STAT 5092017 Summer HW2

Instructor: Shiwen Shen

Lecture Day: May 9

1. A and B are two events in the sample space S. Assume $P(A)=0.25, P(B)=0.4$, and $P(A \cup B)=0.6$. Calculate the following probabilities. Clearly state what probability rules you are using. (Hint: You can draw Venn Diagrams to help you visualize the relationship among two events and the sample space.)
(a) $P(\bar{A})$
(b) $P(A \cap B)$
(c) $P(A \cap \bar{B})$
(d) $P(\bar{A} \cup \bar{B})$
(e) $P(B \mid A)$
(f) Are A and B independent? Why or why not?
2. Transactions to a computer database are either new items or changes to previous items. The addition of an item can be completed in less than 100 milliseconds 90% of the time, but only 20% of changes to a previous item can be completed in less than this time. If 30% of transactions are changes, what is the probability that a transaction can be completed in less than 100 milliseconds?
3. The probability that a randomly chosen automobile will need an oil change is 0.25 ; the probability that it needs a new oil filter is 0.40 ; and the probability that both the oil and filter need changing is 0.14 .
(a) What is the probability that a car will need an oil change or new filter?
(b) If the oil had to be changed, what is the probability that a new oil filter is needed?
(c) If a new oil filter is needed, what is the probability that the oil has to be changed?
(d) Are oil filter and needing an oil change independent of one another. Why?
4. The use of plant appearance in prospecting for one deposits is called geobotanical prospecting. One indicator of copper is a small mint with a mauve-colored ower. Suppose that, for a certain region, there is a 30 percent chance that the soil has a high copper content and a 23 percent chance that the mint will be present there. In addition, we know that if the copper content is high, there is a 70 percent chance that the mint will be present. Let A denote the event that a soil sample has high copper content, and let B denote the event that the mint is present.
(a) Find the probability that the copper content is not high.
(b) Find the probability that the copper content will be high and the mint will be present.
(c) Find the probability that the copper content will be high given that the mint is present.
(d) Are the events A and B independent? Why?
5. DeMorgan's Law states: if A and B are two events in the same sample space, then

$$
\overline{A \cup B}=\bar{A} \cap \bar{B},
$$

and

$$
\overline{A \cap B}=\bar{A} \cup \bar{B} .
$$

We have discussed the proof of the first equation in class, try to prove the second one using the similar type of argument.

