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ABSTRACT. Motivated from problems in canonical correlation analysis, reduced rank regression
and sufficient dimension reduction, we introduce a double dimension reduction model where a single
index of the multivariate response is linked to the multivariate covariate through a single index of
these covariates, hence the name double single index model. Because nonlinear association between
two sets of multivariate variables can be arbitrarily complex and even intractable in general, we
aim at seeking a principal one-dimensional association structure where a response index is fully
characterized by a single predictor index. The functional relation between the two single-indices is
left unspecified, allowing flexible exploration of any potential nonlinear association. We argue that
such double single index association is meaningful and easy to interpret, and the rest of the multi-
dimensional dependence structure can be treated as nuisance in model estimation. We investigate
the estimation and inference of both indices and the regression function, and derive the asymptotic
properties of our procedure. We illustrate the numerical performance in finite samples and demon-
strate the usefulness of the modelling and estimation procedure in a multi-covariate multi-response
problem concerning concrete.

Key words: canonical correlation analysis, reduced rank regression, semiparametric efficiency,
single index models, sufficient dimension reduction

1. Introduction

In scientific research and engineering, many statistical problems share a common goal of deci-
phering the associations between certain features and outcomes/responses from noisy data.
When both the feature and response variables are multivariate, several different strategies exist
to model their relations. Among the popular approaches are the canonical correlation anal-
ysis (CCA) (Hotelling, 1936) and the reduced rank regression (Anderson, 1951; Reinsel &
Velu, 1998; Mukherjee & Zhu, 2011), both are designed to examine possible linear association
between the two sets of random variables.

Specifically, write the covariate vector X 2 R
p and the response variable Y 2 R

q , where
p > 1, q > 1. CCA seeks linear combinations ˛TY and ˇTX that have maximum correla-
tion with each other. In other words, CCA searches for unit length vectors ˛ and ˇ so that
corr.˛TY;ˇTX/ is maximized. Because correlation is chosen as the sole criterion to evaluate
the closeness between ˛TY and ˇTX, CCA implicitly assumes a linear relation between these
two quantities, or, at the very least, CCA is only interested in the linear relation between them.
Similar to CCA, in the multivariate linear regression framework, the RRR model assumes a
linear relation Y D CTX C �� between the responses and covariates, where the coefficient
matrix C 2 R

p�q is possibly of low rank, say, rank.C/ D r � min.p; q/, and �� is usually
assumed to follow a multivariate normal distribution with mean zero. The main idea of RRR
amounts to seek the best low-rank approximation of Y supervised by the covariate information

in X, that is, minimizing E
°�

Y � CTX
�T �Y � CTX

�±
subject to rank.C/ � r . When we con-

sider the unit-rank RRR model, it becomes Y D c˛ˇTXC��. Here, c is the first singular value
of C and ˛;ˇ are the first left and right singular vectors of C, respectively. This can be further
written as ˛TY D cˇTXC �, where � is a mean zero error term. Obviously, the linear relation
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between Y and X in RRR implies a linear relation between ˛TY and ˇTX. In fact, many com-
monly used multivariate techniques, including CCA, RRR and principal component analysis
are all intrinsically related and all rely on certain linear assumption (Hotelling, 1936; Rein-
sel & Velu, 1998). Although in practice, multiple linearly dependent pairs of directions can be
retained from CCA or RRR either sequentially or simultaneously, to focus on the main idea,
we restrict our attention to the extraction of a single pair of directions in this paper, following
the spirit of the single index model.

In real world applications, linearity is often too strong an assumption when characterizing
variable association, and nonlinearity inevitably arises, especially in multivariate settings. How-
ever, extension of the available nonparametric techniques designed for univariate response to
multivariate response is not quite straightforward, not only because of the curse of dimen-
sionality, but also because of the difficulty in efficiently modelling the dependence structure
among the response variables to fully embrace the multivariate nature of the problem. Many
existing nonlinear methods were originated from classical CCA and RRR (Gifi, 1990; Hsieh,
2000; He et al., 2003; Yuan et al., 2007; Mukherjee & Zhu, 2011). (Xia, 2008) pro-
posed a semiparametric approach of CCA, in which the estimation was based on minimizing

E
®
˛TY �E

�
˛TY j ˇTX

�¯2
, where the conditional expectationE.� j �/was estimated nonpara-

metrically. SCA thus extends the classical CCA, as the latter simply assumes the conditional
expectation to be linear. A similar approach is the generalized CCA proposed by (Iaci et al.,

2010); the method searches the pair of indices by minimizing E
®
˛TY �E

�
˛TY j ˇTX

�¯2
C

E
®
ˇTX �E

�
ˇTX j ˛TY

�¯2
, treating the two sets of variables symmetrically. There have been

several approaches that find
�
ˇTx;˛Ty

�
by maximizing certain divergence measure between the

joint distribution of
�
ˇTx;˛Ty

�
and the product of their marginal distributions. (Iaci & Sriram,

2013) proposed two families of multivariate association measures based on power divergence
and alpha divergence, and (Mandal & Cichocki, 2013) proposed a generalized method of
CCA called AB-canonical analysis using Alpha-Beta divergence. For extensions more related
to RRR, (Chan et al., 2004) studied the properties of a general semiparametric partial linear
reduced-rank regression model, and (Yuan et al., 2007) proposed a nonparametric low-rank
factor model using regression splines. For other methods concerning the use of dimension
reduction techniques to facilitate the exploration of multivariate nonlinear association, (Li et
al., 2008) and the references therein.

Clearly, as soon as we venture into the territory beyond linearity, the possible multivariate
association structures quickly become so rich and complex that it can even be infeasible to
fully retrieve the true association structure. In this paper, to relax the assumption on linear
association while still keep the model tractable, motivated by the sufficient dimension reduction
literature, we introduce a flexible and yet manageable modelling strategy, where we assume there
exists ˛ 2 R

q and ˇ 2 R
p so that ˛TY relies on X through ˇTX, but we do not impose a linear

relation or any specific functional link between ˛TY and ˇTX. Specifically, we only assume

f˛TYjX.˛
Ty; x/ D f˛TYjˇTX

�
˛Ty;ˇTx

�
: (1)

Here, f˛TYjX stands for the probability density function of ˛TY conditional on X, and f˛TYjˇTX

is similarly defined. The model described in (1) is what we name the double single index model
(DSI), for the obvious reason that there are two single indices described by ˛ and ˇ respectively.
Our proposal has several key ingredients. First, a variable index is often of practical interest
and admits meaningful interpretation, and thus this desirable feature is retained in our model,
the same as in single index models (Ichimura, 1993). Moreover, searching for a pair of associ-
ated indices is the essential objective in many real-world multivariate problems, see for example,
(Witten et al., 2009; Zhu et al., 2014) and (Chen et al., 2014). Second, to allow flexibility in
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the process of pursuing nonlinearity, we do not intend to characterize the association between
˛TY and ˇTX. Instead, we aim to extract a relatively simple yet meaningful one-dimensional
association between the response variables and the predictors. The DSI model is directly built
on the conditional distribution of the variables, in contrast to many methods that only model
the mean association structure. Third, in our approach, the desired simple DSI structure is per-
ceived as lurking beneath other parts of the multivariate association of no direct interest. As
such, these other parts are treated as nuisance and left unspecified. In estimation, only a work-
ing model is needed and the estimation is not sensitive to its misspecification; see Sections 2
and 3 for details. This is a rather important feature both practically and conceptually, especially
given that modern data are obtained with ever increasing complexity, and yet often, only a few
summary features of the data contribute to the actual knowledge discovery.

The DSI model has connections to several familiar multivariate models. For example, in
the special case when q D 1, the DSI model in (1) reduces to the familiar single index
model (Ichimura, 1993; Härdle et al., 1993). In addition, DSI is an extension and gener-
alization of CCA and RRR, in that it allows the association between ˛TY and ˇTX to be
nonlinear. As DSI is specified from conditional distribution, it is more comprehensive than
the SCA model which only concerns the association in the mean. We also avoid specifying
and modelling other possibly intractable dependence structures between Y and X. The DSI
model is also related to the multivariate response sufficient dimension reduction model (Li et
al., 2008). In this context, when the structural dimension is one, the model assumes that Y
depends on X through ˇTX, that is, fYjX.y; x/ D fYjˇTX.y;ˇ

Tx/. This automatically leads to

f˛TYjX.˛
Ty; x/ D f˛TYjˇTX.˛

Ty;ˇTx/ for any ˛. Now, if we relax the requirement so that this
relation only holds for some specific ˛ instead of all ˛, then we obtain the DSI model (1).

The DSI model described in (1) arises naturally in practice. In civil engineering, it is an
important topic to study the association between the quality of concrete and its composition
(Yeh, 2006). Concrete is a highly complex material and consists of a mixture of several ingre-
dients, including cement, fly ash, blast-furnace slag, water, superplasticizer and aggregate, etc.
To summarize the composition of concrete is to study the proportion of these different ingre-
dients, hence a natural way to summarize them is via their linear combination. On the other
hand, in terms of quality, concrete is also measured in different aspects. Generally speaking,
concrete which has high consistency at its fresh state while also has high strength at its hard-
ened state, indicates that it has the properties of stability and durability, and is thus considered
to be of high quality. The various aspects of the concrete quality include strength, stability,
durability, etc, and can be summarized into a linear combination of these individual proper-
ties. It is thus natural to apply DSI to explore whether a quality index of the concrete (˛TY)
exhibits some interesting linear/nonlinear relationship with certain composition of the concrete
(ˇTX). In Section 4, we analyse a data example concerning concrete to further demonstrate the
application of DSI.

Given that we can estimate the linear combination coefficients in ˛;ˇ, we can subsequently
perform a classical univariate-covariate univariate-response nonparametric regression to iden-
tify the functional relationship between the two indices. Our proposed method thus provides
a useful exploratory tool for examining potential nonlinear associations between two sets
of variables.

2. Methodology

To ensure identifiability of ˛ and ˇ, we fix the last component of ˛ and ˇ to be 1 and require (1)
to hold at unique ˛ and ˇ locally. We write ˛ D

�
˛T
u; 1

�T
and ˇ D

�
ˇT
u; 1

�T
. The requirement

can be easily satisfied by reordering the components in Y and X if necessary. We point out that
the parameterization of requiring unit length of an index with positive first component and that
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of requiring a fixed component to be one are both commonly used in the literature (Newey &
Stoker, 1993; Klein & Shen, 2007; Klein & Vella, 2009); here we choose the latter to enable
the semi-parametric analysis and computation to be carried out in a more straightforward
way. Under this parameterization, our interest is then exclusively in the q � 1 dimensional
vector ˛u and the p � 1 dimensional vector ˇu. Here the subindex u stands for unknown. Let

� D
�
˛T
u;ˇ

T
u

�T
be the unknown parameter of interest.

To provide a more direct and intuitive example of the model and its identifiability in (1),
we consider the case when ˛u is zero. This occurs when the last component Yq depends
on X through a single index ˇ, while all other components in Y, i.e. Y1; : : : ; Yq�1 depend
on X through structures more complex than the single index model. For example, Yk D
mk.XkXkC1/C �k for k D 1; : : : ; q�1, where �k is a mean zero random variable independent
of X and mk is a non-constant function. Having understood the component-wise model corre-
sponding to the special ˛, we can then generalize the situation to the case when the response
variable is further rotated and stretched by incorporating a general ˛. Further, if we restrict
our interest on ˛ in a local neighbourhood, we can allow more components of Y to depend on
X through single indices, as long as different components of Y correspond to different single
indices. In this case, in a local neighbourhood, only one of these single index structures, cor-
responding to one particular component of Y, will be of interest. With the additional rotation
and stretching, only one linear combination of Y will be captured by ˛; hence, the problem is
locally identifiable.

Following model (1), we write out the likelihood at one typical observation as

fX;Y.x; y/ D �1.x/�2
�
˛Ty;ˇTx

�
�3
�
yr ;˛Ty; x

�
:

Here, yr is the vector of the first q � 1 components of y, �1 represents the probability density
function (pdf) of X and �3 represents the pdf of Yr conditional on ˛TY and X. We use �2 to
represent the pdf of ˛TY conditional on X, which by the model assumption in (1) is a function
of ˛Ty and ˇTx only. Note that �1; �2; �3 are all unknown. It is now clear that (1) can be
viewed as a semiparametric model where the parameter of interest is � and �1; �2; �3 are three
nuisance parameters. We thus use the semiparametric analysis tools to derive nuisance tangent
spaceƒ and its orthogonal complementƒ?. The details of the derivation are in the supporting
information, where we obtain the conclusion that

ƒ?D
°

b
�
˛TY;X

�
�E

�
b j ˛Ty;ˇTx

�
W8b

�
˛TY;X

�
2RpCq�2 s:t: E

�
b j ˇTx

�
DE.b j x/

±
:

This result somewhat resembles the results in (Ma & Zhu, 2012), where their univariate Y is
replaced by ˛TY here. Thus, the constructions there can be applied here as well by replacing
all the instances of Y with ˛TY. Let a and ai ’s be arbitrary functions of x, while g and gi ’s be
arbitrary functions of ˛Ty and ˇTx. Here, a; ai ; g; gi can be scalar, vector or matrix functions
as long as their dimensions conform, and the dimension of their product is p C q � 2, that is,
ga 2 R

pCq�2 and giai 2 R
pCq�2 for i D 1; : : : ; k. Since

E
�®

g
�
˛TY;ˇTX

�
�E

�
g j ˇTX

�¯ ®
a.X/ �E

�
a j ˇTX

�¯�
D 0 (2)

and

E

"
kX
iD1

®
gi
�
˛TY;ˇTX

�
�E

�
gi j ˇTX

�¯ ®
ai .X/ �E

�
ai j ˇTX

�¯#
D 0; (3)

we can use the functions inside the earlier expectations to construct root-n consistent estima-
tors. The construction contained in (2) and (3) possesses a nice double robustness property,
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in that between the two expectations E
®
g
�
˛Ty;ˇTx

�
j ˇTx

¯
(or E

®
gi
�
˛Ty;ˇTx

�
j ˇTx

¯
) and

E
®
a.x/ j ˇTx

¯ �
orE

®
ai .x/ j ˇTx

¯�
, as long as we calculate one of them correctly, we are free

to mis-specify the other, and the consistency of the estimating function will still be retained.
That is, for instance in (2), we have

E
�®

g
�
˛Ty;ˇTx

�
�E

�
g j ˇTx

�¯ ®
a.x/ � h.ˇTx/

¯�
D 0;

and

E
�®

g
�
˛Ty;ˇTx

�
� h

�
ˇTx

�¯ ®
a.x/ �E

�
a j ˇTx

�¯�
D 0

for any function h.ˇTx/. However, different from the practice in (Ma & Zhu, 2012), we sum-
marize the theoretical results of estimating � based on (2) in Theorems 1, where the matrix A
in Theorem 1 is required to have rank p C q � 2.

Theorem 1. Under the regularity conditions C1-C6 listed in the supplement A.2, the estimatorb�
from the estimating equation

nX
iD1

°
g
�b̨Tyi ; b̌T

xi
�
� bE �g j b̌T

xi
�± °

a.xi / � bE �a j b̌T
xi
�±
D 0

is consistent, that is,.

b� ! �

in probability when n!1. In addition, the estimator satisfies

p
nA .b� � �/! N.0;B/

in distribution when n!1. Here,

A D E
�
@ vec

�®
g
�
˛Ty;ˇTx

�
�E

�
g j ˇTx

�¯ ®
a.x/ �E

�
a j ˇTx

�¯�
=@�T� ;

B D cov
�

vec
�®

g
�
˛Ty;ˇTx

�
�E

�
g j ˇTx

�¯ ®
a.x/ �E

�
a j ˇTx

�¯��
:

Theorem 1 implies an interesting phenomenon, in that although we estimated the two expec-

tations conditional on b̌T
x nonparametrically, the corresponding estimation causes no effect

on the final asymptotic properties of b�. In other words, if we had known how to obtain

E
�

a j b̌T
x
�

and E
�

g j b̌T
x
�

exactly, the estimation of � would not have been improved fur-

ther. This nice property is a direct result of the double centring form of the estimating equation
in Theorem 1, where we centred both g and a through subtracting their respective mean con-

ditional on b̌T
x, before multiplication. Similar practice has been used in other models in the

partially linear model related literature (Ma et al., 2006; Ma & Zhu, 2013a) and sufficient
dimensional reduction literature (Ma & Zhu, 2012). How the double centring operation leads
to this property is clearly shown in the proof of Theorem 1, especially through Lemma 1.2,
given in the supplement A.3. It is also clear from the derivation in the supplement A.3 that if we
had taken advantage of the double robustness property mentioned before and had estimated
only one expectation faithfully while using an arbitrary h

�
ˇTx

�
to replace the other expecta-

tion, then the fact that we had to estimate the conditional expectation would have led to an
alteration of the variability in estimatingb�.

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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We now further investigate the efficient estimation issue through calculating the score and
the efficient score. First, straightforward calculation yields

Sˇ
�
˛Ty;ˇTx

�
D
@ log �2

�
˛Ty;ˇTx

�
@.ˇTx/

xr ;

where we use xr to denote the vector of the first p � 1 components of x. Now projecting Sˇ
onto ƒ?, we obtain

Seffˇ
�
˛Ty;ˇTx

�
D
@ log �2

�
˛Ty;ˇTx

�
@
�
ˇTx

� ®
xr �E

�
Xr j ˇTx

�¯
:

This is because we can easily verify that Seffˇ
�
˛Ty;ˇTx

�
2 ƒ? and®

@ log �2
�
˛Ty;ˇTx

�
=@.ˇTx/

¯
E
�
Xr j ˇTx

�
2 ƒ, based on the description of ƒ? and ƒ in

supplement A.1. We now further calculate

S˛
�
yr ;˛Ty; x

�
D
@ log �2

�
˛Ty;ˇTx

�
@
�
˛Ty

� yr C
@ log �3

�
yr ;˛Ty; x

�
@.˛Ty/

yr :

Projecting S˛ onto ƒ?, we obtain Seff˛
�
˛Ty;ˇTx

�
D E

�
S˛ j ˛Ty; x

�
� E

�
S˛ j ˛Ty;ˇTx

�
:

This is because

E
®
E
�
S˛ j˛Ty; x

�
jx
¯
DE.S˛ jx/D

Z
@
®
�2
�
˛Ty;ˇTx

�
�3
�
yr ;˛Ty; x

�¯
@
�
˛Ty

� d.˛Ty/yrdyr D 0;

hence, E
®
E
�
S˛ j ˛Ty; x

�
j x
¯
D E

®
E
�
S˛ j ˛Ty; x

�
j ˇTx

¯
, which implies Seff˛ 2 ƒ

?. On the
other hand, S˛�E

�
S˛ j ˛Ty; x

�
2 ƒ3 and E

®
E
�
S˛ j ˛Ty;ˇTx

�
j ˇTx

¯
D E

�
S˛ j ˇTx

�
D 0,

hence S˛ � Seff˛ 2 ƒ indeed. Hence, the projection of S˛ onto ƒ? is indeed given by Seff˛ .
Specifically, we obtain

Seff˛.˛
Ty;ˇTx/

D
@ log �2

�
˛Ty;ˇTx

�
@.˛Ty/

®
E
�
yr j ˛Ty; x

�
�E

�
yr j ˛Ty;ˇTx

�¯
CE

´
@ log �3

�
yr ;˛Ty; x

�
@.˛Ty/

yr j ˛Ty; x

μ
�E

´
@ log �3

�
yr ;˛Ty; x

�
@
�
˛Ty

� yr j ˛Ty;ˇTx

μ
:

Combining the two calculations, we have Seff D
�

Seff
T
˛;Seff

T
ˇ

�T
.

Unfortunately, the estimation of E
�
yr j ˛Ty; x

�
and �3

�
yr ;˛Ty; x

�
is subject to curse of

dimensionality because of the presence of x (as well as yr for �3
�
yr ;˛Ty; x

�
). Hence, the effi-

cient estimator is unreachable in practice. This is in contrast to (Ma & Zhu, 2013b), where only
a univariate Y is concerned. However, we can use the form of Seff to construct locally efficient
estimators using a working model of �3. Although we can estimate �2, considering that in any
case we cannot guarantee efficiency, we will use a working model of �2 as well. To this end, we
propose to posit the working models ��

2

�
˛Ty;ˇTx

�
and ��

3

�
yr ;˛Ty; x

�
. We then construct the

locally efficient estimators from S�eff D
�

S�eff
T
˛
;S�eff

T
ˇ

�T
, where

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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S�eff˛ D
@ log ��

2

�
˛Ty;ˇTx

�
@.˛Ty/

�
E�

�
yr j ˛Ty; x

�
�E

®
E�

�
yr j ˛Ty; x

�
j ˛Ty;ˇTx

�¯�
CE�

´
@ log ��

3

�
yr ;˛Ty; x

�
@
�
˛Ty

� yr j ˛Ty; x

μ

�E

"
E�

´
@ log ��

3

�
yr ;˛Ty; x

�
@.˛Ty/

yr j ˛Ty; x

μ
j ˛Ty;ˇTx

#
;

and

S�effˇ D

"
@ log ��

2

�
˛Ty;ˇTx

�
@.ˇTx/

�E

´
@ log ��

2

�
˛Ty;ˇTx

�
@.ˇTx/

ˇ̌̌̌
ˇˇTx

μ#®
xr �E

�
Xr jˇTx

�¯
:

We can obtain the locally efficient estimator through using S�eff. Specifically, use Oi to denote
the i th observation, and use S�eff.Oi I�; bE/ to denote the efficient score evaluated at Oi , with E

replaced by its kernel estimator bE. The estimatorb� D �b̨T
; b̌T�T

satisfies

nX
iD1

S�eff

�
Oi Ib�; bE� D 0: (4)

We show that b� is locally efficient, that is, it is efficient when �2 and �3 are correctly specified;
otherwise it is still consistent and asymptotically normal.

Theorem 2. Under the regularity conditions B1-B5 listed in the supplement A.4, the estimator b�
from the estimating equation (4) is locally efficient. Specifically, when n!1,

p
n.b� � �/! N

�
0;A�1BA�1

T
�
;

where A D �E
®
@S�eff.Oi I�/=@�

T
¯

and B D E
�
¹S�eff.Oi I�/ � u�.xi I�/º˝2

�
. Here,

u�.xi I�/ �
Z

b�.˛Ty; xi /�2
�
˛Ty;ˇTxi

�
d.˛Ty/

�

Z R
ˇTxDˇTxi

b�
�
˛Ty; x

�
fx.x/dx�2

�
˛Ty;ˇTxi

�
f .ˇTxi /

d
�
˛Ty

�
:

In addition, when ��
2

�
˛Ty;ˇTx

�
D �2

�
˛Ty;ˇTx

�
and ��

3

�
yr ;˛Ty;ˇTx

�
D �3

�
yr ;˛Ty;ˇTx

�
,

then A D B D E
°

S˝2eff .Oi I�/
±

, and the estimator is efficient. Here a˝2 � aaT for any vector or
matrix a.

The details of the implementation of the locally efficient estimator is the following. To
simplify the description of the implementation of the locally efficient estimator, we first
define functions

m1
�
ˇTx

�
� E

�
xr jˇTx

�
;

m2
�
ˇTx

�
� E

´
@ log ��

2

�
˛Ty;ˇTx

�
@ˇTx

ˇ̌̌̌
ˇˇTx

μ
;

m3
�
˛Ty;ˇTx

�
� E

®
b�
�
˛Ty; x

�ˇ̌
˛Ty;ˇTx

¯
;

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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where

b�
�
˛Ty; x

�
�
@ log ��

2

�
˛Ty;ˇTx

�
@
�
˛Ty

� E�
�

yr j˛Ty; x
�
CE�

´
@ log ��

3

�
yr ;˛Ty; x

�
@
�
˛Ty

� yr

ˇ̌̌̌
ˇ˛Ty; x

μ
:

The Nadaraya–Watson kernel estimators of m1; m2 and m3 are respectively

bm1.ˇTx/ D

Pn
iD1Kh

®
ˇT.x � xi /

¯
xriPn

iD1Kh
®
ˇT.x � xi /

¯ ;

bm2 �ˇTx
�
D

Pn
iD1Kh

®
ˇT.x � xi /

¯
@ log ��

2

�
˛Tyi ;ˇTxi

�
=@ˇTxiPn

iD1Kh
®
ˇT.x � xi /

¯ ;

bm3 �˛Ty;ˇTx
�
D

Pn
iD1Kh

®
ˇT.x � xi /

¯
b�
�
t˛Ty; xi

�Pn
iD1Kh

®
ˇT.x � xi /

¯ ;

where h is a bandwidth. To emphasize the dependence on m1; m2;m3, we can write the locally
efficient score function

S�eff

®
˛Ty;ˇTx;m1

�
ˇTx

�
;m2

�
ˇTx

�
;m3

�
˛Ty;ˇTx

�¯
:

The locally efficient estimator can then be obtained in practice through solving the estimating
equation

nX
iD1

S�eff

®
˛Tyi ;ˇTxi ;bm1 �ˇTxi

�
; bm2 �ˇTxi

�
;bm3 �˛Tyi ;ˇTxi

�¯
D 0:

As long as the bandwidth h is fixed, the only unknown quantity in the estimating equation
is �. The estimating equation can be solved by standard optimization methods such as the
Newton–Raphson algorithm or the trust region method. Because a wide range of bandwidths
all lead to the same asymptotic result; hence, even in finite samples, the estimator is quite insen-
sitive to the bandwidth. Thus, we can simply use h D n�1=5 in the implementation. One can
certainly perform cross validation and use a unique bandwidth to associate with each spe-
cific nonparametric regression, at the cost of selecting more bandwidths. We have implemented
our method in MATLAB, where Newton–Raphson algorithm is applied and numerical differ-
ence is used to approximate the local derivative functions. Based on our limited experience, the
computation is stable and fast.

Having estimated �, we can perform nonparametric regression of b̨TY on b̌T
X to further

estimate �2, following, for example, (Fan et al., 2003). Because � is estimated at the parametric
rate of root-n, the estimation of �2 will have the usual nonparametric estimation rate, and
its first order asymptotic properties are the same as that of the estimation of �2 using the
true parameter �. Because the derivation and the results of the nonparametric procedure are
standard, we omit the details.

Trimming (Ichimura, 1993) is often needed in nonparametric estimation to handle the
potential issue of dividing by zero. However, trimming is avoided here because we only need the
nonparametric evaluations at ˇTxi , which is always positive because we include the i th obser-
vation in the estimator. Further, condition C3 guarantees the density of ˇTX to be bounded
away from zero. Thus, when sample size is sufficiently large, the estimated density is also
bounded away from zero.

In practice, to specify ��
2

and ��
3

, we suggest the following. First, use simpler methods such
as CCA or SCA to obtain starting values . Q̨ ; Q̌ / for DSI. Then, ��

2
can be specified based

on the empirical conditional distribution between the leading canonical pairs Q̨ Ty and Q̌
T

x,
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for example,
�
;˛Ty � N

�
aˇTxC b; �2

�
, where a, b and �2 are estimated from a regression

analysis between Q̨ Ty and Q̌
T

x. Our numerical results suggest that ��
3

can be specified in a
more crude way, Section 3. For example, we can specify ��

3
by assuming the components of yr

are independent conditional on Q̨ Ty and x and conducting regression analysis between yr and
some linear/nonlinear functions of Q̨ Ty and x.

3. Simulation

3.1. Setups

We conduct simulation studies to evaluate the finite sample performance of the proposed
methods. For comparison, the most relevant nonlinear approach to our method is the semi-
parametric CCA (SCA) proposed by (Xia, 2008). SCA searches the pair of indices by

minimizing E
®
˛TY �E

�
˛TYjˇTX

�¯2
, and the procedure involves the estimation of E.Yi j X/

and its derivatives using d -th order local polynomial smoothing, where d > p=2 C 1 in
order to achieve

p
n-consistency. Several classical multivariate tools based on certain linearity

assumption can also be applied for such two-way search, with CCA and RRR as the popular
prototypes of those. We thus compare the proposed DSI approach with CCA, RRR and SCA.

We set p D 5, q D 4, ˛ D .1; 1; 1; 1/T and ˇ D .1;�1; 1;�1; 1/T in all the simulation
examples. The process of generating a typical observation .x; y/ is as follows.

(1) Generate x from �1, the marginal distribution of X.
(2) Compute ˇTx and generate ˛Ty from �2, the conditional distribution of ˛TY given ˇTx.
(3) Generate yr from �3, the conditional distribution of Yr given ˛Ty and x.
(4) Compute yq from the generated values ˛Ty and yr , i.e., yq D ˛Ty � ˛T

uyr . Let y D�
yT
r ; yq

�T
.

We set �1 as the standard multivariate normal distribution; in practice, with the compo-
nents of X correlated, one may orthogonalize the variables before pursuing sufficient dimension
reduction. We consider three models with different choices of �2:

Model I: �2 is the normal distribution with mean �� D ˇTx and variance �2� D 4.
Model II: �2 is the normal distribution with mean �� D .ˇTx/2 and variance �2� D 6.
Model III: �2 is the normal distribution with mean �� D .ˇTx/2 and variance �2� D �

2

exp.ˇTx=3/ where �2 D 6.

In each of the aforementioned models, �3 is set as the multivariate normal distribution with
mean vector �r D .�r;1; : : : ; �r;q�1/

T with

�r;i D ˛
Ty=q C 2 sin.˛Ty/C a

�
hT
i x
�
C b

�
hT
i x
�2
; i D 1; : : : ; q � 1;

and covariance matrix 4I, where the hi s are orthonormal vectors that are also orthogonal to
ˇ. The constants a and b are chosen to control the marginal correlation structure of Y. Specif-
ically, we set a D 3; b D 3 in Model 1, and a D 3; b D 9 in both Models II and III, so that the
correlations among the Yi , i D 1; : : : ; q are roughly at or below 0.6 in magnitude. These setups
ensure that ˛TY is not dominated by any particular coordinate in Y, and it is indeed the desired
simple direction, that is, a direction in Y that is associated with a one-dimensional sufficient
dimension reduction subspace in X. For the aforementioned models, it can be conveniently
shown that

@ log �2
�
˛Ty;ˇTx

�
@
�
˛Ty

� D
�� � ˛

Ty
�2�

;
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@ log �2
�
˛Ty;ˇTx

�
@
�
ˇTx

� D �
1

2

@ log �2�
@
�
ˇTx

� � 2
�
�� � ˛

Ty
� @��

@.ˇTx/
�2� �

�
�� � ˛

Ty
�2 @�2�

@.ˇTx/

2�4�
;

and

E

´
@ log �3

�
yr ;˛Ty; x

�
@
�
˛Ty

� yr j˛Ty; x

μ
D

@�r

@
�
˛Ty

� :
The proposed locally efficient estimation is from solving the estimating equations (4) with
potentially misspecified �2 and �3. For all three simulation examples, we set ��

3
, the working

model for �3, as normal with mean vector
�
˛Ty=q C x2

1
; : : : ;˛Ty=q C x2q

�T
and variance-

covariance matrix identity. We set ��
2

, the working model of �2, as N
�
�� D 2ˇ

Tx; �2� D 9
�

in Model I and N
�
�� D jˇ

Txj; �2� D 9
�

in Models II and III. Three locally efficient estima-
tors are constructed: the first one is based on ��

2
and ��

3
(LOC1), the second one is based

on �2 and ��
3

(LOC2), and the third one is based on ��
2

and �3 (LOC3). When both �2

and �3 are correctly specified, we obtain an efficient oracle estimator (OR). Because �2 and
�3 are usually unknown in real problems, LOC2, LOC3 and OR are not feasible in prac-
tice, but here they may serve as benchmarks to examine the effects of model misidentification.
Based on Theorem 1, we also construct a simple consistent estimator (SIM), in which we
choose g

�
˛Ty;ˇTx

�
D E

�
x j ˛Ty

�
and a.x/ D xT. As we focus on the single index setup, the

first leading pair of canonical variables are extracted from CCA, and a unit-rank estimator
is obtained from RRR; the resulting estimators are denoted as CCA1 and RRR1, respec-
tively. For CCA and RRR, we also extracted min.p; q/ pairs of directions and recorded the

one that is the closest to the true pair measured by

����b̨�b̨Tb̨��1 b̨T
� ˛

�
˛T˛

��1
˛T

����
F

C����b̌�b̌Tb̌��1 b̌T
� ˇ

�
ˇTˇ

��1
ˇT

����
F

; the resulting estimators are denoted CCA* and RRR*,

respectively. Similarly, for the semiparametric method SCA, we computed two estimators SCA1
and SCA*.

3.2. Results

We have considered various sample sizes, that is, n D 500; 200 and 100, while for brevity, we
mainly focus our discussion for the case n D 500 in the sequel, unless otherwise noted. The
experiment is replicated 500 times under each setting. The obtained estimates (b̨, b̌) are stan-
dardized in the same way as the true (˛, ˇ), as described in Section 2. Figures 1–3 show the
boxplots of the Euclidean distances between the true parameters and their estimated coun-

terparts from all simulation runs, that is, d.b̨;˛/ D ����b̨�b̨Tb̨��1 b̨T
� ˛

�
˛T˛

��1
˛T

����
F

for

measuring the distance from b̨ to ˛, and d.b̌;ˇ/ D ����b̌�b̌Tb̌��1 b̌T
� ˇ

�
ˇTˇ

��1
ˇT

����
F

for

measuring the distance from b̌ to ˇ, where k�kF denotes the Frobenius norm. Tables 1–3 report
the average parameter estimates (ave) and their associated standard errors (std), for Models I–
III, respectively. For the proposed semiparametric estimators, we also report the average of the
estimated standard deviations (cstd) and the coverage of the estimated 95% confidence interval
(95%), based on the asymptotic results.

In Model 1, the association between ˛TY and ˇTX is linear, which should benefit the linear
methods. From Table 1, CCA performs very well in estimation, but RRR performs much worse.
The discrepancy in performance between these two methods is due to their different objectives:
while CCA focuses on maximizing the correlation between a pair of directions in Y and X,
RRR focuses on explaining the variation in Y by X. In our model setup, ˛TY and ˇTX indeed

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 1. Boxplots of d.b̨;˛/ and d.b̌;ˇ/ for Model I (n D 500). CCA, canonical correlation analysis;
OR, oracle estimator; SCA, semiparametric approach of CCA; SIM, simple consistent estimator.
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Fig. 2. Boxplots of d.b̨;˛/ and d.b̌;ˇ/ for Model II (n D 500). CCA, canonical correlation analysis;
OR, oracle estimator; SCA, semiparametric approach of CCA; SIM, simple consistent estimator.
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Fig. 3. Boxplots of d.b̨;˛/ and d.b̌;ˇ/ for Model III (n D 500). CCA, canonical correlation analysis;
OR, oracle estimator; SCA, semiparametric approach of CCA; SIM, simple consistent estimator.

has the strongest linear association among all possible directions, which makes CCA suitable.
However, ˇTX does not necessarily coincide with the targeted direction of RRR, along which
most of the variation in Y can be explained in the least squares sense. As a consequence, RRR is
unsuitable here for the discovery of the desired single indices, and even RRR* performs poorly.
The performance of SCA* is comparable with CCA; however, the extracted leading pair by the
SCA method does not necessarily correspond to the desired pair, as seen from the performance
of SCA1. If we knew the underlying model is linear, a parsimonious method like CCA would
be preferable. Our results show that the proposed semiparametric approaches, which do not
rely on the knowledge of linear model, work almost as well as CCA, with only a slight loss in
efficiency. We plotted the results in Figure 1 to show the relative performance of the different
methods. For better illustration, we omitted the estimators that perform much worse than the
rest of methods.

In Models 2 and 3, the association between ˇTY and ˛TX is nonlinear, and any other direc-
tion in Y may not be adequately characterized by a single direction in X. Not surprisingly,
CCA and RRR both perform poorly. The bias in CCA* or RRR* is much smaller than CCA1
or RRR as expected, but the variance of either estimator is very high. Again, SCA1 may pick
up other spurious directions to approximate a single index model. Nevertheless, it appears
that the desirable pair is most likely among the ones obtained from SCA, albeit a much larger
estimation error comparing with the proposed DSI methods. Also, the performance of SCA*
in Model II is relatively better than that in Model III, because in Model II the two indices
are related only in their mean structure, while in Model III the two indices are also related
in their second moments. In all occasions, the DSI estimators continue to perform very well,
clearly demonstrating the effectiveness of the proposed methods in detecting nonlinear asso-
ciation. LOC1 performs better than SIM in general as expected. Comparing the three locally
efficient estimators and the oracle estimator, the misspecification of �2 has a bigger impact on
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Table 1. Simulation results for Model I (n D 500).

˛1 ˛2 ˛3 ˇ1 ˇ2 ˇ3 ˇ4

CCA1 ave 1.0019 1.0017 1.0025 �0:9954 0.9978 �0:9863 0.9964
std 0.0353 0.0333 0.0344 0.1415 0.1396 0.1310 0.1336

CCA* ave 1.0019 1.0017 1.0025 �0:9954 0.9978 �0:9863 0.9964
std 0.0353 0.0333 0.0344 0.1415 0.1396 0.1310 0.1336

RRR1 ave �0:4651 �0:5834 �0:4676 0.9328 1.1671 �0:3009 0.3320
std 0.6076 0.8502 0.6741 1.4070 2.0669 0.7229 0.8102

RRR* ave 0.8305 1.0038 1.0469 �0:7006 0.8643 �0:8071 0.7799
std 1.6763 1.4649 2.1281 3.6369 4.5548 2.5557 2.8155

SCA1 ave �1:2397 �0:1936 0.0127 0.7962 �0:7020 �0:2470 0.2418
std 1.7829 1.7914 1.7786 1.4098 1.4535 0.5063 0.5015

SCA* ave 1.0027 1.0014 1.0022 �0:9966 0.9972 �0:9860 0.9976
std 0.0367 0.0347 0.0356 0.1455 0.1414 0.1337 0.1360

SIM ave 1.0000 0.9929 0.9968 �1:0256 1.0153 �1:0300 1.0233
std 0.0553 0.0566 0.0570 0.1496 0.1340 0.1383 0.1331cstd 0.0548 0.0553 0.0568 0.1446 0.1437 0.1359 0.1366
95% 0.9100 0.9140 0.9000 0.9380 0.9560 0.9520 0.9700

LOC1 ave 1.0013 0.9984 1.0001 �1:0037 1.0034 �1:0092 1.0031
std 0.0356 0.0344 0.0327 0.1385 0.1425 0.1396 0.1322cstd 0.0322 0.0322 0.0324 0.1406 0.1448 0.1375 0.1393
95% 0.9340 0.9280 0.9500 0.9380 0.9460 0.9380 0.9540

LOC2 ave 1.0015 0.9986 1.0002 �1:0033 1.0044 �1:0083 1.0035
std 0.0348 0.0341 0.0326 0.1304 0.1357 0.1309 0.1239cstd 0.0332 0.0326 0.0330 0.1329 0.1365 0.1296 0.1311
95% 0.9600 0.9300 0.9560 0.9480 0.9480 0.9380 0.9520

LOC3 ave 0.9998 0.9994 1.0004 �1:0039 1.0052 �1:0113 1.0045
std 0.0279 0.0287 0.0267 0.1371 0.1359 0.1368 0.1294cstd 0.0280 0.0278 0.0278 0.1270 0.1297 0.1233 0.1262
95% 0.9480 0.9440 0.9540 0.9380 0.9340 0.9220 0.9500

OR ave 0.9996 0.9996 1.0007 �1:0040 1.0069 �1:0107 1.0052
std 0.0272 0.0284 0.0264 0.1287 0.1292 0.1283 0.1213cstd 0.0271 0.0266 0.0267 0.1312 0.1332 0.1272 0.1293
95% 0.9500 0.9320 0.9480 0.9520 0.9500 0.9420 0.9600

CCA, canonical correlation analysis; OR, oracle estimator; RRR, reduced rank regression; SCA, semi-
parametric approach of CCA; SIM, simple consistent estimator.

estimation than �3 does. In both models, OR performs the best among all the methods, because
of the fact that the search of the directions becomes more trackable when the underlying model
structure is correctly chosen. On the other hand, even when both �2 and �3 are misspecified,
LOC1 still achieves small bias and remarkable estimation accuracy, with only slightly increased
standard errors.

Furthermore, we can see that the inference results based on the asymptotic analysis are accu-
rate in general. The estimated standard errors match well with their counterparts based on
Monte Carlo simulation, and the coverage probabilities are mostly close to the nominal level
95%. We notice that in Models II and III, LOC1 tends to be slightly biassed for the estima-
tion of ˛, and the standard errors also tend to be slightly overestimated. Nevertheless, in our
experiment the inference results improve when we increase the sample size.

We have also experimented with smaller sample sizes. The estimation performance of the
semiparametric estimators in Model II for n D 200 and n D 100 are shown in the supporting
information. While the estimation accuracy of the DSI methods is still satisfactory, it appears
that the performance of SCA* deteriorates more severely. Probably this is because the SCA
method requires the estimation of E.Yi jX/ and its derivatives, which needs strong sample size
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Table 2. Simulation results for Model II (n D 500).

˛1 ˛2 ˛3 ˇ1 ˇ2 ˇ3 ˇ4

CCA1 ave 0.6085 0.0534 �0:1249 0.4247 �1:0752 �0:1941 0.1703
std 5.3256 3.7520 4.8869 3.2969 3.3596 1.1036 1.0924

CCA* ave 1.0022 1.0121 1.0252 �0:9870 0.8972 �1:2320 1.0596
std 0.2406 0.2551 0.2683 2.5884 2.2488 5.2078 5.8762

RRR1 ave �0:3430 �0:4070 �0:3075 0.7447 0.0802 0.0928 �0:0913

std 0.5085 0.2223 0.4834 2.6632 2.7881 1.0480 0.9500
RRR* ave 0.9439 1.0289 0.9611 �1:1452 0.8949 �1:1906 0.7960

std 1.2258 0.6755 0.5541 3.7731 2.0927 5.3769 4.9484
SCA1 ave �0:3326 �0:1935 �0:1858 0.9299 �0:8993 �0:5943 0.5953

std 1.9992 1.8853 1.9391 2.1112 2.1041 0.5956 0.5970
SCA* ave 1.0006 1.0005 0.9996 �0:9979 0.9922 �0:9995 0.9965

std 0.0574 0.0383 0.0457 0.1929 0.1960 0.1233 0.1168
SIM ave 1.0047 1.0026 1.0063 �1.0826 1.0878 �1:0949 1.0776

std 0.0350 0.0368 0.0365 0.1751 0.1675 0.1787 0.1777cstd 0.0359 0.0351 0.0355 0.1711 0.1656 0.1626 0.1681
95% 0.9260 0.9140 0.9220 0.9280 0.9320 0.9360 0.9300

LOC1 ave 1.0145 1.0133 1.0129 �0:9999 1.0015 �1:0005 1.0015
std 0.0144 0.0160 0.0145 0.0406 0.0409 0.0401 0.0392cstd 0.0186 0.0198 0.0203 0.0394 0.0393 0.0382 0.0389
95% 0.9540 0.9540 0.9820 0.9580 0.9420 0.9480 0.9640

LOC2 ave 1.0010 1.0012 1.0001 �1:0022 1.0031 �1:0021 1.0030
std 0.0117 0.0115 0.0109 0.0323 0.0318 0.0323 0.0308cstd 0.0113 0.0110 0.0109 0.0322 0.0322 0.0318 0.0322
95% 0.9580 0.9340 0.9660 0.9580 0.9560 0.9640 0.9580

LOC3 ave 1.0003 1.0011 1.0000 �0:9991 1.0009 �1:0002 1.0015
std 0.0120 0.0118 0.0114 0.0386 0.0393 0.0390 0.0382cstd 0.0110 0.0109 0.0109 0.0386 0.0387 0.0377 0.0385
95% 0.9380 0.9340 0.9340 0.9480 0.9480 0.9500 0.9640

OR ave 1.0006 1.0011 1.0000 �1:0021 1.0029 �1:0019 1.0028
std 0.0110 0.0110 0.0103 0.0319 0.0314 0.0320 0.0304cstd 0.0106 0.0105 0.0105 0.0318 0.0320 0.0315 0.0319
95% 0.9460 0.9420 0.9640 0.9560 0.9560 0.9620 0.9600

CCA, canonical correlation analysis; OR, oracle estimator; RRR, reduced rank regression; SCA, semi-
parametric approach of CCA; SIM, simple consistent estimator.

requirement depending on the predictor dimension p. We have experimented with models in
which the two indices are related in the second moments but not the first, and as expected
SCA* fails while the proposed method continues to perform well. We note that the inference
results of DSI may become less accurate for small sample sizes. In particular, the coverage prob-
abilities for SIM and LOC1 tend to be slightly lower than the nominal level. This is expected
as the inference procedure involves numerical approximations in several places, and for com-
plex models a larger sample size may be required to allow the asymptotic theory to take effect.
Following the request of a referee, we also increased the dimensions p and q and investigated
the scalability of the method. The results are very encouraging. We provide the details of the
computational performance in the supporting information.

4. Concrete slump test data

As a mixture of several ingredients, concrete is a highly complex material. Understanding the
relationship between the quality and composition of concrete is an important topic in the field
of Civil Engineering. Generally speaking, concrete with high consistency at its fresh state and
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Table 3. Simulation results for Model III (n D 500).

˛1 ˛2 ˛3 ˇ1 ˇ2 ˇ3 ˇ4

CCA1 ave 0.4335 �0:1846 0.6086 0.5321 �0:8804 �0:2799 0.2006
std 5.5592 4.2589 5.6687 3.9372 3.7894 1.3377 1.0205

CCA* ave 1.0234 0.9830 1.0141 �1:0164 1.1505 �0:9157 1.1674
std 0.2575 0.2588 0.2505 4.6014 4.5963 7.1897 9.5704

RRR1 ave �0:3377 �0:3885 �0:3376 0.7026 0.0307 �0:0410 �0:1217

std 0.5326 0.3455 0.5272 2.6470 3.0442 1.1687 1.0144
RRR* ave 0.9656 0.9601 1.0030 �0:7602 0.6793 �0:6031 0.8798

std 0.4133 0.4283 0.6232 4.1492 3.2080 5.3231 5.5661
SCA1 ave �0.2611 �0:2539 �0:4031 0.9776 �1:1616 �0:6185 0.6212

std 1.9660 1.9287 1.9992 2.1519 2.1893 0.5933 0.5946
SCA* ave 1.0071 1.0027 1.0069 �0:9820 0.9957 �0:9919 0.9922

std 0.1836 0.1037 0.1223 0.3488 0.3186 0.2126 0.2215
SIM ave 1.0051 1.0024 1.0059 �1:0837 1.0779 �1:0932 1.0816

std 0.0372 0.0344 0.0368 0.1679 0.1794 0.1671 0.1740cstd 0.0379 0.0386 0.0378 0.1870 0.1868 0.1885 0.1868
95% 0.9300 0.9440 0.9280 0.9700 0.9540 0.9780 0.9700

LOC1 ave 1.0140 1.0129 1.0136 �1:0034 0.9977 �0:9994 0.9954
std 0.0164 0.0157 0.0163 0.0506 0.0523 0.0537 0.0521cstd 0.0194 0.0216 0.0216 0.0501 0.0496 0.0489 0.0497
95% 0.9420 0.9740 0.9760 0.9440 0.9480 0.9460 0.9580

LOC2 ave 1.0010 0.9999 1.0004 �1:0017 1.0003 �1:0012 1.0014
std 0.0117 0.0099 0.0101 0.0239 0.0223 0.0236 0.0231cstd 0.0112 0.0099 0.0100 0.0239 0.0230 0.0232 0.0230
95% 0.9480 0.9620 0.9560 0.9540 0.9740 0.9520 0.9500

LOC3 ave 1.0003 0.9999 1.0006 �1:0037 0.9975 �0:9999 0.9958
std 0.0133 0.0127 0.0130 0.0485 0.0503 0.0523 0.0508cstd 0.0122 0.0122 0.0123 0.0495 0.0494 0.0486 0.0493
95% 0.9340 0.9580 0.9400 0.9560 0.9580 0.9480 0.9660

OR ave 1.0004 1.0000 1.0004 �1:0016 1.0000 �1:0009 1.0013
std 0.0096 0.0098 0.0098 0.0220 0.0211 0.0223 0.0218cstd 0.0095 0.0096 0.0096 0.0225 0.0220 0.0223 0.0220
95% 0.9500 0.9560 0.9440 0.9580 0.9760 0.9520 0.9500

CCA, canonical correlation analysis; OR, oracle estimator; RRR, reduced rank regression; SCA, semi-
parametric approach of CCA; SIM, simple consistent estimator.

with high strength at its hardened state exhibits desirable properties of stability and durability.
The consistency of fresh concrete is commonly measured through a slump-cone test, by exam-
ining the behaviours of a compacted inverted cone of fresh concrete under the action of gravity:
the slump is measured by the length of the drop from the top of the slumped concrete, and the
slump flow is measured by its diameter. Here, we consider a slump test dataset, consisting of
103 sets of slump test measurements (Yeh, 2006; 2007). Three variables regarding the qual-
ity of concrete were recorded including slump (cm), slump flow (cm) and 28-day compressive
strength (mpa). The ingredients composing the concrete were also recorded (kg/m3), including
cement, fly ash, blast furnace slag, water, superplasticizer and aggregate. Here, we apply the
DSI approach to explore the association between the three quality variables (q D 3) and three
ingredient variables (p D 3), the fly ash, water and superplasticizer, which are known to be
important factors related to the slump and concrete quality (Yeh, 2006). All the variables are
standardized prior to the analysis.

We apply CCA, RRR and SCA to identify possible linear/nonlinear relationships between
the two sets of variables. We then conduct the DSI estimation, starting from 100 sets of initial
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values of ˛ and ˇ, randomly generated by adding Gaussian noise N.0; 3/ to their CCA/RRR
estimates. As the estimation problem is local in nature, this ensures that the starting points are
fairly spread out in the vicinity of some initial linear estimates, enabling us to explore whether
interesting directions of sufficient dimension reduction can be found when deviating away from
the linear analysis. Because of the nonconvexity of the problem, multiple roots of the estimat-
ing equations may exist. In this problem, predominately, we find two roots from the 100 model
fitting attempts. Upper plots of Figure 4 depict the observed data points along the estimated
linear directions from CCA and RRR, together with the fitted linear regression curves. In the
middle panel of Figure 4, we plotted the two sets of solutions from the DSI method, and the fit-
ted nonparametric regression curves are also shown. The SCI methods also extracted two pairs
of directions, as shown in the bottom panel of Figure 4. The parameter estimates are given in
Table 4. We have used the single-indexing (leave-one-out) cross-validation method (Xia, 2008)
to assess the goodness of fit of the extracted pairs, to test whether b̨TY can be adequately pre-

dicted by a single index model of b̌T
X, and all the six pairs mentioned earlier passed the test.

The first pair of directions found by either DSI or SCI mostly coincides with those from
CCA. From the similarity of the results, as well as the fitted nonparametric curves, we can
see a strong linear association along this pair of directions. It is worth pointing out that the
coefficients for the slump flow has opposite sign from that of the strength or slump. This can
be explained easily because in the slump test, the slump and the slump flow are in fact strongly
positively correlated. Generally speaking, a lower slump implies a lower slump flow and higher
compressive strength.
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Fig. 4. Scatter plots along the estimated single-index directions for the slump test data analysis. CCA,
canonical correlation analysis; DSI, double single index; RRR, reduced rank regression; SCA, semipara-
metric approach of CCA.
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Table 4. Coefficient estimation in the slump test data analysis.

Slump flow Strength Slump Fly ash Superplasticizer Water
˛1 ˛2 ˛3 ˇ1 ˇ2 ˇ3 Lack of fit

CCA �1:6433 0.2853 1.0000 0.1032 0.0715 1.0000 No
RRR 1.2951 �0.5765 1.0000 �0.1115 �0.1691 1.0000 No
SCA(1) �1:6917 0.2938 1.0000 0.1380 0.0469 1.0000 No
SCA(2) �0:6435 0.0612 1.0000 �0.1487 �0.5702 1.0000 No
DSI(1) �1:5573 0.2700 1.0000 0.1108 0.0713 1.0000 No
DSI(2) 3.1315 �1:5634 1.0000 �0.1583 �0.1508 1.0000 No

CCA, canonical correlation analysis; DSI, double single index; RRR, reduced rank regression; SCA,
semiparametric approach of CCA.

The second set of DSI solution reveals another interesting relation between the concrete
quality and its character. In this case, the estimated b̨ from DSI agrees in sign with that from
the RRR, although their coefficient values are quite different. The identified b̌ directions in X
from the two methods are similar and mainly dominated by the water content variable. This
is not surprising as the water content is the most important factor influencing the property
of concrete, and the fly ash and the superplasticizer are both supplemental admixtures that
are expected to have some secondary impact. Up to a few outliers, the association between
the identified single indices by DSI can be well characterized by the fitted robust nonlinear
nonparametric regression line, as shown in Figure 4(d). The coefficient of determination (R2)
for the DSI fitted line is 0.503, while that for the RRR fitted line is 0.420. (We have removed two
potential outliers, and the R2 values before outlier removal are 0.426 and 0.364, respectively).
As the water content increases, the quality index seems to increase sharply at the beginning,
then flats out and eventfully decreases slightly. These findings are consistent with the results in
(Yeh, 2006), in which a similar nonlinear relationship between slump and water content was
detected via neural network models. From Figure (4), the second pair found by SCI appears to
be spurious, and does not offer much insight to the problem. This example demonstrates that
the DSI approach can be a useful and flexible tool for conveniently exploring simple nonlinear
structures in complex multivariate association.

5. Discussion

Although the DSI method is illustrated in an engineering problem, it has potential in other
application areas. For example, in marine ecology, DSI can be used to study the dependence
between the yearly adult fish abundance, summarized from the observed fish abundances in
spatial regions (˛TY) and the yearly larval abundance, summarized from observed daily spawn-
ing biomass (ˇTX) (Chen et al., 2014). In portfolio construction, DSI can be used to study the
relation between the asset return, summarized from the allocation of the available assets (˛TY)
to the market return, summarized from market indices and macroeconomic variables (ˇTX).
In genomic research, DSI can be used to study the relation between the summary of gene
expression profiles (˛TY) and the summary of single-nucleotide polymorphism (ˇTX) (Witten
et al., 2009). More broadly, DSI can also be applied in many time series problems, where sev-
eral random variables evolve together over time. In particular, the reduced-rank linear vector
autoregressive (VAR) model is an important tool in modelling the vector time series (Reinsel &
Velu, 1998). It can be readily seen that the DSI model extends and renovates a unit-rank VAR
model, that is, the present value of an index of the vector time series has nonlinear relationship
with the past value of another index.

We have developed a flexible DSI model for exploring unspecified and possibly nonlinear
function relations between multivariate response and predictors. There are many directions for
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future research. For example, our method can serve as a building block to study multi-index
models, analogous to the multi-factor CCA or the RRR methods. To go beyond these linear
methods, one challenge is how to exhaustively extract pairs of indices for sufficient dimen-
sion reduction without imposing any specific form or restrictive assumption on their functional
relations. To this end, multi-index modelling and estimation strategies similar to the sufficient
dimension reduction literature is one possibility. Sequentially extracting the single index pairs
from both the covariate and response variables is also worth careful investigation. To further
facilitate variable selection and model interpretation, we can also consider regularized esti-
mation in the DSI model, for example, imposing sparsity assumption on ˛, ˇ so that the
constructed pair of indices only involves a subset of the responses and the predictors (Chen et
al., 2012; Chen & Huang, 2012; Bunea et al., 2012).

An alternative model related to the one considered here can be constructed by further assum-
ing that the dependence of the response variable Y on the covariates X is completely captured
by the dependence of a linear combination of Y on X. In other words, Yr is independent of X
conditional on ˛TY. Although the assumption is stronger than the DSI model, it offers an inter-
esting modelling approach and may have important applications. The estimation, efficiency and
application of such model is certainly worth exploring.

Several possibilities exist for model checking. The general idea is that because our estima-
tion method enables the estimation of ˛ and ˇ, one can construct both indices. This enables us
to reduce the multi-covariate multi-response problem to an effective uni-covariate uni-response
problem and facilitates the application of several existing methods. For example, to check

whether b̨TY can be adequately modelled by a single index model using b̌T
X, many existing

goodness-of-fit methods developed in the single index model framework can be applied (Stute
& Zhu, 2005; Xia, 2008; Liang et al., 2010; Ma et al., 2014). In addition, a graphical tool is
also possible as an exploratory tool, where one only needs to plot the data cloud formed by the
two indices and inspect if the data cloud is compact along the response index. This exploratory
tool is often used in the dimension reduction literature.

A potentially more fundamental problem is how to parsimoniously and flexibly approximate
the multivariate conditional distribution of Y given X (Hall & Yao, 2005). Given the curse
of dimensionality issue due to nonparametric estimation with multiple indices, a sequential
estimation procedure, which extracts DSI model structures sequentially to improve the cur-
rent approximation of the conditional distribution, can be particularly useful. Built upon the
proposed DSI model, such strategy has great potential in advancing nonlinear modelling and
scalable dimension reduction and is certainly on our research agenda.
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Correction Note to ‘Analysis of Double
Single Index Models’
KUN CHEN AND YANYUAN MA

In Chen & Ma (2017), a duplicate of Figure 3 was incorrectly shown as Figure 4. The correct
Figure 4 is given below. We apologize for this error.
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Fig. 4. Scatter plots along the estimated single-index directions for the slump test data analysis.
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