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Logistic regression

So far, we have learnt how to find a good simple linear
regression model to fit the data, whose reponse variable Y is
quantitative, e.g. continuous numbers.

Sometimes we wish to predict a categorical response Y using
a quantitive variable X .

Consider Y to be binary (0 = failure, 1 = success)

Logistic regression is used to model how the probability of
success (p) depends on X .

Rather than normally distributed data we now have binomially
distributed data.
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Example: O-Ring Failure

The Space Shuttle Challenger disaster occurred on January 28,
1986, when the NASA space shuttle orbiter Challenger broke apart
73 seconds into its flight, leading to the deaths of its seven crew
members. Disintegration of the vehicle began after an O-Ring seal
in its right solid rocket booster failed at liftoff.
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Example: O-Ring Failure

O-Ring seal failed becuase the launch temperature is lower than
expected. Therefore, it is critical to carefully test the reliability of
O-Ring under different circumstance. Here we have 24 data points,
including the lauching temperature and whether at least one
O-Ring failure has occured.

Table: My caption

O-Ring Failure Temperature
1 52
1 56
1 57
0 63
0 66
... ...
0 81
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Logit Function

We want to model and predict the probability to success

Pr{success} = Pr{Y = 1} = p

If we still use the simple linar regression method to regress Y ,
the results might not be interpretable when the predicted
value of Y is greater than 1 or less than 0.

Logit function is frequently used in mathematics and
statistics. It is defined as

logit(p) = log

(
p

1− p

)
, 0 < p < 1

The reason it is popular is that it can transfer a random
variable from (0, 1) to the entire real line.

Note that when p is close to 0, logit(p) is close to −∞, and
when p is close to 1, logit(p) is close to ∞.
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Shape of the Logit Function
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Logistic Regression Model

Using the property of the logit function, the logistic regression
model is that

log

(
pi

1− pi

)
= β0 + β1xi

where pi is the success probability for ith unit, xi is the ith
predictor, β0 and β1 are parameters.

Solving for pi , this gives

pi =
eβ0+β1xi

1 + eβ0+β1xi
=

1

1 + e−(β0+β1xi )

Remark: logistic regression is NOT a model simply transfer Yi

with the logit function. The logit transformation is conducted
with respect to pi , the probability for i to success.

Remark: p
1−p is odds, so that the logit function, log

(
p

1−p

)
, is

the log odds.
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R code for O-Ring Failure

# input data

oring <- c(1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0)

temperature <- c(53, 56, 57, 63, 66, 67, 67, 67, 68, 69, 70,

70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 80, 81)

# fit the logistic regression model

fit <- glm(oring ~ temperature, family=binomial)

summary(fit)

# R output

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 10.87535 5.70291 1.907 0.0565 .

temperature -0.17132 0.08344 -2.053 0.0400 *
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Example: O-Ring Failure

The fitted logistic regression model is

log

(
pi

1− pi

)
= 10.875− 0.171xi

e β̂1 = e−0.171 = 0.843, so every 1 degree of increase in
temperature reduces the odds of failure by 0.843.

It is equivalent to

pi =
1

1 + e−(10.875−0.171xi )

Remark: in testing H0 : β1 = 0 v.s. Ha : β1 6= 0, the p-value is
0.04, indicating that the linear relationship between

log
(

pi
1−pi

)
and xi is significant.
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Example: O-Ring Failure

The actual temperature at the Challenger launch was 31 F.

pi =
1

1 + e−(10.875−0.171(31))
= 0.996

The probability that at least one O-Ring failure is 99.6%! It is
almost certainly going to happen!

It is interesting to note that all of these data were available
prior to launch. However, engineers were unable to effectively
analyze the data and use them to provide a convincing
argument against launching Challenger to NASA managers.
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