STAT 5092017 Summer HW6

Instructor: Shiwen Shen

Lecture Day: May 16

1. One day Shiwen is very hungry and Jeff gives Shiwen a big box of chocolates. When Shiwen starts to eat, Jeff says 5 percent of chocolates are made with Carolina Reaper. Shiwen is too hungry to stop eating.
(a) Let X denote the number of chocolates Shiwen eats until the first one made with Carolina Reaper. Find $P(X>3)$. Interpret what this probability means in words.
(b) In part (a), calculate $P(X>5 \mid X>2)$. Interpret what this probability means in words. (Hint: use conditional probability formula.)
(c) Compare $P(X>3)$ and $P(X>5 \mid X>2)$, which one is larger? Can you explain the reason?
(d) Suppose on that day Shiwen eats 30 pieces of chocolates. Find the probability that no more than two of those chocolates are mode with Carolina Reaper.
2. A recent geological study in western Texas indicates that exploratory oil wells strike with probability 0.20 . (i.e., oil is found).
(a) Treating each well as a "trial", suppose that drilling wells in this region obeys the three Bernoulli trial assumptions. State what this would imply (i.e., describe the three assumptions in the background of the problem).
(b) What is the probability that the 1st successful well is found on the 2th well drilled?
(c) What is the probability that the 2th successful well is found on the 4th well drilled?
(d) What is the probability that it will take more than 2 wells to find the 1nd successful well?
3. Jeff gives Shiwen a box of 100 pieces of chocolate, in which 5 are made with Carolina Reaper.
(a) Shiwen randomly eats 10 pieces of chocolate, what is the probability that none of them is made with Carolina Reaper?
(b) Shiwen randomly eats 10 pieces of chocolate, what is the probability that at most 2 pieces of chocolates are made with Carolina Reaper?
4. Let Y be the number of calls received per day by the USC Campus Police. Suppose that Y has a Poisson distribution with $\lambda=6.5$.
(a) What is the probability that on a given day there are exactly 5 calls? at least 5 calls? at most 5 calls?
(b) What is the mean of Y ? Interpret it using the context of the problem.
(c) Suppose that the daily cost (in dollars) to respond to Y calls is given by

$$
g(Y)=150+100 Y+5 Y^{2}
$$

Find the expected daily cost. (Hint: $\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}$.)
(d) Suppose that in a given week, there are 30 calls received. Twelve of the calls involved illegal consumption of alcohol and 18 did not. If administration picks 5 cases (calls) to review at random, what is the probability that at least 4 of these cases will involve illegal consumption of alcohol?

