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We propose a functional random effect time-varying coefficient model to establish the dynamic relationship between
the response and predictor variables in longitudinal data. This model allows us not only to interpret time-varying
covariate effects, but also to depict random effects via time-varying profiles that are characterized by functional
principal components. We develop the functional profiling-backfitting method to estimate model components, which
includes the profiling and backfitting procedures via a set of least squares type estimating equations. Asymptotic
properties of the resulting estimator are obtained. Furthermore, we investigate the finite sample performance of the
proposed method through simulation studies and present an application to primary biliary cirrhosis data. Copyright
© 2012 John Wiley & Sons, Ltd.
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1 Introduction
In longitudinal or functional observations, functional data analysis (Ramsay & Dalzell, 1991) has been widely used
to explore characteristics of the functional data and study the relationship between functional random variables. To
model functional data with the i-th response random process, Zi.t/, one often considers the following structure:

Zi.t/ D �.t/C
1X

kD1

�ik�k.t/, (1)

where Zi.t/ lies in a space of square integrable random functions, t 2 T which is a real compact interval, �.t/ is a mean
function, ¹�k.t/, k D 1, 2, : : :º is a set of orthonormal basis functions, and the random coefficients �ik are uncorrelated,
with mean zero and finite variance for each k. When the response process is observed subject to random noise,
Yao et al. (2005a) employed the conditional regression approach together with the tool of functional data analysis to
estimate unknown parameters. Detailed properties and applications of model (1) can be found in Ramsay & Dalzell
(1991), Ramsay & Silverman (2005), Hall & Hosseini-Nasab (2006), Sentürk & Müller (2010), among others.

In practice, one may observe both response and predictor processes, Yi.t/ and Xi.t/. As a result, it is natural to establish
the relationship between these two processes. An attractive approach is to consider the varying coefficient model,
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Yi.t/ D XT
i .t/ˇ.t/C Q"i.t/ (2)

where Xi.t/ is a L � 1 covariate vector, ˇ.t/ is a L � 1 regression coefficient function, and Q"i.t/ is the random error
with mean zero and constant variance. Some useful references for model (2) include Brumback & Rice (1998),
Hoover et al. (1998), Wu et al. (1998), Fan & Zhang (2000), Lin & Ying (2001), Huang et al. (2002), and Wang et al.
(2008). When covariates do not vary with t, model (2) becomes a classical varying coefficient model (see, e.g., Hastie
& Tibshirani, 1993; Fan & Zhang, 1999; Wang & Xia, 2009).

In addition to the varying coefficient model, Faraway (1997) and Shen & Faraway (2004) considered a functional
regression model by replacing XT

i .t/ˇ.t/ and Q"i.t/ in model (2) with XT
i ˇ.t/ and

P1
kD1 �ik�k.t/, respectively. Their

approach motivates us to propose the following model,

Yi.t/ D XT
i .t/ˇ.t/C

1X
kD1

�ik�k.t/C "i.t/, (3)

where "i.t/ is the random error with mean zero and constant variance �2. Accordingly, the random response Yi.t/ can
be viewed as encompassing the time-varying coefficient effect XT

i .t/ˇ.t/ and the random effect
P1

kD1 �ik�k.t/ of the
ith response at t. Thus, we name (3) as the functional random effect time-varying coefficient model, and both the
functional data model (1) and the varying coefficient model (2) are special cases of this model.

As far as we are aware, there has not been research on functional data with both random effects and time-varying
coefficients taken into account simultaneously. The proposed functional random effect time-varying coefficient model
first uses covariates to explain the variation in the observed response process, then employs functional principal
component analysis (FPCA) to capture most of the unexplained variation, and finally leaves the remaining variation to
disturbance errors. Since this hybrid model combines functional principal component analysis and varying coefficient
approach, exploring its usefulness is important in functional data analysis.

In the rest of the article, we develop respectively a functional backfitting procedure and a profiling procedure to estimate
the unknown parameters in Section 2. We show the asymptotic properties of the resulting estimates in Section 3.
Simulation results and an empirical example are presented to illustrate the finite sample performance of the proposed
estimation approach in Section 4. All the technical details are collected in the Appendix.

2 Estimation
2.1. Preliminary setting
Consider longitudinal or functional observations ¹.Xij, Tij, Yij/, j D 1, : : : , mi, i D 1, : : : , nº, where Yij D Yi.Tij/ is the
observed response at time Tij, and Xij 2 RL is the covariate vector that may or may not be time variant. When it
is not time variant, Xij equals a common vector Xi for all j; when it is time variant, Xij � Xi.Tij/ is the ith covariate
vector observed at time Tij. The longitudinal observations for each subject can either be sparsely or densely sampled.
In the sparse situation, the mi’s are bounded from above by a constant m0, i.e., mi < m0, i D 1, : : : , n. In the dense
situation, the mi’s are bounded from below by m0, i.e., mi > m0, i D 1, : : : , n; this is a typical observation pattern in
functional data structures. In both situations, we assume the observation times, i.e., Tij’s, are random and remain in
a fixed compact interval T .

When the basis functions are determined through the covariance function of Zi.t/, model (1) corresponds to the
Karhunen-Loève expansion of a random function, but with mean X>i .t/ˇ.t/ (see, e.g., Ash & Gardner, 1975). Let
v.s, t/ D cov¹Zi.s/, Zi.t/º for s, t 2 T and define the covariance operator Av as a linear integral operator with kernel v
by .Avf/.t/ D

R
T f.s/v.s, t/ds, where f is a square integral function from T to the real line. Assume the operator Av

Copyright © 2012 John Wiley & Sons Ltd 76 Stat 2012; 1: 75–89
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has a sequence of orthonormal eigenfunctions ¹�kº with the corresponding eigenvalues ¹�kº, where �1 > �2 > : : : ,
satisfying .Av�k/.t/ D �k�k.t/ with

R
T �k.t/�l.t/dt D ıkl, where ıkl is 1 if k D l and is 0 otherwise. Then, the covariance

kernel can be represented as v.s, t/ D
P1

kD1 �k�k.s/�k.t/, and the coefficients �ik D
R
T
®
Zi.t/ � X>i .t/ˇ.t/

¯
�k.t/dt are

uncorrelated random variables with mean zero and variance �k.

To study parameter estimators, we take the same approach of Yao et al. (2005b) and Hall & Vial (2006), and assume
that the local effect signal can be identified up to the first leading M components in (1), while those beyond are either
degenerated or confounded with random errors. Then, we propose the functional profiling-backfitting (FPB) method
given below to estimate the regression coefficient function ˇ.t/ in (3). In the estimation method, we consider the
weights wij.t0, h/’s which are centered at the given time t0 with the bandwidth h. Common choices for the weights
include the Nadaraya-Watson weights wij.t0, h/ D K

®
.Tij � t0/=h

¯
=
Pn

iD1
Pmi

jD1 K
®
.Tij � t0/=h

¯
, the Gasser-Müller

weights wij.t0, h/ D 1
h

R �Cij
��ij

K¹.t0 � u/=hºdu, where ��ij is the middle point between Tij and the previous observation

time, and �Cij is the middle point between Tij and the next observation time, and the local-linear weights

wij.t0, h/ D
K
®
.Tij � t0/=h

¯ ®
Sn,2 � .Tij � t0/Sn,1

¯
Pn

iD1
Pmi

jD1 K
®
.Tij � t0/=h

¯ ®
Sn,2 � .Tij � t0/Sn,1

¯ ,

where Sn,m D
Pn

iD1
Pmi

jD1 K
®
.Tij � t0/=h

¯
.Tij � t0/m (see, e.g., Fan & Gijbels, 1996).

2.2. Functional profiling-backfitting estimator
Considering that the functional random effect time-varying coefficient model (3) contains both parametric and
nonparametric components, we devise two different strategies accordingly. For estimating the smooth func-
tion ˇ.t/, at any fixed �ik’s, we construct a locally weighted least squares estimate of ˇ.t0/ by minimizingPn

iD1
Pmi

jD1 wij.t0, h/
°
Yij � X>ij ˇ.t0/ �

PM
kD1 �ik�k.Tij/

±2
with respect to ˇ.t0/. On the other hand, at any fixed ˇ.t/

function, we construct the least squares estimator of �ik’s by minimizing
Pn

iD1
Pmi

jD1

°
Yij � X>ij ˇ.Tij/ �

PM
kD1 �ik�k.Tij/

±2
with respect to �ik. The above strategy yields the following estimating equations that need to be solved simultaneously.

nX
iD1

miX
jD1

wij.t0, h/Xij

´
Yij � X>ij ˇ.t0/ �

MX
kD1

�ik�k.Tij/

μ
D 0, (4)

miX
jD1

�k.Tij/

´
Yij � X>ij ˇ.Tij/ �

MX
lD1

�il�l.Tij/

μ
D 0, (5)

where wij.t0, h/’s are the weights centering at t0 with the bandwidth h as given in Section 2.1., (4) holds for t0 D
Tij, j D 1, : : : , mi, i D 1, : : : , n, and (5) holds for k D 1, : : : , M, i D 1, : : : , n.

To solve these equations, we employ the profiling and backfitting procedures (Hastie & Tibshirani, 1990). In the
profiling procedure, we solve (4) and obtain ˇ.t0/ as a function of �, denoted by Ǒ.t0, �/, where � D

�
�>1 , : : : , �>n

�
>

and �i D .�i1, � � � , �iM/>, then we plug Ǒ.t0, �/ back into (5) to solve for �. In the backfitting procedure, we solve for
ˇ.t0/ from (4) while treating � as a known quantity, and then solve for � from (5) while treating ˇ.t0/ as a known
vector; iterate until convergence.

To explicitly express the resulting estimators, let OBi be an mi � Lmi block diagonal matrix with the jth block diagonal
being Ǒ.Tij/

>, �i D .�1i, : : : ,�Mi/
>, and Ai be an M � M matrix with its .k, l/ entry Aikl D �>ki�li. Furthermore, let

QYi D .Yi1, : : : , Yimi/
> and QXi D .Xi1, : : : , Ximi/ be an mi � 1 vector and an L �mi matrix, respectively.

Stat 2012; 1: 75–89 77 Copyright © 2012 John Wiley & Sons Ltd



Chiou et al. Stat
(wileyonlinelibrary.com) DOI: 10.1002/sta4.10 The ISI’s Journal for the Rapid

Dissemination of Statistics Research

Following the profiling and backfitting procedures, we have that

Ǒ.t0/ D

´
nX

iD1

QXiWi.t0, h/ QX>i

μ�1 ´ nX
iD1

QXiWi.t0, h/
�
QYi � �

>
i
O�i

�μ
and (6)

O�i D A�1i �i. QYi � OBiXi/ . (7)

Hence, we term estimators Ǒ.t0/ and O�i, respectively, as the functional profiling-backfitting estimator (FPBE) of ˇ.t0/
and �i. In addition, when the smoothness of the coefficient functions for different covariates is different, we could use
the specific bandwidth hr to solve for the rth component of ˇ.t0/ to obtain

Ǒr.t0/ D e>r

´
nX

iD1

QXiWi.t0, hr/ QX>i

μ�1 ´ nX
iD1

QXiWi.t0, hr/
�
QYi � �

>
i
O�i

�μ
. (8)

After convergence, we keep the estimated O�i as the final estimate of �i, and then take one additional step in (6) with
a nonparametric optimal bandwidth h D O.N�1=5/, where N D

Pn
iD1 mi, to obtain the final estimate Ǒ.t0/.

In practice, the eigenfunction �i.t/ is unknown. Hence, we first solve (6) for Ǒ.t0/ by setting �ik D 0 as the initial
estimates. The covariance function estimate Ov.s, t/ is obtained via the two-dimensional smoothing of the raw covari-
ances

°�
Yij � X>ij Ǒ.Tij/

� �
Yil � X>il Ǒ.Til/

�
, 1 6 j ¤ l 6 mi, 1 6 i 6 n

±
. To obtain the estimated eigenfunction O�k.t/, we

simply find the solution of the eigenequation,
R
T Ov.s, t/ O�k.s/ds D O�k O�k.t/, subject to

R
T
O�k.t/2dt D 1, with O�k being

the estimated eigenvalue in a descending order for k D 1, : : : , M. Subsequently, we solve (7) for O�i by plugging in the
estimated Ǒ into OBi. The profiling and backfitting procedure iterates until the convergence criterion is met. That is,

LX
rD1

��� Ǒ.�/r � Ǒ
.��1/
r

���. ��� Ǒ.�/r

��� < c, (9)

where � is the iteration indicator and c is a preset threshold value.

Remark 1
To obtain the functional profiling-backfitting estimator, we take into account the functional data feature via func-
tional principal component analysis. In addition, the estimating equations (4) do not involve the inverse of the
covariance function in the weighting scheme, which eases the estimation complexity. Moreover, if the random errors
"i are normally distributed, then FPBE becomes the maximum likelihood estimator.

In practice, the bandwidths hr are often unknown. Hence, we follow the leave-one-subject-out cross validation
procedure (Rice & Silverman, 1991) to select the optimal bandwidth h � .h1, : : : , hL/

> by minimizing

CV.h/ D
nX

iD1

 
QYi � OBi,�iXi �

MX
kD1

O�ik O�ki

!>  
QYi � OBi,�iXi �

MX
kD1

O�ik O�ki

!
,

where OBi,�i is the estimator of Bi with the ith observation being left out, Bi is an mi � Lmi block diagonal matrix with

the jth block diagonal being ˇ.Tij/
>, Xi D vec. QXi/ D

�
X>i1, : : : , X>imi

�
> is an Lmi � 1 vector, and O�ki and O�ik are the

estimators of �ki D
®
�k.Ti1/, : : : ,�k.Timi/

¯
>, and �ik, respectively.
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Remark 2
When the observations are dense, (5) is a sample version of

h�k.t/, Yi � X>i ˇ �
MX

lD1

�il�li D
˝
�k, Yi � X>i ˇ

˛
� �ik D 0,

where the inner product of two integrable functions Qf and Qg is defined as hQf, Qgi D
R
T
Qf.t/Qg.t/dt. As a result, the

functional principle component score is �ik D
˝
�k, Yi � X>i ˇ

˛
. Under the assumption that the functional principle

component scores �ik and the random errors "i.t/ are jointly Gaussian, we can then adopt the conditional expectation
approach of Yao et al. (2005b) to obtain the best prediction of the functional principal component score for the ith
subject. That is,

L�i D ƒ�i†
�1
i . QYi � OBiXi/ , (10)

where †i D �
>
i ƒ�i C �

2I, and ƒ D diag.�k/ for k D 1, : : : , M. If �2 D 0, we are able to show that L�i in (10) and O�i
in (7) are identical.

2.3. A local generalized least squares estimator
For the sake of comparison, we adopt the idea from Chen & Jin (2005) and consider the local generalized least
squares estimating equation given below; thus, the resulting estimates are simple to compute.

nX
iD1

QXiWi.t0, h/1=2V�1i Wi.t0, h/1=2
�
QYi � QX>i ˇ.t0/

�
D 0,

where Wi.t0, h/ is an mi �mi diagonal matrix whose jth diagonal element is equal to wij.t0, h/, Vi is the covariance
matrix of QYi with the . j, l/ element .Vi/jl D

PM
kD1 �k�k.Tij/�k.Til/ C �

2ıjl, where �k D var.�ik/. Accordingly, we have
that

Ǒ�.t0/ D

´
nX

iD1

QXiWi.t0, h/1=2V�1i Wi.t0, h/1=2 QX>i

μ�1 ´ nX
iD1

QXiWi.t0, h/1=2V�1i Wi.t0, h/1=2 QYi

μ
. (11)

We refer to the above estimator as the local generalized least squares estimator (LoGLSE) of ˇ.t0/. Analogous to the
extension from (6) to (8), we can obtain the rth component estimate Ǒ�r .t0/ with an individual bandwidth hr.

To handle the typically unknown covariance matrix Vi in (11), a simple procedure is to estimate Vi borrowing
the technique from Yao et al. (2005a). Specifically, set Vi D I in (11) and obtain an initial estimate of ˇ.t/,
say Ľ.t/. Then obtain the covariance estimate Ov�.s, t/ via the two-dimensional smoothing of the raw covariances°�

Yij � X>ij Ľ.Tij/
� �

Yil � X>il Ľ.Til/
�

, 1 6 j ¤ l 6 mi, 1 6 i 6 n
±
. Let jT j be the interval length between a D inf¹t : t 2 T º

and b D sup¹t : t 2 T º. Accordingly, the covariance estimate OVi is obtained, where its . j, l/ off-diagonal and
jth diagonal elements are Ov�.Tij, Til/ and Ov�.Tij, Tij/ C O�

2, respectively, and O�2 D 2
R b�jT j=4

aCjT j=4 ¹ O	.t/ � Ov
�.t, t/ºdt=jT j

if O�2 > 0, and O�2 D 0, otherwise. Here, O	.�/ is the local linear smoother using the diagonal elements²�
Yij � X>ij Ľ.Tij/

�2
, 1 6 j 6 mi, 1 6 i 6 n

³
. Although LoGLSE is naturally linked to the longitudinal data analysis, it

does not fully utilize the functional data information.

3 Theoretical properties
Before we demonstrate asymptotic properties of the functional profiling-backfitting and local generalized least squares
estimators, we present the following conditions.
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(C1) The kernel function K is symmetric, bounded, and it is positive in .�1, 1/ and vanishes outside .�1, 1/. In
addition, its second moment is C2 D

R
u2K.u/du > 0.

(C2) The probability density function of Tij, f.t/, is positive and bounded on T . Furthermore, f.t/ and ˇ.t/ have
smooth first and second derivatives (f0.t/ and f00.t/) and (ˇ0.t/ and ˇ00.t/), respectively.

(C3) There exist positive constants c1 and c2 such that c1 < h=hr < c2 for r D 1, : : : , L.
(C4) For the covariate Xi.T/, maxi supt jjXi.t/jj1 is bounded.
(C5) Let m0 D min.m1, : : : , mn/ and ma D max.m1, : : : , mn/. During the backfitting procedure of FPBE, h satisfies

h!0, Nh2!1, and Nh4!0 as m0!1 and ma=m0 is bounded. Furthermore, we assume that h D O.N�1=5/
in the final estimation step of ˇ.t/.

(C6) The covariance Vi is strictly positive definite. In addition, the entries of Vi and V�1i are uniformly bounded for
i D 1, : : : , n.

(C7) There exists a positive constant C such that mi < C for i D 1, : : : , n. In addition, h satisfies nh4 !1 and h! 0

as n!1.

Condition (C1) is a standard requirement for the kernel function. Condition (C2) is the smoothness condition on the
design density and the regression coefficient function. Furthermore, the time domain is restricted to be on a compact
set. Moreover, the boundedness and positivity of f.t/ avoid a situation where all the observed times are clumped
together or where no observations are obtained in a certain interval. Condition (C3) ensures that the oscillations of
coefficient functions do not differ dramatically. This is not a stringent condition and is only used to simplify the proof.
Condition (C4) assures the boundedness of the covariate functions. Condition (C5) is used for investigating the large
sample properties of FPBE. Condition (C6) assures existence of V�1i and Condition (C7) is needed for studying the
asymptotic properties of LoGLSE.

Theorem 1
Under regularity conditions (C1) to (C5), we have that (i)

p
N. O� � �/ converges to a multivariate normal distribution

with mean zero and variance F�1†F�T as N!1, where F and † are defined in the Appendix. (ii) The functional
profiling-backfitting estimator Ǒ.t0/ is asymptotically normally distributed with bias and variance of orders O.h2/
and O¹1=.Nh/º, respectively.

Theorem 2
Assume conditions (C1) to (C4), (C6) and (C7) hold. If N ! 1, then U�1=2¹ Ǒ�.t0/ � ˇ.t0/ � Gº converges to the
standard multivariate normal distribution, where the rth element of the bias G is

Gr D h2r C2
h
ˇ
00

r .t0/=2C ˇ
0
r.t0/f

0.t0/=f.t0/
i
C O

°
h4r C .Nhr/

�1=2
±
D O.h2/,

the .r, s/ element of U is Ur,s D
Pn

iD1 e>r A.hr/
> QXiW

1=2
i .hr/

1=2V�1i W1=2
i .hr/ViW

1=2
i .hs/V�1i W1=2

i .hs/ QX>i A.hs/es D

O¹1=.Nh/º, and A.h/ D
°Pn

iD1
QXiWi.t0, h/1=2V�1i Wi.t0, h/1=2 QX>i

±�1
.

The proof of Theorem 1 is given in the Appendix, while the proof of Theorem 2 is omitted for saving space and can
be obtained from authors. Theorem 1 shows the asymptotic distributions of the FPB estimators O�i and Ǒ.t0/, and
Theorem 2 demonstrates the asymptotic distribution of the LoGLS estimator Ǒ.t0/. It is noteworthy that the biases of
Ǒ.t0/ and Ǒ�.t0/ have the same order O.h2/. Hence, it is of interest to examine their finite sample performance, which
is presented in the next section.

Copyright © 2012 John Wiley & Sons Ltd 80 Stat 2012; 1: 75–89
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4 Numerical studies
4.1. Simulation
To compare the functional profiling-backfitting estimator (FPBE) and the local generalized least squares estimator
(LoGLSE), we consider the following simulation settings. The recording times ¹tij; i D 1, : : : , n, j D 1, : : : , miº are
sampled from the set ¹t0, t1, : : : , tmº with equally spaced time intervals, where t0 D 1, tm D 10, m D 50, and the
number of observations for each subject, mi, follows a discrete uniform distribution. Four scenarios are considered
for the distributions of mi along with the sample size n: (N1) Uniform.5, 10/ and n D 100; (N2) Uniform.5, 10/ and
n D 500; (N3) Uniform.30, 40/ and n D 100; and (N4) Uniform.30, 40/ and n D 500. As a result, (N1) and (N2)
represent sparse designs, while (N3) and (N4) serve as dense designs. Then, we consider two regression functions
with L D 1 and L D 2, respectively: (F1) ˇ.t/ D sin.t/ and Xi D 1; and (F2) ˇ1.t/ D t, ˇ2.t/ D sin.t/, X1i D 1,
and X2i D .i=n/2. Furthermore, the eigenfunctions are �1.t/ D �

p
2=T cos.
t=T/ and �2.t/ D

p
2=T sin.
t=T/. Their

corresponding random coefficients �ik (k D 1, 2) are generated from (R1) a normal distribution of N.0,�k/; and (R2)
a mixture normal distribution of 1=2N.

p
�k=2,�k=2/C 1=2N.�

p
�k=2,�k=2/. Moreover, �1 D 10 and �2 D 5. Finally,

the random errors �ij are simulated from (E1) N.0, 1/; and (E2) N.0, 0.01/.

To compute regression parameter estimates, we set c in (9) to 0.005 and the resulting estimates often converge
in 2 or 3 iterations. For the sake of simplicity, we employ the same bandwidth to estimate different components
of the regression parameters. Furthermore, the number of random components M used in the computation of FPBE
is selected via a data-adaptive approach so that the proportion of total variance being explained reaches 90%. To
assess the performance of different estimates, we conduct 500 Monte Carlo realizations. In the `th realization, we
compute three performance measures: bias, variance, and unweighted average squared error (Fan & Zhang, 2000).

Specifically, they are BIAS` D .1=m/
PL

kD1
Pm

jD1

ˇ̌̌
ˇk.tj/ � Ǒ

.`/
k .tj/

ˇ̌̌
, VAR` D .1=m/

PL
kD1

Pm
jD1

°
Ǒ.`/
k .tj/ � Ňk.tj/

±2
,

and UASE` D .1=4m/
Pm

jD1
PL

kD1

°
ˇk.tj/ � Ǒ

.`/
k .tj/

±2
, respectively, where Ňk.tj/ D .1=500/

P500
`D1
Ǒ.`/
k .t/. Accordingly,

we report the sample means of bias and variance as well as the sample median of the average squared error obtained
from the 500 realizations.

Table I presents three performance measures across four sample sizes ((N1) to (N4)), two functional forms ((F1) and
(F2)), two random coefficient structures ((R1) and (R2)), and two types of random errors ((E1) and (E2)). It indicates
that FPBE outperforms LoGLSE in all 32 combinations. This can be explained from the following two aspects: (i)
LoGLSE does not fully take into account the functional data information; (ii) LoGLSE requires taking the inverse of the
estimated covariance matrices, which can be numerically unstable. Comparing (N1) to (N2) and (N3) to (N4), it is
not surprising that the bias, variance, and unweighted mean squared errors decrease as the sample size n increases.
Analogous results can be found by increasing the number of observations per subject (see (N1) versus (N3) and (N2)
versus (N4), respectively, for sparse versus dense designs). It is also of interest to note that there are only minor
differences between the performance of (R1) and (R2), indicating that the results are robust to the distributions of
random coefficients. In conclusion, the finite sample performance of the estimator FPBE is consistent with theoretical
findings. Since FPBE is superior to LoGLSE, we also recommend using the functional profiling-backfitting estimator in
practical analysis.

4.2. Application to a biliary cirrhosis study
To further demonstrate the usefulness of the proposed functional profiling-backfitting method, we consider data
from patients with primary biliary cirrhosis, collected in the ten year interval from January 1974 to May
1984 by the Mayo Clinic; see also the appendix of Fleming & Harrington (1991). The data are available at
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Table I. Comparison of the FPB and LoGLS methods under four scenarios. (FPB: functional profiling-backfitting method;
LoGLS: local generalized least squares method; BIAS: sample mean of BIAS`; VAR: sample mean of VAR`; UASE: median
of UASE`.)

F1 F2
R1 R2 R1 R2

FPB LoGLS FPB LoGLS FPB LoGLS FPB LoGLS

E1 N1 BIAS 0.1617 0.1719 0.1672 0.1782 0.6317 0.7001 0.6139 0.6934
VAR 0.0377 0.0471 0.0408 0.0499 0.5359 0.7009 0.5077 0.6748
UASE 0.0094 0.0108 0.0098 0.0112 0.1182 0.1565 0.1126 0.1486

N2 BIAS 0.0775 0.0798 0.0802 0.0828 0.2718 0.3132 0.2693 0.3127
VAR 0.0071 0.0091 0.0077 0.0098 0.0884 0.1376 0.0878 0.1363
UASE 0.0022 0.0023 0.0023 0.0024 0.0222 0.0321 0.0223 0.0305

N3 BIAS 0.1142 0.1165 0.1218 0.1238 0.3925 0.4494 0.3901 0.4555
VAR 0.0192 0.0203 0.0221 0.0233 0.1837 0.2466 0.1839 0.2601
UASE 0.0038 0.0040 0.0042 0.0046 0.0386 0.0513 0.0380 0.0499

N4 BIAS 0.0564 0.0562 0.0605 0.0607 0.1871 0.2061 0.1910 0.2125
VAR 0.0037 0.0039 0.0045 0.0047 0.0388 0.0500 0.0400 0.0523
UASE 0.0010 0.0010 0.0011 0.0011 0.0090 0.0113 0.0098 0.0113

E2 N1 BIAS 0.1226 0.1605 0.1312 0.1685 0.4010 0.6220 0.4021 0.6286
VAR 0.0207 0.0403 0.0245 0.0456 0.1953 0.5680 0.1919 0.5638
UASE 0.0046 0.0093 0.0051 0.0100 0.0395 0.1180 0.0394 0.1261

N2 BIAS 0.0609 0.0772 0.0652 0.0803 0.1891 0.2886 0.1901 0.2899
VAR 0.0037 0.0085 0.0046 0.0093 0.0359 0.1163 0.0367 0.1194
UASE 0.0012 0.0022 0.0013 0.0022 0.0084 0.0257 0.0091 0.0258

N3 BIAS 0.1064 0.1110 0.1148 0.1187 0.3349 0.4217 0.3425 0.4352
VAR 0.0164 0.0181 0.0197 0.0213 0.1313 0.2398 0.1328 0.2456
UASE 0.0031 0.0036 0.0035 0.0040 0.0249 0.0452 0.0267 0.0449

N4 BIAS 0.0529 0.0541 0.0569 0.0576 0.1689 0.1933 0.1721 0.1958
VAR 0.0031 0.0034 0.0038 0.0041 0.0295 0.0457 0.0305 0.0443
UASE 0.0008 0.0009 0.0010 0.0010 0.0065 0.0090 0.0070 0.0096

http://lib.stat.cmu.edu/datasets/pbcseq. It is known that the serum albumin and prothrombin time are two commonly
used indicators for liver function, among others. In advanced liver disease, the level of the serum albumin is reduced
for insufficient production of proteins. Hence, it is not surprising to find a good correlation between abnormalities in
coagulation measured by the prothrombin time and the degree of liver dysfunction. In the study of liver failure treat-
ment in rats (Cai et al., 2002), improvements in prothrombin time and serum albumin level are included as indicators
to show the effectiveness of transplantation of immortalized hepatocytes.

In this study, we explore the time-varying relationship between the two commonly used biomarkers of liver disease:
prothrombin time (PT, in seconds) as the response variable, and serum albumin level (ALB, in mg=dl) as the predictor
variable. The times of observation for each subject are irregularly spaced and sparsely distributed across 2000 days,
and the visits of each subject range from one to sixteen days (see Figure 1). Four subjects are excluded from the
analysis as they are obvious outliers. The observed trajectories and the corresponding mean profiles of PT and ALB
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Figure 1. Observed time points of each subject.
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Figure 2. Trajectories of PT (upper left panel) and ALB (lower left panel) and their corresponding mean functions
(right panels).

are presented in Figure 2. They indicate that PT has a general increasing trend, while ALB shows a decreasing trend
in disease progression. Since the analysis is based on 272 female and 36 male patients, the indicator variable of
gender effect (SEX) is also included. Accordingly, there are three explanatory variables: X0i is the constant 1; X1i.t/
denotes each individual’s time-dependent ALB; and X2i.t/ D 1 if the subject is female, and X2i.t/ D 0 otherwise. Their
associated regression coefficient functions are ˇ0.t/, ˇ1.t/, and ˇ2.t/, and the bandwidths used to estimate them are
chosen by the aforementioned cross-validation method.

After fitting model (3), we apply a heuristic Akaike information criterion (AIC) given below to jointly select the predictor
variables (L) and the number of principal components (M). To this end, we consider the conditional pseudo-Gaussian
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likelihood function,

`.L, M/ D
nX

iD1

2
4�mi

2
log.2
/ �

mi

2
log. O�2/ �

2

O�2

miX
jD1

´
Yij �

LX
lD1

Xli.tij/ Ǒl.tij/ �
MX

kD1

O�ik O�k.tij/

μ235 ,

where O�2 is the estimated error variance. Given M D M0, define AIC1.L; M0/ D �`.L, M0/ C 2L. Then, obtain
the optimal set of predictors by QL.M0/ D arg minL AIC1.L; M0/. Analogously, given L D L0, define AIC2.M; L0/ D
�`.L0, M/C 2M. Subsequently, select the optimal M by M� D arg minM AIC2.M; QL.M// and then obtain L� D QL.M�/.
In addition to AIC, the Bayesian information criterion (BIC) can be developed via the same procedure by replacing the
penalty terms 2L and 2M in AIC1 and AIC2 with .log N/L and .log N/M, respectively, where N D

Pn
iD1 mi. Table II

shows that both AIC and BIC yield the same model, in which case the resulting optimal number of predictor variables
and components are L� D 2 and M� D 4, respectively. Thus, the SEX predictor variable is omitted.

Based on the best fitted model, Figure 3 depicts the estimated regression coefficient functions and their corresponding
95% confidence intervals. Since the asymptotic variance of Ǒ.t0/ in Theorem 1 is not easy to compute for constructing
confidence intervals, we apply a resampling scheme to obtain the variance estimate. Following the estimate of Ǒ.t0/

Table II. Selection of predictor variable (L) and principal component (M) via AIC and BIC criteria, respectively.

AIC BIC
No. Comp. L D 1 .I/� L D 2 .II/� L D 3 .III/� L D 1 .I/ L D 2 .II/ L D 3 .III/

M D 1 3890.0 3831.6 3838.3 3895.3 3842.2 3854.2
M D 2 3772.8 3726.8 3737.3 3778.2 3737.4 3753.3
M D 3 3657.8 3644.7 3659.6 3663.1 3655.4 3675.5
M D 4 3656.4 3643.9 3656.9 3661.7 3654.5 3672.8
M D 5 3655.4 3650.4 3662.8 3660.8 3661.0 3678.7
M D 6 3654.2 3651.3 3665.5 3659.5 3661.9 3681.4

�I: Yi.t/ D ˇ0.t/C
PM

kD1 �ik�k.t/;
�II: Yi.t/ D ˇ0.t/C ˇ1.t/Xi1.t/C

PM
kD1 �ik�k.t/;

�III: Yi.t/ D ˇ0.t/C ˇ1.t/Xi1.t/C ˇ2.t/Xi2 C
PM

kD1 �ik�k.t/;
where Yi.t/DPT, Xi1DALB, and Xi2DSEX.
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Figure 3. Estimated functions of the intercept (left) and the regression coefficient of ALB (right) with their corresponding
95% confidence intervals.
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in (7), we have that

cov
°
Ǒ.t0/

±
D �1.t0, h/�1

´
nX

iD1

QXiWi.t0, h/ cov
�
QYi � �

>
i
O�i

�
Wi.t0, h/ QX>i

μ
�1.t0, h/�1, (12)

where �1.t0, h/ D
Pn

iD1
QXiWi.t0, h/ QX>i . Then, resample the observed curves ¹QYiº with replacement to obtain bootstrap

samples, and subsequently use the resampled curves to obtain the estimate bcov
�
QYi � �

>
i
O�i

�
. Afterwards, we plugin

the covariance estimate into (12) to obtain bcov. Ǒ.t0//. The ALB covariate effect is clearly time-varying rather than a
constant as Ǒ1.t/ is decreasing with time. It is of interest to note that the shapes of the estimated curves Ǒ0.t/ and
Ǒ
1.t/ look similar, but in the opposite direction. To interpret them, let O�Y.t/ and O�X1.t/ be the estimated mean functions

of PT and ALB (see the left panels of Figure 2). Since Ǒ0.t/ � O�Y.t/ � Ǒ1.t/ O�X1.t/, the intercept term is the mean of
PT adjusted by the mean of ALB with the scale j Ǒ1.t/j. As a result, Ǒ0.t/ exhibits a general increasing trend for PT in
the progression of liver disease. In contrast, the estimated regression function Ǒ1.t/ shows a decreasing trend. Hence,
there is a negative correlation between PT and ALB across the 2000 days. Accordingly, a one-unit (mg=dl) decrease
in ALB results in an average delay in PT of j Ǒ1.t/j seconds, which depends on the progression time.

After the response PT is adjusted by the estimated regression coefficient functions (named adjusted-PT), Figure 4
(left panel) displays its estimated covariance surface. The associated leading eigenfunctions are presented in Figure 4
(right panel), which depicts variation directions of random effects after adjusting the ALB time-varying effects. Each
of the first four eigenfunctions, respectively, explains 78.02%, 17.25%, 3.19%, and 0.32% of total variability in
adjusted-PT. The first eigenfunction reveals a general decreasing pattern in terms of variations of adjusted-PT over dis-
ease progression time, similar to the overall mean level of ALB. The second eigenfunction shows a contrast between
early and late disease progression. The third eigenfunction reflects additional variations that are in a complementary
direction to the second eigenfunction. The fourth eigenfunction, while explaining a very small portion of total varia-
tion, catches the additional trend, especially on the right tail near the 2000th day. In summary, these four random
components capture the subject effect resulting from individual patient differences. Consequently, the functional ran-
dom effects model not only establishes the time-varying relationship between PT and ALB, but also explores the
characteristic patterns and variation in the data. Since the trend in ALB is more steady than that in PT and there
exists a relationship between them, ALB is likely to be a better biomarker in monitoring the progression of primary
biliary cirrhosis.
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Figure 4. Estimated covariance function and its corresponding leading eigenfunctions.
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Appendix: Proof of Theorem 1
To save space, we do not provide those conditions that are implicitly used in the derivations of the proof, and
they can be found in Claeskens & van Keilegom (2003) and Chen et al. (2003). Denote Yij D .Xij, Tij, Yij/ and
Y�j D .Y1j : : : ,Ynj/ for j D 1, : : : , ma, where Yij D 0 if j > mi. Then, let L�,j D L�.Y�j, �,ˇ/ be the nM � 1 vector with

the ¹.i�1/MCkºth component �k.Tij/
°
Yij � XT

ijˇ.Tij/ �
PM

lD1 �il�l.Tij/
±

if j 6 mi and 0 if j > mi. In addition, let ‰ˇ ,ij D

‰ˇ .Yij, �,ˇ/ D Xij

°
Yij � XT

ijˇ.t/ �
PM

kD1 �ik�k.Tij/
±
, which is an L� 1 vector. It is noteworthy that E

®
L�.Y�j, �,ˇ/

¯
D 0

and E
®
‰ˇ .Yij, �,ˇ/

¯
D 0. Moreover, the estimating equations in (4) and (5) can be written as

nX
iD1

miX
jD1

wij.t0, h/‰ˇ .Yij, �,ˇ/ D 0 and
nX

iD1

maX
jD1

L�.Y�j, �,ˇ/ D 0,

respectively, except adding a redundant
Pn

iD1 on the left-hand side of the second equation to facilitate the proof. For
the sake of simplicity, we sometimes omit the subscripts ij or �j. Due to condition (C3), we also consider a common
bandwidth h in the rest of the proof.

To show asymptotic results, we define L�� as the partial derivative of L� with respect to �, L�ˇ as the partial
derivative of L� with respect to ˇ, ‰ˇˇ as the partial derivative of ‰ˇ with respect to ˇ, and ‰ˇ� as the partial
derivative of ‰ˇ with respect to �. With the argument .�/ being ¹Y, �,ˇ.T/º, we also define 
.T/ D E

®
‰ˇˇ .�/jT

¯
,

U.T/ D E
®
L�ˇ .�/jT

¯

.T/�1, and J�.T/ D �
.T/�1E

®
‰ˇ�.�/jT

¯
.

Using standard expansion, it can be shown that

� FN1=2. O� � �/ D N�1=2
nX

iD1

maX
jD1

h
L�,j.�/C L�ˇ ,j.�/

°
Ǒ.Tij, �/ � ˇ.Tij/

±i
C op.1/, (A.1)

where F D E
�
L��¹Y, �,ˇ.T/º C L�ˇ ¹Y, �,ˇ.T/ºJ�.T, �/

�
. From the local estimating equation and using conditions

(C1), (C2) and (C4), we have that

Ǒ.t0, �/ � ˇ.t0/ D .h2=2/ˇ
00

.t0/ � N�1
nX

iD1

maX
jD1

wij.t0, h/
.t0/�1‰ˇ
®
Yij, �,ˇ.Tij/

¯
=f.t0/C op.N�1=2/. (A.2)

Substituting (A.2) into (A.1) and then employing conditions (C3) and (C5), we obtain that

� FN1=2. O� � �/ D N�1=2
nX

iD1

maX
jD1

L�
®
Y�j, �,ˇ.Tij/

¯
� U.Tij/‰ˇ

®
Yij, �,ˇ.Tij/

¯
C op.1/. (A.3)
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Hence, N1=2. O� � �/ is asymptotically normally distributed with mean zero and covariance matrix F�1†F�>, where
† D cov

®
L�.�/ �‰ˇ .�/U.T/

¯
. We next demonstrate the asymptotic results of Ǒ.t0/.

Combining (A.2) and (A.3), in conjunction with conditions (C3) and (C5), we obtain that

Ǒ.t0, O�/ � ˇ.t0/ D
°
Ǒ.t, O�/ � Ǒ.t0, �/

±
C
°
Ǒ.t0, �/ � ˇ.t0/

±
D Ǒ�.t0, �/. O� � �/C

°
Ǒ.t0, �/ � ˇ.t0/

±
C op.N�1=2/

D � Ǒ�.t0, �/F�1N�1
nX

iD1

maX
jD1

®
L�,j.�/ � U.Tij/‰ˇ ,ij.�/

¯

C .h2=2/ˇ
00

.t0/ � N�1
nX

iD1

miX
jD1

wij.t0, h/
.t/�1‰ˇ ,ij.�/=fT.t0/C op.N�1=2/

D .h2=2/ˇ
00

.t0/ � N�1
nX

iD1

miX
jD1

wij.t0, h/
.t/�1‰ˇ ,ij.�/=fT.t0/C Op.N�1=2/,

where Ǒ�.t0, �/ is the first derivative matrix of Ǒ.t0, �/ respect to �. Taking the expectation from the above equation,
together with the fact that the final estimation of ˇ.t0/ is evaluated under h D O.N�1=5/, leads to Ǒ.t0/ having the
bias ˇ00.t0/h2=2 C o.h2/. Applying the standard approach, we can further show that it is asymptotically normally
distributed with the following variance:

N�1var
®
wij.t0, h/
.t0/�1‰ˇ ,ij.�/=fT.t0/

¯
D N�1E

°
w2ij.t0, h/
.t0/�1‰ˇ ,ij.�/‰ˇ ,ij.�/

T
.t0/�T=f2T .t0/
±

D N�1
.t0/�1E
°
w2ij.t0, h/‰ˇ ,ij.�/‰ˇ ,ij.�/

T
±

.t0/�T=f2T .t0/

D O
®
.Nh/�1

¯
.

Hence, the proof is complete. �
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