STAT 5092017 Summer HW9

Instructor: Shiwen Shen

Lecture Day: May 23

1. Suppose Y is a normal random variable with a mean of 37 and a standard deviation of 4.25 . Apply Empirical rule, calculate the following probability.
(a) Approximately what proportion of the distribution is less than 32.75 .
(b) Approximately what proportion of the distribution is greater than 49.75
(c) Approximately what proportion of the distribution lies between 32.75 and 49.75.
2. The weight of a ream of paper follows a normal distribution with a mean of 2.8 pounds and a standard deviation of 0.8 pounds. Use R to calculate the following questions
(a) Approximately what proportion of the reams weigh less than 2.2 pounds?
(b) What is the probability that a randomly chosen ream will weigh less than 1.234 pounds?
(c) What is the probability that a randomly chosen ream will weigh between 1.5 and 3.5 pounds?
(d) If the specification calls for the reams to weigh 2.8 ± 1.6 pounds, use Empirical rule to decide about what proportion of the reams are out-of-specification?
3. Suppose X follows normal distribution with a mean of 10 and a standard deviation of 2 . Use standardizing method and standard normal table to answer (a), (b), and (c):
(a) Calculate $P(X<8.88)$.
(b) Calculate $P(X<8.88 \mid x<12.42)$.
(c) Find out the value such that 33% of the realizations of X is more than this value.
(d) Use R to calculate the value in (c).
4. One of the motivation to study normal distribution is the Central Limit Theorem. In this problem, we are going to use R to visualize this important phenomenon.
(a) Suppose X is a Weibull random variable with shape parameter $\beta=1.5$ and scale parameter $\delta=0.5$. We want to have a look of of the shape of the pdf of X. In R , we first use rweibull (n, β, δ) function to simulate n realizations of X, then use hist() function to plot it out using histogram. Let $n=5000$. Run the following R code and show me the plot. What's the shape of the pdf of X ? Is it bell-shaped?
x5000 <- rweibull (5000, 1.5, 0.5)
hist (x5000, freq=F, main="Simulated pdf for x")
(b) The Central Limit Theorem says the average value of realizations of X follows normal distribution when the number of realizations is large. In R, we use mean() function to calculate the average value of a sequence of numbers. For example,
```
> k <- c(1,2,6)
mean(k)
[1] 3
```

The average value of $\{1,2,6\}$ is $\frac{1+2+6}{3}=3$. Now, let's generate 1000 realizations of X and find its average:

```
> x1000 <- rweibull(1000, 1.5, 0.5)
> mean(x1000)
[1] 0.4607919
```

I claim 0.46 is one observation of the random variable "average value of 1000 realizations of X ". Because the values of $1000 X$'s are random, so the average of them is also random! Define random variable

$$
Y=\text { average value of } 1000 \text { realizations of } X
$$

Let's see what is the shape of the pdf of Y by simulation. Run the following R code and show me the plot. What is the shape of the pdf of Y ? It is bell-shaped? Can you see why the Central Limit Theorem is ture?

```
y <- rep(0, 5000)
for(i in 1:5000){
    x <- rweibull(1000, 1.5, 0.5)
    y[i] <- mean(x)
}
hist(y, freq=F, main="Simulated pdf for y")
```

(c) Repeat (a) and (b) again by assuming $X \sim$ Poisson(1). You need to print out two histograms and illustrate the shape of these two histograms. (Hint: the R command to generate 5000 Poisson random variables with parameter 1 is rpois(5000, 1).)

