STAT 5092017 Summer HW17

Instructor: Shiwen Shen

Lecture Day: June 13

1. Matrix A and vector B is defined respectively by

$$
A=\left(\begin{array}{cc}
3 & 7 \\
12 & -2
\end{array}\right), B=\binom{4}{9}
$$

(a) Calculate $A B$
(b) Calculate A^{T}
(c) Calculate $A^{T} B$
(d) Calculate $B^{T} A^{T}$
2. In gala dataset, suppose we want to form a multiple linear regression model using Species as response, and all others as predictors (independent variables). Represent the model using matrix notation $\mathbf{Y}, \mathbf{X}, \beta$, and ϵ, and mark the dimension for each vector and matrix. (Hint: Slides page 10)
3. There are two matrices A and B, defined by

$$
A=\left(\begin{array}{cc}
2 & 1 \\
4 & -2
\end{array}\right), B=\left(\begin{array}{cc}
0.25 & 0.125 \\
0.5 & -0.25
\end{array}\right)
$$

(a) Calculate $A B$
(b) Calculate $B A$
(c) Do you find that the two results in (a) and (b) are the same? The result is called identity matrix. For any matrix M, the inverse matrix of M can be wrote as M^{-1}, and by definition of inverse matrix, $M M^{-1}=M^{-1} M=I$, where I is the identity matrix. Using the previous results to find A^{-1} and B^{-1}.

