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Abstract

A hierarchical Bayesian approach is developed to estimate parameters at both the
individual and the population level in a HIV model, with the implementation carried
out by Markov Chain Monte Carlo (MCMC) techniques. Sample numerical simulations
and statistical results are provided to demonstrate the feasibility of this approach.
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1 Introduction

Human immunodeficiency virus (HIV) is a retrovirus that targets the CD4+ T-cells in the

immune system. Once the virus has taken control of a sufficiently large proportion of CD4+

T-cells, an individual is said to have AIDS. While there is still no cure or vaccine for AIDS,

significant progress has been made in the treatment of HIV infected patients. Currently the

most prevalent treatment strategy for acutely HIV infected patients is highly anti-retroviral

therapy (HAART) which uses two or more drugs. Typically these drug cocktails consist of

one or more reverse transcriptase inhibitors (RTI) as well as a protease inhibitor (PI). It was

reported in [22] that this multi-drug regimen can lead to the rapid decay of the viral load

in a relatively short term. However, it was also reported in [17] that this rapid decay can

sometimes be followed by a resurgence of virus within a few months. The resurgence may

be caused by two main factors in the long-term use of drugs. One is poor patient adherence

which is promoted by high drug cost and/or grave pharmaceutical side effects. The other is

increasing drug resistance due to virus mutations. Hence, instead of adopting a continuous



combination therapy strategy, a number of researchers have suggested that one needs to

seek a strategy that can decrease the negative side effects and medication burden placed

on the patients and perhaps slow mutation rates while maintaining some control over HIV

replication through an individual’s immune response.

A set schedule for doing this involving on-off treatment segments is called a structured

treatment interruption (STI). STI therapy has received a great deal of attention since a

patient known as the “Berlin patient” in [19] was eventually successful in removing himself

from medication permanently and still maintain HIV replication control after starting and

stopping treatment several times. Since then a number of research efforts have focused on

how to stimulate the immune system while maintaining control over HIV replication. One

such study (see [27]) reported that a sustained HIV-specific Cytotoxic T Lymphocyte (CTL)

response was increased during one, two, and three periods of treatment interruption. It was

observed that control of the viremia in all test patients occurred after the CTL response was

established. These examples document the importance of including the immune response in

any model of HIV infection when studying STI. We should also note that realistically the

HIV-specific immune response may be either strong or almost nonexistent as one considers

different patients.

There have been a large number of mathematical models proposed by researchers at both

the cellular level and the population level in the last decade (for example, see [1, 7, 16, 20,

22, 23, 24, 28, 29]) that attempt to understand the pathogenesis of HIV infection or similar

biological processes in antiviral activities. While a number of these models have not included

the immune response system in an effector role, recent efforts related to STI (e.g., [7, 28])

often include such a compartment (see [1] for discussions of such models). More impor-

tantly to our efforts here, even simple simulation studies with most of these models require

some type of parameter estimation procedure since almost all models contain some param-

eters which can not be measured directly. In this paper we investigate an inverse problem

methodology to estimate not only parameter values but also to provide some measures of the

uncertainty (i.e., reliability or lack thereof) associated with the parameter values and their

estimation. This will be done in the context of patients undergoing STI therapies as well as

patients who are untreated (i.e., HIV progression without HAART). The model we chose is

sufficiently complex so as to demonstrate applicability of the methodology for a wide class

of HIV models.

In order to capture a number of the desired features noted above that are important in
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STI therapies, the authors in [1] proposed and investigated the following model:

Type 1 target: Ṫ1 = λ1 − d1T1 − (1− ε)k1V T1

Type 2 target: Ṫ2 = λ2 − d2T2 − (1− fε)k2V T2

Type 1 infected: Ṫ ∗
1 = (1− ε)k1V T1 − δT ∗

1 −m1ET ∗
1

Type 2 infected: Ṫ ∗
2 = (1− fε)k2V T2 − δT ∗

2 −m2ET ∗
2

Free virions: V̇ = NT δ(T ∗
1 + T ∗

2 )− cV − [(1− ε)ρ1k1T1 + (1− fε)ρ2k2T2]V

Immune effectors: Ė = λE +
bE(T ∗

1 + T ∗
2 )

(T ∗
1 + T ∗

2 ) + Kb

E − dE(T ∗
1 + T ∗

2 )

(T ∗
1 + T ∗

2 ) + Kd

E − δEE,

(1.1)

with specified initial values for T1, T2, T ∗
1 , T ∗

2 , V and E at time t = t0. Here two co-

circulating populations of target cells, potentially representing CD4+ T-lymphocytes (T1)

and microphages (T2), are considered in the model. The parameter λi denotes the rate at

which new Ti cells are created from sources within the body, di denotes the death rate of

Ti cells, ki is the infection rate of Ti cells infected by the virus, mi represents the immune-

induced clearance rate for Ti and δ is the death rate of the infected T cells. The drug efficacy

parameter ε models a reverse transcriptase inhibitor (RTI)that blocks new infections and is

potentially more effective in the Type 1 populations than in the Type 2 populations, where

the efficacy is fε with f ∈ [0, 1]. The parameters ρ1 and ρ2 represent the average number

of virions infecting a Type 1 cell and a Type 2 cell, respectively. Moreover, λE denotes the

immune effector production rate, δE denotes the natural death rate for immune effectors,

bE is the maximum birth rate for immune effectors, and dE is the maximum death rate

for immune effectors. Finally, Kb represents the saturation constant for immune effector

birth, and Kd represents the saturation constant for immune effector death. The reader may

consult [1] for a more detailed discussion of this model and its qualitative and quantitative

features.

For our study of the proposed estimation methodology, we adopt model (1.1) as a rea-

sonable approximation to the dynamics for any specific individual, but hypothesis that the

dynamics may vary across subjects. In fact, clinical data clearly exhibits a great deal of

variability among patients and their response to therapy, which may be attributed to in-

dividual mechanistic variability in both viral transcription and production, and in immune

response. As illustrated in [2], if the infectivity rates k1 and k2 in (1.1) are changed, stable

equilibria associated with the parameters may be changed from a dangerously high viral

load related equilibrium point to one corresponding to levels of low viral load. Hence, the

dynamics (and thus the response to therapy) for different individuals may differ because

of the difference of several crucial parameters. With this in mind, an approach employing

hierarchical nonlinear mixed-effects (NLME) models [9] appears to be reasonable for mod-

elling HIV dynamics. While hierarchical NLME models have enjoyed wide spread use for

some time with physiologically based pharmacokinetic (PBPK) studies (see, e.g., [9, 21]
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and the references therein), use of such models in HIV pathogenesis studies is more recent

[14, 15, 16, 24, 29, 30]. Early uses [14, 15, 30] involved simplification of the models to obtain

closed form solutions for viral loads. With the recent progress in MCMC, it is possible to

entertain much more complex mathematical models. In particular, the authors of [24] con-

sider a system of nonlinear differential equations with constant drug efficacy but use only

short-term viral load data to estimate parameters. In [30], the authors consider a system

of nonlinear differential equations with variability in drug resistance and adherence in the

presence of antiretroviral therapy. But to our knowledge, none of these previous efforts have

included the immune response effector in the HIV model.

In this paper, we report on our investigation of how MCMC based methods will perform

on estimation in complex models for HIV progression in untreated patients as well as in

patients undergoing STI therapy. Our studies were designed to assist in efforts with clin-

ical data sets which pose several specific challenges. In particular, one needs to estimate

parameters from limited amounts of data differing from patient to patient both in duration

and sampling frequency. Moreover, the typical HIV data set involves partial observations,

measurements from combined compartments, and heavily censored viral load measurements.

We treat for, to our knowledge, the first time such data sets for complex models. We will

use a Bayesian approach to estimate the parameters at both individual and population levels

in a framework of a hierarchical NLME model along the lines described in [9]. Our goal is

to develop methodology to assist in understanding the distribution of the individual-specific

parameters across the population of patients with the eventual aim of using the knowledge

to predict the future patterns of the response at each individual level. Ideally, this will al-

low one to select different individual treatment interruption therapy regimes and to develop

“best” performance strategies for the individual, where the performance is measured by some

specific cost criterion (see [2] for related work).

The paper is organized as follows. In section 2, a hierarchical Bayesian approach is

adopted to estimate the dynamic system parameters for the model (1.1), with the imple-

mentation carried out using MCMC techniques. In sections 3 and 4, some simulation studies

are presented to assess the performance of and illustrate use of the proposed methodologies

in the cases that there is no treatment and that one adopts an STI strategy for the patient

treatment, respectively. Finally, in section 5, some conclusions and remarks are made.

Before proceeding with our presentation, we note that in our considerations here the

methodology investigated is parametric in nature (i.e., we assume functional parameterized

forms for various prior distributions) as opposed to the nonparametric approaches developed

and discussed in [2, 3, 4, 5, 6].
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2 A Hierarchical Bayesian Approach for Parameter Es-

timation

We formulate our estimation problems in the context of typical HIV clinical data sets such

as those described in [1]. These data sets include individual longitudinal measurements for a

population of patients with the number of observations varying from individual to individual.

As mentioned above, the viral load measurements (V ) are censored (above and below)due to

assay limitations. Moreover, typical data sets usually include CD4+T cell counts (essentially

T1 or T1 + T ∗
1 in the model (1.1)) and CD8 cell counts as a rough indication of the immune

effector E levels (see [1]).

Suppose that we have M patients and the number of measurements on the ith subject

is ni. Let θ̃i ∈ Rp denote the individual-specific parameters for subject i. We will use

θi = ln(θ̃i) as parameters in all subsequent discussions and computations. As noted, we

usually have measurements of the viral load (V ), the uninfected Type 1 cell (T1) (or actually

the sum (T1 + T ∗
1 ) of the uninfected and infected Type 1 cell), and the immune response

(E) and hence we only consider the observations on these three components in our inverse

problem calculations. For notational convenience, let F1(tij, θi) = log(V (tij, θi)), F2(tij, θi) =

log(T1(tij, θi)) (or in some cases = log(T1(tij, θi) + T ∗
1 (tij, θi))), F3(tij, θi) = log(E(tij, θi)),

and F (tij, θi) = (F1(tij, θi), F2(tij, θi), F3(tij, θi)), where V (tij, θi), T1(tij, θi), T ∗
1 (tij, θi) and

E(tij, θi) denote the numerical solutions of V (t), T1(t), T ∗
1 (t) and E(t), respectively, in

(1.1) for the ith subject at time tij. Let Ỹij1, Ỹij2 and Ỹij3 denote the observations for

V , T1 (or T1 + T ∗
1 ), and E, respectively, at time points tij for subject i, and let Ỹij =(

Ỹij1, Ỹij2, Ỹij3

)
. A reasonable assumption for the observations is that Yij = F (tij, θi) +

εij, where Yij = (log(Ỹij1), log(Ỹij2), log(Ỹij3)) with the three components assumed to be

independent, and εij = (εij1, εij2, εij3) is assumed to be normal with mean zero and an

unknown diagonal covariance matrix Σe (i.e., the Ỹijk are lognormal). However, in our

clinical data, the measurements of the viral load data are censored, i.e., they are confined

to a certain range [ΥL, ΥR], because the assay can accurately detect only down to the ΥL

limit, and the same for the upper limit ΥR. Therefore, instead of assuming a normal error

for Yij1, one should assume a truncated normal error model for Yij1 with a censor window

[ΥL, ΥR]. Hence, the intra-individual error model summarizing the first stage of hierarchical

model is given by
Yij1 ∼ N[ΥL, ΥR](F1(tij, θi), Σe11)
Yij2 ∼ N (F2(tij, θi), Σe22)
Yij3 ∼ N (F3(tij, θi), Σe33)

(2.1)

where N[ΥL, ΥR] denotes a truncated normal distribution with left limits ΥL and right limits

ΥR, and N denotes a normal distribution. We will use this notation throughout the paper.
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Having noted the censored aspects of viral load data which motivates special distribu-

tional assumptions, we proceed to formulate a hierarchical Bayesian estimation problem [9]

with standard distributional assumptions except where appropriate modifications are neces-

sary.

After one establishes the individual level model, one seeks a population level understand-

ing of HIV progression with and without therapy. The NLME Bayesian approach allows one

to do this while also enhancing the parameter estimation procedure on each individual by

borrowing information from other individuals in the population. Thus, one views θ1, · · · , θM

as M independent realizations of a population level random vector that follows a certain

probability distribution. In our case, we assume a truncated normal distribution N[γL, γR]

with unknown mean γ and unknown variance Σ. This is based on an assumption of prior

information (physical and/or biological) about the upper γR and lower γL bounds on com-

ponents of the rate parameters in the p-dimensional vector θ. Hence, the inter-individual

variation model summarizing the second stage of the hierarchical model is assumed to be

given by

θi ∼ N[γL,γR](γ, Σ), i = 1, 2, . . . , M. (2.2)

Thus, under the current model assumptions, the parameters we are interested in estimat-

ing are θi (i = 1, 2, . . . ,M), γ, Σ and Σe. In order to do this, a third stage for the hyperprior

distribution is required at which prior distributions are specified for the parameters defin-

ing the second stage distributional form and the intra-individual variance parameters. We

therefore assume:

• Deii ∼ G(αi, βi), i = 1, 2, 3, where Deii is the diagonal element of De and the off-

diagonals of De are 0, and the hyperparameters αi, βi are known.

• γ ∼ N[γL,γR](η, Λ−1), where γL and γR are known constants, and the hyperparameters

η, Λ are also known.

• D ∼ Wp(ν, Ω
−1), where the hyperparameters ν and Ω are known.

Here D and De denote the corresponding precision matrices of Σ and Σe, respectively,

i.e. D = Σ−1 and De = Σ−1
e . The mutually independent Gamma (G), truncated Nor-

mal (N[γL,γR]) and Wishart (W) prior distributions are chosen in accordance with standard

practice of using conjugate priors (see, for example the discussions in [9], p.71–; p.219– ).

Noting that Yij1 may be left censored or right censored, we use an indicator parameter

cij to denote whether or not a measurement Yij1 is censored. Let cij = 1 denote a right

censored measurement, cij = −1 denote a left censored measurement and cij = 0 denote an
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uncensored measurement. Using these indicator parameters and recalling Bayes’ Theorem,

we assume the posterior distribution has the following form:

π(De, D, γ, θ1, θ2, . . . , θM |Data)

∝
3∏

l=1

g(Dell; αl, βl)× w(D; ν, Ω−1)× ϕ[γL,γR](γ; η, Λ−1)

×
M∏
i=1

ϕ[γL,γR](θi; γ, D−1)×
M∏
i=1

ni∏
j=1,cij=0

ϕ(Yij; F (tij, ζi, θi), De−1)

×
M∏
i=1

ni∏
j=1,cij=1

∫

Yij1≥ΥR

ϕ(Yij; F (tij, ζi, θi), De−1)dYij1

×
M∏
i=1

ni∏
j=1,cij=−1

∫

Yij1≤ΥL

ϕ(Yij; F (tij, ζi, θi), De−1)dYij1,

(2.3)

where ζi denotes the dosage mechanism for patient i, g(Dell; αl, βl) represents the probability

density function of a Gamma distribution with parameters αl and βl, w(D; ν, Ω−1) repre-

sents the probability density function of a Wishart distribution with parameters ν and Ω−1,

ϕ(Yij; F (tij, ζi, θi), De−1) represents the probability density function of a Normal distribution

with mean F (tij, ζi, θi) and variance matrix De−1, ϕ[γL,γR](Yij; F (tij, ζi, θi), De−1) represents

the probability density function of a truncated Normal distribution with left limit γL and

right limit γR and with mean F (tij, ζi, θi) and variance matrix De−1.

After we obtain the posterior distribution, we can make the prediction of the parameter

θM+1 for a new patient using the Bayesian posterior prediction in the following formula:

π(θM+1|Data) =

∫
π(θM+1|γ, D)π(γ,D|Data)dγdD

=
1

K

K∑
i=1

ϕ[γL,γR](θM+1; γ
i, Di),

where {(γi, Di|i = 1, 2, . . . , K} are K samples from the posterior distribution (2.3). We

then use the estimated θM+1 to predict a time course of the state variables V, T1, ... under

estimation following any possible dosage mechanism.

When new data becomes available, we can update our estimate for the population level

and individual level parameters by using the current posterior distribution as the prior and

using the new data to form the likelihood function. Let {Yi,ni+1, · · · , Yi,ñi
} denote the new
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measurement for individual i, then the posterior distribution can be written as follows:

π(De, D, γ, θ1, θ2, . . . , θM |NewData)

∝ π(De,D, γ, θ1, θ2, . . . , θM |Data)×
M∏
i=1

ñi∏
j=ni+1,cij=0

ϕ(Yij; F (tij, ζi, θi), De−1)

×
M∏
i=1

ñi∏
j=ni+1,cij=1

∫

Yij≥ΥR

ϕ(Yij; F (tij, ζi, θi), De−1)dYij1

×
M∏
i=1

ñi∏
j=ni+1,cij=−1

∫

Yij1≤ΥL

ϕ(Yij1; F (tij, ζi, θi), De−1)dYij1

∝
3∏

l=1

g(Dell; αl, βl)× w(D; ν, Ω−1)× ϕ[γL,γR](γ; η, Λ−1)

×
M∏
i=1

ϕ[γL,γR](θi; γ, D−1)×
M∏
i=1

ñi∏
j=1,cij=0

ϕ(Yij; F (tij, ζi, θi), De−1)

×
M∏
i=1

ñi∏
j=1,cij=1

∫

Yij1≥ΥR

ϕ(Yij; F (tij, ζi, θi), De−1)dYij1

×
M∏
i=1

ñi∏
j=1,cij=−1

∫

Yij1≤ΥL

ϕ(Yij; F (tij, ζi, θi), De−1)dYij1.

We note that there is no closed form solution for the model (1.1), and this prevents an

easy implementation of standard statistics software such as SAS, Splus or even the popular

Bayesian software BUGS. Although the MCMC software MCSim can treat such situations,

we are still unable to readily use it since we have a heavily censored data involving the

measurements on the viral load. Current versions of MCSim do not incorporate censored

data in its formulation. Therefore, we coded the algorithm independently. Since we do not

have a closed form posterior distribution, we adopt the MCMC approach to approximate it.

To do this, we first need to rewrite the terms in (2.3) contributed by the censored data as a

truncated normal distribution using characteristic or indicator functions I to obtain

∫

Yij≥ΥR

ϕ(Yij; F (tij, ζi, θi), De−1)dYij1 =

∫ ∞

−∞
ϕ(Yij; F (tij, ζi, θi), De−1)I(Yij1 ≥ ΥR)dYij1,

and
∫

Yij≤ΥL

ϕ(Yij; F (tij, ζi, θi), De−1)dYij1 =

∫ ∞

−∞
ϕ(Yij; F (tij, ζi, θi), De−1)I(Yij1 ≤ ΥL)dYij1.

We ignore the integration (hence treat the corresponding measurement Yij1 as a parameter
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of interest as well), and then the posterior distribution (2.3) can be rewritten as

π(De, D, γ, θ1, θ2, . . . , θM , Yij1|Data)

∝
3∏

l=1

g(Dell; αl, βl)× w(D; ν, Ω−1)× ϕ[γL,γR](γ; η, Λ−1)

×
M∏
i=1

ϕ[γL,γR](θi; γ, D−1)×
M∏
i=1

ni∏
j=1,cij=0

ϕ(Yij; F (tij, ζi, θi), De−1)

×
M∏
i=1

ni∏
j=1,cij=1

ϕ(Yij; F (tij, ζi, θi), De−1)I(Yij1 ≥ ΥR)

×
M∏
i=1

ni∏
j=1,cij=−1

ϕ(Yij; F (tij, ζi, θi), De−1)I(Yij1 ≤ ΥL),

(2.4)

where only the Yij1’s whose corresponding cij 6= 0 are treated as parameters and hence appear

on the left side of (2.4). We also can argue that the conditional posterior distribution for

the censored Yij1 still follows the truncated normal distribution. By collecting all the terms

with Dell (l = 1, 2, 3) and making some routine calculations, we find that the conditional

posterior distribution of Dell is a Gamma distribution:

Dell ∼ G



∑M
i=1 ni

2
+ αl,

(∑M
i=1

∑ni

j=1(Yijl − Fl(tij, ζi, θi))
2

2
+

1

βl

)−1

 .

Similarly, we obtain that the full conditional posterior distribution of γ is a truncated Normal

distribution:

γ ∼ N[γL,γR]

(
(Λ + MD)−1(Λη + D

M∑
i=1

θi), (Λ + MD)−1

)
,

and that the full conditional posterior distribution of D is a Wishart distribution:

D ∼ Wp


M + ν,

(
Ω +

M∑
i=1

(θi − γ)(θi − γ)T

)−1

 .

The full conditional distribution of θi, given the remaining parameters and the data in (2.4),

can not be written explicitly. To generate a sample for each θi, we again follow standard

practice and choose a Metropolis-Hastings algorithm with the proposal distribution from a

random walk chain.

The resulting MCMC algorithm is outlined as follows:

Step 1: Select the values for hyperparameters αl, βl for l = 1, 2, 3, η, Λ, ν and Ω. Pick the

candidate variance ∆ for θi. Select the starting values for θ0
1, θ0

2, · · · , θ0
M , γ0, D0 (Σ0),

De0 (Σ0
e), and Y 0

ij if cij 6= 0. Set k = 1.
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Step 2: Calculate F (tij, ζi, θ
k−1
i ), j = 1, 2, . . . , ni, and i = 1, 2, . . . , M .

Step 3: Generate a sample Dek
ll (l = 1, 2, 3) from the following distribution:

G



∑M
i=1 ni

2
+ αl,

(∑M
i=1

∑ni

j=1(Y
k−1
ijl − Fl(tij, ζi, θ

k−1
i ))2

2
+

1

βl

)−1

 .

Step 4: Generate a sample γk from the following distribution by Gibbs sampling(see [9], p.222–)

method:

N[γL,γR]

(
(Λ + MDk−1)−1(Λη + Dk−1

M∑
i=1

θk−1
i ), (Λ + MDk−1)−1

)
.

Step 5: Generate a sample Dk from Wp


M + ν,

(
Ω +

M∑
i=1

(θk−1
i − γk)(θk−1

i − γk)T

)−1

.

Step 6: Generate a sample Y k
ij1 if cij 6= 0.

Generate it from the first component of N (F (tij, ζi, θ
k−1
i ), Σk−1

e )I(Yij1 ≤ ΥL) if cij =

−1.

Generate it from the first component of N (F (tij, ζi, θ
k−1
i ), Σk−1

e )I(Yij1 ≥ ΥR) if cij = 1.

Step 7: Generate a sample θ̂i from N (θk−1
i , ∆).

% =
ϕ(θ̂i; γ

k, Σk)
∏ni

j=1 ϕ[γL γR](Yij; F (tij, ζi, θ̂i), Σ
k
e)

ϕ(θk−1
i ; γk, Σk)

∏ni

j=1 ϕ[γL γR](Yij; F (tij, ζi, θ
k−1
i ), Σk

e)
.

Generate a sample u from a uniform distribution U(0, 1). Set

θk
i =

{
θk−1

i if % < u

θ̂i if % ≥ u.

Step 8: Set k = k + 1 and return to Step 2 until convergence is reached.

To test the algorithm presented above, it is necessary to draw samples from several differ-

ent probability distributions. The random number samples required in the algorithm drawn

from the Gamma distribution and Wishart distribution can be generated by the random

generators gamrnd and wishrnd in MATLAB, respectively. However, there is no random

number generator in MATLAB that can generate the random number samples from the

truncated multivariate normal distributions. Instead, there are two common methods to

draw samples from a truncated norm distribution (see [13]). One is the rejection method,
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which is straightforward and easy to implement but tends to be wasteful and very slow (see

[12, 13]). The other method is Gibbs sampling which exploits the fact that if a random

variable follows a truncated multivariate normal distribution, then the distribution of each

element of this random variable conditional on all of its other elements is a truncated uni-

variate normal. It was shown in [11] that the rate of convergence is geometric in the L1

norm. Hence, we adopt the Gibbs sampling in Step 4 to generate a sample γ, and the ran-

dom number sample from the truncated univariate normal distribution is generated by the

inverse cumulative distribution function method introduced in [10].

Note that, in our implementation, the proposal distribution for θ̂i is chosen to be a

multivariate normal distribution centered at the current value of θi, as it can be easily

sampled and is symmetric. A critical issue here is how to choose the value for the proposal

variance. As illustrated in [8, 26], if the proposal variance is too large, the moves are large

but are often unaccepted. This may lead to high autocorrelation and poor mixing, and

may require a much longer chain. If the proposal variance is too small, the moves are

generally accepted but will move around the parameter space slowly which again leads to

high autocorrelation and poor mixing. Hence, we need to adjust the value of the proposal

variance to stabilize the posterior distribution faster.

In our implementation, we use trace plots to monitor the convergence because it is a

simple and effective tool. Note that the initial simulations usually do not come from the

stationary distribution targeted by the Markov chain. We need to discard a number of initial

burn-in simulations. So we prefer to use the trace plot of a single long-run sequence in all

of our simulations below. In order to test the mixing behavior of a Markov chain, we use

autocorrelation plots.

We tested the proposed algorithm with simulated data for “patients” undergoing no

therapy (Section 3) and “patients” undergoing STI therapy (Section 4). Simulated data

was prepared in both cases in a similar manner. For all the simulations used in this paper,

the initial values of T1, T2, T ∗
1 , T ∗

2 , V and E are chosen as 106, 3198, 10−4, 10−4, 1, 10,

respectively. In order to solve (1.1), we also need to specify all the parameter values. The

default values of these parameters are given as (see [1, 2] for motivation for some of the

values):

λ1 = 10000, λ2 = 31.98, f = 0.34, δ = 0.7, NT = 100, bE = 0.3, Kb = 100, dE = 0.25,
Kd = 500, δE = 0.1, λE = 1, d1 = d2 = 0.01, m1 = m2 = 10−5, ρ1 = ρ2 = 1, k2 = 10−4,
k1 = 8× 10−7, c = 13.

When some of the parameters are to be estimated, we treat them as random effects, i.e.,

the parameter values vary across the population, and we will specify how to generate these

values in its corresponding simulation. All the other parameters are treated as fixed effects,
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i.e., all the patients take the same values as the default values listed above.

In the case of simulated data for patients undergoing therapy, the dosage mechanism

ζi is generated computationally as follows: we divide the patients into 5 groups, and we

assume that patients in the same group have the same treatment schedules. The number

of treatment cycles for group 1, group 2, group 3, group 4 and group 5 are 1, 2, 3, 4 and

5, respectively. In order to clearly state how we generate the dosage schedule, we explain

group 2 as an example. We first generate 4 numbers uniformly from day 0 to day 1460 (4

years range). For example, [7, 428, 558, 1147] are the 4 numbers we generated, then we add

2 to each number to get another 4 numbers. Thus we have 8 numbers [7, 9, 428, 430, 558,

560, 1147, 1149], and then the time schedule is chosen as follows:
[

0 7 9 428 430 558 560 1147 1149 last day
0 0 1 1 0 0 1 1 0 0

]
,

where 0 denotes treatment off and 1 denotes treatment on with drug efficacy 0.8, and we

always assume that the treatment in day 0 and last day is 0. If the day is between the

above two indicated days, then we use linear interpolation to calculate the drug efficacy. For

example, in day 8, the drug efficacy is ε = 0.8

(
1− 0

9− 7
(8− 7) + 0

)
= 0.4. Hence, for group

2, there is no treatment in the days between 0 and 7, there is a treatment with drug efficacy

0.4 in day 8, there is a treatment with drug efficacy 0.8 in the days between 9 and 428, there

is a treatment with drug efficacy 0.4 in day 429, there is no treatment in the days between

430 and 558, and then we go to next treatment cycle with the same process.

The data that we used is generated computationally as follows:

• Use the ODE solver to obtain the values for F (tij, ζi, θi). In the results reported

here, we used a custom-compiled Fortran 77 code for a Backward Difference Formula

(BDF) method (Gear type method) to solve the stiff system (1.1). This was done by

employing the Livermore Solver for Ordinary Differential Equations (LSODE) [25] in

double precision. In this routine, the Jacobian matrix is treated either as a dense or a

banded matrix and is supplied by the user. The error tolerances for the data generation

ODE solver in Section 3 and Section 4 are {1e − 9, 1e − 24} and {1e − 3, 1e − 3},
respectively.

• Generate the data Yij = F (tij, ζi, θi)+εij, where εij is a random sample generated from

a multivariate norm random number generator mvnrnd in MATLAB with mean zero

and some diagonal covariance matrix Σe.

• If Yij1 < ΥL, then we set cij = −1. In this case, we need to update its value. The

starting value for Yij1 is chosen as ΥL, and its subsequent value is generated as the

same process as in MCMC algorithm Step 6.
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If Yij1 > ΥR, then we set cij = 1. In this case, we also need to update its value. The

starting value for Yij1 is chosen as ΥR, and its subsequent value is generated with the

same process as in MCMC algorithm Step 6.

3 Simulation Studies I: Subjects Without Therapy

In this section, we apply the MCMC method that we developed in section 2 to estimate

parameters of interest in the case that without treatment, i.e. ε = 0. We assume that

Yij1 is confined to be in the range [log(50), log(750000)], and the measurements are taken

every five days from day 0 to day 200. The data that we use in this section was generated

computationally with variance Σe = 0.04I3, where I3 is the identity matrix with dimension

3.

Trace plots, histograms and autocorrelation plots are presented for the estimated param-

eters γ, an arbitrarily chosen patient θi, D and De in each simulation. We also present in

tables their corresponding statistical inference: mean, mode, 95% Highest Density Region

(HDR).

3.1 Simulation: k1

In this subsection, we assume that all the parameters in (1.1) are fixed and known except

for k1. We want to test the following three effects on the parameter estimation procedure:

1. The number of patients;

2. The type of the data ((V, T1, E) vs. (V, T1 + T ∗
1 , E));

3. The differences in tolerances for the ODE solver when solving the inverse problem and

generating the data.

The first comparison will yield information about the quality of the population level

estimation procedure as a function of the number of patients observed. The second will

reveal the effects of combined compartments data on the estimates. The third will shed light

on possible degradation of the process when the data is generated with approximations of

the model different than those used in the inverse problem calculations.

We present results for the following five situations:

• M = 150, and the observed three components are V , T1 and E with the same tolerances;

• M = 100, and the observed three components are V , T1 and E with the same tolerances;
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• M = 150, and the observed three components are V , T1 + T ∗
1 and E with the same

tolerances;

• M = 100, and the observed three components are V , T1 + T ∗
1 and E with the same

tolerances;

• M = 150, and the observed three components are V , T1 and E with different tolerances.

The values for γL and γR are chosen to be ln(10−16) and ln(0.1), respectively. The

true parameter values of θi are produced from a truncated normal distribution with mean

ln(8× 10−7) and standard deviation 0.1. The proposed variance is ∆ = 5e− 5. The value of

the hyperparameters are chosen as follows:

αl = 2.5, βl = 10 for l = 1, 2, 3, η = ln(8× 10−7), Λ = 0.1, ν = 1, Ω = 0.01.

We ran one long chain with length 10000 for each simulation in this subsection.
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3.1.1 M = 150, and the observed three components are V , T1 and E with the
same tolerances

After discarding the first 10 samples, we retain every third sample from the remaining

samples. The trace plots and histograms for γ, θ, and D are presented in Figure 1 and those

for De are presented in Figure 2. From these figures, we see that all chains are stabilized.
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Figure 1: Trace plots and histograms for γ, θ and D. The point * in the histogram plots
denotes the true value for the corresponding parameter.
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Figure 2: Trace plots and histograms of De.

In order to test the mixing behavior of the chain, autocorrelation plots for γ, θ and D

are presented in Figure 3, and those for De are presented in Figure 4. From these graphs,

we see that each chain is well-mixed.

The statistical results are presented in Table 1. From the results of this table, we see

that we obtain very good estimates for all the parameters of interest.
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Figure 3: Autocorrelation plots for γ, θ and D, respectively.
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Figure 4: Autocorrelation plots for elements of De.

true mean mode 95% HDR
ln(k1) -14.0387 -14.0223 -14.0235 [−14.0387, −14.0058]
θi -14.0647 -14.0714 -14.0660 [−14.1136, −14.0328]
D 100.0000 96.4980 90.6896 [76.0024, 120.9687]
De11 25.0000 25.1942 25.0824 [24.3024, 26.1647]
De22 25.0000 24.1635 24.1926 [23.2934, 25.0461]
De33 25.0000 25.4498 25.4783 [24.5703, 26.3806]

Table 1: Statistical results for the estimated parameters when there are 150 patients and
the observed three components are V , T1 and E.
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3.1.2 M = 100, and the observed three components are V , T1 and E with the
same tolerances

After discarding the first 10 samples, we again retain every third sample from the remaining

samples. The trace plots and histograms γ, θ, and D are presented in Figure 5 and those

for De are presented in Figure 6. From these figures, we see that all chains are stabilized.
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Figure 5: Trace plots and histograms for γ, θ and D.
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Figure 6: Trace plots and histograms of De.

In order to test the mixing behavior of the chain, autocorrelation plots for γ, θ and D

are presented in Figure 7, and those for De are presented in Figure 8. From these graphs,

we see that again each chain is well-mixed.

The statistical results for the estimated parameters are presented in Table 2. Comparing

the results of this table with those in Table 1, we see that a larger number of patients can

lead to perceptibly better estimates, which is expected since a larger number of patients

should provide more information than a smaller number of patients.
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Figure 7: Autocorrelation plots for γ, θ and D, respectively.
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Figure 8: Autocorrelation plots for elements of De.

true mean mode 95% HDR
ln(k1) -14.0387 -14.0217 -14.0225 [−14.0423 −14.0018]
θ -14.0716 -14.0763 -14.0774 [−14.1081 −14.0424]
D 100.0000 96.3566 98.8505 [71.1895, 125.3455]
De11 25.0000 25.2566 25.0440 [24.0865, 26.4564]
De22 25.0000 23.9016 23.7391 [22.8963, 24.9544]
De33 25.0000 25.9859 26.0166 [24.8209, 27.1394]

Table 2: Statistical results for the estimated parameters when there are 100 patients and
the observed three components are V , T1 and E.
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3.1.3 M = 150, and the observed three components are V , T1 + T ∗
1 and E with

the same tolerances

After discarding the first 10 samples, we retain every third sample from the remaining

samples. The trace plots and histograms γ, θ, and D are presented in Figure 9 and those for

De are presented in Figures 10. From these figures, we see that all chains are stabilized.
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Figure 9: Trace plots and histograms for γ, θ and D.
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Figure 10: Trace plots and histograms of De.

In order to test the mixing behavior of the chain, autocorrelation plots for γ, θ and D

are presented in Figure 11 and those for De are presented in Figure 12. From these graphs,

we see that each chain is well-mixed.

The statistical results for the estimated parameters in Section 3.1.3 are presented in Table

3. Comparing the results here with those in Table 1, we do not see much difference.
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Figure 11: Autocorrelation plots for γ, θ and D, respectively.
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Figure 12: Autocorrelation plots for elements of De.

true mean mode 95% HDR
ln(k1) -14.0387 -14.0222 -14.0234 [−14.0386, −14.0054]
θ -14.0647 -14.0724 -14.0652 [−14.1139, −14.0330]
D 100.0000 96.3046 91.0545 [75.7526, 120.6870]
De11 25.0000 25.1940 25.1074 [24.3063, 26.1580]
De22 25.0000 24.2023 24.2183 [23.3256, 25.0855]
De33 25.0000 25.4489 25.4783 [24.5670, 26.3778]

Table 3: Statistical results for the estimated parameters when there are 150 patients and
the observed three components are V , T1 + T ∗

1 and E.
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3.1.4 M = 100, and the observed three components are V , T1 + T ∗
1 and E with

the same tolerances

After discarding the first 10 samples, we retain every third sample from the remaining

samples. The trace plots and histograms γ, θ, and D are presented in Figure 13 and those

for De are presented in Figures 14. From these figures, we can see that all chains are

stabilized.
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Figure 13: Trace plots and histograms for γ, θ and D.
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Figure 14: Trace plots and histograms of De.

In order to test the mixing behavior of the chain, autocorrelation plots for γ, θ and D

are presented in Figure 15 and those for De are presented in Figure 16. From these graphs,

we again see that each chain is well-mixed.

The statistical results for the estimated parameters in section 3.1.4 are presented in Table

4. Comparing the results of this table with those in Table 3, we see that this further illustrates

the fact that a larger number of patients can lead to substantially better estimates.
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Figure 15: Autocorrelation plots for γ, θ and D, respectively.
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Figure 16: Autocorrelation plots for elements of De.

true mean mode 95% HDR
ln(k1) -14.0387 -14.0217 -14.0228 [−14.0422, −14.0019]
θ -14.0716 -14.0718 -14.0745 [−14.1042,−14.0361]
D 100.0000 96.3266 99.1819 [71.1410, 125.9427]
De11 25.0000 25.2379 25.0383 [24.0615, 26.4394]
De22 25.0000 23.9891 23.8198 [22.9683, 25.0332]
De33 25.0000 25.9892 26.0233 [24.8265, 27.1449]

Table 4: Statistical results for the estimated parameters when there are 100 patients and
the observed three components are V , T1 + T ∗

1 and E.
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3.1.5 M = 150, and the observed three components are V , T1 and E with differ-
ent tolerances

The tolerances for the ODE solver when solving the inverse problem are {1e−4, 1e−6}. After

discarding the first 10 samples, we retain every third sample from the remaining samples.

The trace plots and histograms for γ, θ, and D are presented in Figure 17 and those for De

are presented in Figures 18. From these figures, we see that all chains are stabilized.
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Figure 17: Trace plots and histograms for γ, θ and D.
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Figure 18: Trace plots and histograms of De.

In order to test the mixing behavior of the chain, autocorrelation plots for γ, θ and D

are presented in Figure 19, and those for De are presented in Figure 20. From these graphs,

we see that each chain is well-mixed.

The statistical results are presented in Table 5. Comparing the results of this table with

those in Table 1, we see that allowing different tolerances can lead to slightly worse estimates,

but the estimates are still acceptable.
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Figure 19: Autocorrelation plots for γ, θ and D, respectively.
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Figure 20: Autocorrelation plots for elements of De.

true mean mode 95% HDR
ln(k1) -14.0387 -14.0221 -14.0235 [−14.0382,−14.0056]
θ -14.0647 -14.0713 -14.0681 [−14.1128,−14.0331]
D 100.0000 96.3787 98.6070 [75.8971, 120.7532]
De11 25.0000 25.1982 25.0950 [24.2996, 26.1663]
De22 25.0000 24.1631 24.1920 [23.2893, 25.0420]
De33 25.0000 25.4498 25.4800 [24.5696, 26.3790]

Table 5: Statistical results for the estimated parameters when there are 150 patients and
the observed three components are V , T1 and E with different tolerances.
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3.2 Simulation: k1 and c with different tolerances

In this subsection, we assume that M = 150, the measurements are taken on V , T1 and E.

The tolerances for the ODE solver when solving the inverse problem are {1e−4, 1e−6}. The

left limits γL of γ are chosen to be (ln(10−16), ln(0.1)) and the right limits γR of γ are chosen

to be (ln(0.1), ln(104)). The true parameter values of θi are produced from a truncated

normal distribution with mean (ln(8×10−7), ln(13)) and variance Σ = 0.01I2. The proposed

variance ∆ = 10−3I2. The values of the hyperparameters are chosen as follows:

αl = 2.5, βl = 10 for l = 1, 2, 3, η = [ln(8× 10−7), ln(13)], Λ = I2,
ν = 2, Ω = 0.01I2.

We ran one long chain with length 80000. After discarding the first 15000 samples, we take

every tenth from the remaining samples. The trace plots and histograms for γ, θ, D and De

are presented in Figures 21, 22, 23 and 24, respectively. From these figures, we see that all

chains are stabilized.
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Figure 21: Trace plots and histograms for γ.

In order to test the mixing behavior, the autocorrelation plots of γ, θ, D and De are

presented in Figures 25, 26, 27 and 28, respectively. From these graphs, we see that all the

chains are well-mixed.

The statistical results are presented in Table 6. Although the results are somewhat worse

than the results presented for the case with only one parameter unknown (p = 1), they are

still reasonably good, which provides positive affirmation on the efficiency of our method

when dealing with the case with multiple unknown parameters (p > 1).
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Figure 22: Trace plots and histograms for θ.
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Figure 23: Trace plots and histograms for D.
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Figure 24: Trace plots and histograms of De.
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Figure 25: Autocorrelation plots for γ.
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Figure 26: Autocorrelation plots for θi.
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Figure 27: Autocorrelation plots for D.
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Figure 28: Autocorrelation plots for elements of De.

true mean mode 95% HDR
ln(k1) -14.0387 -14.0535 -14.0523 [−14.0726,−14.0335]
ln(c) 2.5649 2.5584 2.5567 [2.5389, 2.5782]
θi1 -14.1076 -14.0774 -14.0903 [−14.1782,−13.9721]
θi2 2.5411 2.5649 2.5833 [2.4658, 2.6635]
D11 100.0000 117.7546 116.8856 [79.2181, 176.8763]
D12 0.0000 9.3624 -0.2182 [−17.5255, 49.7824]
D22 100.0000 100.6734 90.0745 [70.5071, 144.6248]
De11 25.0000 25.7205 25.7325 [24.8019, 26.6694]
De22 25.0000 25.1390 25.0072 [24.2604, 26.0487]
De33 25.0000 25.3470 25.3473 [24.4032, 26.1895]

Table 6: Statistical results for γ, an arbitrarily chosen patient θi, D and De.

28



4 Simulation Studies II: Subjects Undergoing Therapy

In this section, we apply the proposed Bayesian approach to estimate the parameters of

interest in the case that an STI strategy is adopted for the patient treatment. We assume

that each patient has at least one treatment interruption, and the duration of interruption

is randomly produced, from several weeks to several months or even years. We assumed

M = 150, Yij1 is confined to be in the range [log(50), log(750000)], and the measurements

are taken on V , T1 and E. The number of the measurements of each individual ni is uniformly

distributed between 2 and 50, and these measurements are uniformly distributed in a 4 year

time range. The data set we used in this section is generated computationally with the

variance Σe = 9I and we used the same tolerances for the ODE solver in generating the data

and in solving the inverse problem. Note that there is a large variability in our data and we

also have a very sparse data set which is in some way similar to the clinical data. We carried

out this simulation study since we think it can further assist in testing and understanding the

capability of our estimation technique. We also think it is a necessary first step before use

of this method with clinical data containing some generally unknown sources of variability

and some missing observations.

We consider three situations in this section: (1) k1 is unknown, (2) k2 is unknown, (3) k1

and c are both unknown. In each situation, trace plots, histograms and autocorrelation plots

are presented for the estimated parameters γ, an arbitrarily chosen patient θi, D and De.

We also present their corresponding statistical inference results: mean, mode, 95% Highest

Density Region.

4.1 Simulation: k1

In this subsection, we assume that all the parameters are known except for k1. The values for

γL and γR are chosen to be ln(10−16) and ln(0.1), respectively. The true parameter values of

θi are produced from a truncated normal distribution with mean ln(8× 10−7) and standard

deviation 1. Note that the variability between the true parameter values of θi is also bigger

than that in section 3. The proposed variance is ∆ = 1. The value of the hyperparameters

are chosen as follows:

αl = 1, βl = 1 for l = 1, 2, 3, η = ln(8× 10−7), Λ = 0.1, ν = 1, Ω = 1.

We ran one long chain with length 10000, and we discarded the first 10 samples. Trace

plots and histogram plots for γ, θ, and D are presented in Figure 29 and those for De are

presented in Figures 30. From these figures, we see that all the chains are stabilized.
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Figure 29: Trace plots and histograms for γ, θ and D. The point * in the histogram plots
denotes the true value for the corresponding parameter.
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Figure 30: Trace plots and histograms of De.

In order to test the mixing behavior of the chain, autocorrelation plots for γ, θ and D are

presented in Figure 31, and those for De are presented in Figure 32. From each figure, we

see that the autocorrelation coefficient is geometrically decreasing to 0 as the lag increases,

which means that all the chains are well-mixed.

In order to examine the dependence of the parameter estimates on the starting values,

we run three chains with length 10000 starting from different initial values. The trace plots

for γ, θ and D are presented in Figure 33, and those for De are presented in Figure 34. From

each of the graphs, we can see that the three chains are well-mixed. Hence, the parameter

estimates are not sensitive to the starting values.

The statistical results are presented in Table 7. From this table, we see that we still

obtain reasonably good estimates on all the parameters of interest even in the case that
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Figure 31: Autocorrelation plots for γ, θ and D, respectively.
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Figure 32: Autocorrelation plots for each element of De.
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Figure 33: Autocorrelation plots for γ, θ and D, respectively.
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Figure 34: Autocorrelation plots for each element of De.

true mean mode 95% HDR
ln(k1) -14.0387 -14.0215 -14.0420 [−14.2038,−13.8353]
θi -12.2372 -13.3548 -13.3126 [−14.1213,−12.3100]
D 1.0000 1.2270 1.2042 [0.8256, 1.7364]
De11 0.1111 0.1106 0.1065 [0.1021, 0.1194]
De22 0.1111 0.1104 0.1095 [0.1054, 0.1156]
De33 0.1111 0.1061 0.1062 [0.1013, 0.1110]

Table 7: Statistical results for γ, θi, D and De.

the data is sparse and has a large variability. This provides some confidence regarding the

capability of our method in future dealing with clinical data.
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4.2 Simulation: k2

In this subsection, we assume that all the parameters are known except for k2. The values

for γL and γR are chosen to be ln(10−16) and ln(0.1), respectively. The true parameter values

of θi are produced from a truncated normal distribution with mean ln(10−4) and standard

deviation 1. The proposed variance is ∆ = 1. The value of the hyperparameters are chosen

as follows:

αl = 1, βl = 1 for l = 1, 2, 3, η = ln(10−4), Λ = 0.1, ν = 1, Ω = 1.

We ran one long chain with length 10000. After discarding the first 10 samples, we retain

every second from the remaining samples. Trace plots and histogram plots for γ, θ, and D

are presented in Figure 35 and those for De are presented in Figures 36. From these figures,

we see that all the chains are stabilized.
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Figure 35: The trace plots and histogram plots for γ, θ and D.

In order to test the mixing behavior of the chain, autocorrelation plots for γ, θ and D

are presented in Figure 37, and those for De are presented in Figure 38. From these graphs,

we see that the chain is well-mixed.

In order to examine the dependence of the parameter estimates on the starting values,

we run three chains with length 10000 starting from different initial values. The trace plots

for γ, θ and D are presented in Figure 39 and those for De are presented in Figure 40. From

each of the graphs, we see that the three chains are well-mixed. Hence, it appears that the

estimated parameters are not sensitive to the starting values.

The statistical results are presented in Table 8. Comparing the results in Table 7 and the

results here, we see that the estimates in Table 8 are somewhat worse than the estimates in

Table 7. However, the estimates are still acceptable.
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Figure 36: The trace plots and histograms for each element of De.
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Figure 37: Autocorrelation plots for γ, θi and D, respectively.
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Figure 38: Autocorrelation plots for elements of De.
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Figure 39: Autocorrelation plots for γ, θ and D, respectively.
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Figure 40: Autocorrelation plots for each element of De.

true mean mode 95% HDR
ln(k2) -9.2103 -9.2239 -9.2112 [−9.4609,−8.9578]
θ -7.4089 -8.8682 -9.4019 [−9.7192,−7.2858]
D 1.0000 1.1431 1.0295 [0.6728, 1.8013]
De11 0.1111 0.1092 0.1095 [0.1010, 0.1181]
De22 0.1111 0.1106 0.1113 [0.1055, 0.1159]
De33 0.1111 0.1057 0.1047 [0.1009, 0.1107]

Table 8: Statistical results for γ, an arbitrarily chosen patient θi, D and De.
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4.3 Simulation: k1 and c

In this subsection, we assume that all the parameters are known except for k1 and c. The left

limits γL of γ are chosen to be (ln(10−16), ln(0.1)) and the right limits γR of γ are chosen to

be (ln(0.1), ln(100)). The true parameter values of θi are produced from a truncated normal

distribution with mean (ln(8× 10−7), ln(13)) and variance Σ = I2. The proposed variance is

chosen as ∆ = I2. The values of the hyperparameters are chosen as follows:

αl = 0.1De, βl = 10 for l = 1, 2, 3, η = (ln(8× 10−7), ln(13)), ν = 2,

Λ =

(
1 0
0 1

)
, Ω =

(
2 0
0 2

)
.

We ran one long chain with length 80000. After discarding the first 40000 samples, we retain

every tenth from the remaining samples. An informal graphical check of convergence for γ,

θ, D and De are presented in Figures 41-44, respectively. From all these figures, we see that

all the chains are stabilized.
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Figure 41: The trace plots and histogram plots of γ.

In order to test the mixing behavior of the chain, autocorrelation plots for γ, θi, D and De

are presented in Figure 45-48. From these graphs, we see that all the chains are well-mixed.

The statistical results are presented in Table 9. Considering the large variability of the

data, the results presented here are still quite reasonable.
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Figure 42: The trace plots and histograms of θi for a randomly chosen patient.
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Figure 43: The trace plots and histogram plots of D.
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Figure 44: The trace plots and histogram plots for each element of De.
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Figure 45: Autocorrelation plots for γ.
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Figure 46: Autocorrelation plots for elements of θi.
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Figure 47: Autocorrelation plots for D.
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Figure 48: Autocorrelation plots for elements of De.

true mean mode 95% HDR
ln(k1) -14.0387 -13.7267 -13.6935 [−14.0670,−13.3738]
ln(c) 2.5649 2.7228 2.7058 [2.4909, 2.9543]
θi1 -13.8228 -13.3551 -13.1125 [−15.1261,−11.5572]
θi2 1.9575 1.8464 1.8660 [0.5791, 3.0058]
D11 1.0000 0.7748 0.6065 [0.4529, 1.3211]
D12 0.0000 0.1764 0.1165 [−0.1352, 0.6557]
D22 1.0000 1.4333 1.2627 [0.9391, 2.1882]
De11 0.1111 0.1090 0.1094 [0.1002, 0.1180]
De22 0.1111 0.1087 0.1092 [0.1038, 0.1136]
De33 0.1111 0.1071 0.1063 [0.1022, 0.1121]

Table 9: Statistical results for γ, θi, D and De.
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5 Conclusion and Remarks

In this paper we presented a hierarchical Bayesian NLME parameter estimation algorithm

which incorporates and accounts for uncertainty and population level variability that arises in

HIV pathogenesis. Modifications to allow for censored data as well as biologically/physically-

based parameter constraints were incorporated. We investigated use of this algorithm with

simulated data for subjects without and with ongoing STI therapy. Several conclusions can

be drawn from our studies:

1. As expected, use of data sets with larger numbers of patients led to improved perfor-

mance in the estimation procedures (compare, for example, the results in Table 1 with

those in Table 2, and the results in Table 3 with those in Table 4).

2. Any effects of the type of the data used ((V, T1, E) vs. (V, T1+T ∗
1 , E)) on the reliability

of the estimation procedure is not obvious (compare the results in Table 1 with those in

Table 3, and the results in Table 2 with those in Table 4). There is no clear degradation

of results when using observations from combined compartments (a practical necessity

in many cases).

3. The test results do not appear to be very sensitive to the ODE solver tolerances used

in the MCMC simulations (compare the results in Table 1 with those in Table 5).

4. We obtain reasonable estimation results even in the case that the available data set is

sparse and has large variability. This suggests that one might have confidence when

using this approach to deal with the clinical data in our planned future efforts. Our

experimental data sets (see [1]) do exhibit significant variability.

In closing, we need to remark on one possible shortcoming due to the parametric nature

of the proposed method. Note that in using a Bayesian parametric method to estimate the

parameters, we must impose a fixed form for the parameter distributions (the priors). If the

assumed parameter distributional forms are correct, this method can provide a very efficient

method for estimation since it can fully use the knowledge of the distributional structures.

This is readily demonstrated by our numerical and statistical results in Sections 3 and 4.

However, if the assumed distributional forms are incorrect, parametric methods can often

lead to serious difficulties. For example, they could either produce a model that fits the data

poorly or a reasonable model fit to the data with an incorrect distribution (see the examples

in [6]). In this case, a nonparametric estimation method such as one based on the Prohorov

Metric Framework developed and discussed in [3, 4, 6] could be more appropriate since it

does not require one to provide a distributional structure for the estimated parameters. One
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such method has been successfully used in PBPK modeling efforts (see [5, 6]). It is currently

being investigated by our group with the model (1.1).
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