 35.33766
$s_{e}=12.5$ and $s_{y}=35.3 . r^{2}=0.89$ so 89% of the variability in

$68 \%-95 \%$ rule for regression lines

Roughly 68% of observations are within s_{e} of the regression line (shown above); 95\% are within $2 s_{e}$.

12.4 The regression model

- We assume the underlying model with Greek letters (as usual)

$$
y=\beta_{0}+\beta_{1} x+\epsilon
$$

- For each subject i we see x_{i} and $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$.
- β_{0} is the population intercept.
- β_{1} is the population slope.
- ϵ_{i} is the i th error, we assume these are $N\left(0, \sigma_{e}\right)$.
- We don't know any of β_{0}, β_{1}, or σ_{e}.

Visualizing the model

- $\mu_{y \mid x}=\beta_{0}+\beta_{1} x$ is mean response for everyone with covariate X.
- σ_{e} is constant variance. Variance doesn't change with x.
- Example 12.4.4, pretend we know that the mean weight $\mu_{y \mid x}$ given height x is

$$
\mu_{y \mid x}=-145+4.25 x \text { and } \sigma_{e}=20 .
$$

Table 12.4.1	Conditional means and SDs of weight given height in a population of young men	
Height (in) X	Mean weight (lb) $\mu_{Y \mid X}$	Standard deviation of weights (lb) $\sigma_{Y \mid X}$
64	127	20
68	144	20
72	161	20
76	178	20

[^0]
Weight vs. height

Estimating β_{0}, β_{1}, and σ_{ϵ}

- b_{0} estimates β_{0}.
- b_{1} estimates β_{1}.
- s_{e} estimates σ_{e}.
- Example 12.4.5. For the snake data, $b_{0}=-301$ estimates β_{0}, $b_{1}=7.19$ estimates β_{1}, and $s_{e}=12.5$ estimates σ_{e}.
- We estimate the the mean weight \hat{y} of snakes with length x as

$$
\hat{y}=-301+7.19 x
$$

Example 12.4.6 Arsenic in rice

- If we believe the data follow a line, we can estimate the mean for any x we want.
- $b_{0}=197.17$ estimates $\beta_{0}, b_{1}=2.51$ estimates β_{1}, and $s_{e}=37.30$ estimates σ_{e}.
- For straw silicon concentration of $x=33 \mathrm{~g} / \mathrm{kg}$ we estimate a mean arsenic level of
$\hat{y}=197.17-2.51(33)=114.35 \mu \mathrm{gm} / \mathrm{kg}$ with $s_{e}=37.30 \mu \mathrm{gm} / \mathrm{kg}$.

Arsenic in rice at $X=33 \mathrm{~g} / \mathrm{kg}$

$$
\begin{gathered}
\hat{y}=197.17-2.51 x \\
114.35=197.17-2.51(33)
\end{gathered}
$$

12.5 Inference for β_{1}

- Often people want a 95% confidence interval for β_{1} and want to test $H_{0}: \beta_{1}=0$.
- If we reject $H_{0}: \beta_{1}=0$, then y is significantly linearly assocatied with x. Same as testing $H_{0}: \rho=0$.
- A 95% confidence interval for β_{1} gives us a range for how the mean changes when x is increased by one unit.
- Everything comes from

$$
\frac{b_{1}-\beta_{0}}{S E_{b_{1}}} \sim t_{n-2}, \quad S E_{b_{1}}=\frac{s_{e}}{s_{x} \sqrt{n-1}} .
$$

- R automatically gives a P -value for testing $H_{0}: \beta_{1}=0$.
- Need to ask R for 95% confidence interval for β_{1}.

R code

```
>amph=c(0,0,0,0,0,0,0,0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0)
> cons=c(112.6,102.1,90.2,81.5,105.6,93.0,106.6,108.3,73.3,84.8,67.3,55.3,
+ 80.7,90.0,75.5,77.1,38.5,81.3,57.1,62.3,51.5,48.3,42.7,57.9)
> fit=lm(cons ~amph)
> summary(fit)
Coefficients:
            Estimate Std. Error t value Pr (>|t|)
\begin{tabular}{llllll} 
(Intercept) & 99.331 & 3.680 & \(26.99<2 e-16 * * *\) \\
amph & -9.007 & 1.140 & -7.90 & \(7.27 \mathrm{e}-08 * * *\)
\end{tabular}
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> confint(fit)
    2.5 % 97.5 %
(Intercept) 91.69979 106.962710
amph -11.37202 -6.642979
```

P -value for testing $H_{0}: \beta_{1}=0$ vs. $H_{A}: \beta_{1} \neq 0$ is 0.0000000727 , we reject at the 5% level. We are 95% confidence that true mean consumption is reduced by 6.6 to $11.4 \mathrm{~g} / \mathrm{kg}$ for every $\mathrm{mg} / \mathrm{kg}$ increase in amphetamine dose.

Multiple regression

- Often there are more than one predictors we are interested in, say we have two x_{1} and x_{2}.
- The model is easily extended to

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

- Example: Dwayne Portrait Studio is doing a sales analysis based on data from $n=21$ cities.
- $y=$ sales (thousands of dollars) for a city
- $x_{1}=$ number of people 16 years or younger (thousands)
- $x_{2}=$ per capita disposable income (thousands of dollars)

x_{1}	x_{2}	y	x_{1}	x_{2}	y
68.5	16.7	174.4	45.2	16.8	164.4
91.3	18.2	244.2	47.8	16.3	154.6
46.9	17.3	181.6	66.1	18.2	207.5
49.5	15.9	152.8	52.0	17.2	163.2
48.9	16.6	145.4	38.4	16.0	137.2
87.9	18.3	241.9	72.8	17.1	191.1
88.4	17.4	232.0	42.9	15.8	145.3
52.5	17.8	161.1	85.7	18.4	209.7
41.3	16.5	146.4	51.7	16.3	144.0
89.6	18.1	232.6	82.7	19.1	224.1
52.3	16.0	166.5			

12.1 Introduction

R code for multiple regression

```
> under16=c(68.5,45.2,91.3,47.8,46.9,66.1,49.5,52.0,48.9,38.4,87.9,72.8,88.4,42.9,52.5,
+ 85.7,41.3,51.7,89.6,82.7,52.3)
>
> income=c(16.7,16.8,18.2,16.3,17.3,18.2,15.9,17.2,16.6,16.0,18.3,17.1,17.4,15.8,17.8,
    18.4,16.5,16.3,18.1,19.1,16.0)
sales=c(174.4,164.4,244.2,154.6,181.6,207.5,152.8,163.2,145.4,137.2,241.9,191.1,232.0,
145.3,161.1,209.7,146.4,144.0,232.6,224.1,166.5)
fit=lm(sales~under16+income)
summary(fit)
Call:
lm(formula = sales ~ under16 + income)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-18.4239 & -6.2161 & 0.7449 & 9.4356 & 20.2151
\end{tabular}
```


Coefficients:

```
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
\begin{tabular}{lrrrr} 
(Intercept) & -68.8571 & 60.0170 & -1.147 & 0.2663 \\
under16 & 1.4546 & 0.2118 & 6.868 & \(2 \mathrm{e}-06 \quad * * *\) \\
income & 9.3655 & 4.0640 & 2.305 & \(0.0333^{*}\)
\end{tabular}
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . \(0.1 \quad 1\)
```

Residual standard error: 11.01 on 18 degrees of freedom
Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075

Interpretation...

- The fitted regression surface is

$$
\text { sales }=-68.857+1.455(\text { under } 16)+9.366 \text { income }
$$

- For every unit increase (1000 people) in those under 16, average sales go up 1.455 thousand, $\$ 1,455$.
- For every unit increase ($\$ 1000$) in disposable income, average sales go up 9.366 thousand, \$9,366.
- 91.67% of the variability in sales is explained by those under 16 and disposable income.
- σ_{e} is estimated to be 11.01.

Regression homework

- 12.2.5, 12.2.7, 12.3.1, 12.3.3, 12.3.5, 12.3.7, 12.3.8. Use R for all problems; i.e. don't do anything by hand.
- 12.4.3, 12.4.6, 12.4.8, 12.4.9, 12.5.1, 12.5.3, 12.5.5, 12.5.9(a). Use R for all problems; don't do anything by hand.

[^0]: "Note that all values of $\sigma_{Y \mid X}$ are the same; they equal $\sigma_{\varepsilon}=20$.

