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Abstract

We propose a simple approach predicting the cumulative risk of disease accommodating

predictors with time-varying effects and outcomes subject to censoring. We use a nonpara-

metric function for the coefficient of the time-varying effect and handle censoring through

self-consistency equations that redistribute the probability mass of censored outcomes to the

right. The computational procedure is extremely convenient and can be implemented by

standard software. We prove large sample properties of the proposed estimator and evaluate

its finite sample performance through simulation studies. We apply the method to estimate

the cumulative risk of developing Huntington’s disease (HD) from subjects with huntingtin

gene mutation using a large collaborative HD study data and illustrate an inverse relation-

ship between the cumulative risk of HD and the length of cytosine-adenine-guanine (CAG)

repeats in the huntingtin gene.
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1 Introduction

In many biomedical studies, the research goal is to predict the age-specific cumulative risk

of onset of a disease from a set of covariates. For example, Huntington’s disease (HD)

is a progressive neurodegenerative disorder caused by the expansion of cytosine-adenine-

guanine (CAG) trinucleotide repeats in the huntingtin gene [1]. The genetic model for HD

is dominant [2], and there is an inverse relationship between the age-at-onset of HD and

the CAG repeats length: the greater the CAG expansion, the earlier the age-at-onset of the

disease. Accurate prediction of a subject’s age-at-onset of HD from CAG repeats and other

covariates is useful to assess an individual’s risk of developing HD based on available genetic

mutation testing results when providing genetic counseling. Such estimates are also useful

when designing a clinical trial. For instance, estimating the age-at-onset distribution of HD

from a subject’s CAG repeats and other baseline information can be used to recruit patients

who are close to the onset of disease to improve efficiency of a therapeutic trial. Improving

existing estimation of HD risk is one of the research goals in the Cooperative Huntington’s

Observational Research Trial (COHORT) study which includes 42 sites [3, 4].

Age-at-onset of disease information is usually subject to right censoring due to termina-

tion of study, patient loss to follow up, or death of a subject. Popular regression models for

censored outcomes include Cox-proportional hazards model [5], which relates hazard rate

at a particular age to covariates. Although it is possible to obtain cumulative risk function

in this model, the interpretation of the regression coefficients of the covariates is reflected

through the hazard function. Instead of working through a hazard function, a more appeal-

ing approach is to model the cumulative disease risk directly since predicting disease onset is

our primary goal and hazard function is not of interest. Another motivation to avoid propor-

tional hazards model and to work with cumulative distribution function directly is that the

proportional hazards assumption may not be satisfied in certain applications. For example,

Langbehn et al. [6] reported that the proportional hazards assumption does not hold with

HD data, and proposed a parametric model for the cumulative risk function involving six
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parameters through a logistic transformation of pr(Ti ≤ t|Xi), where Ti denotes age-at-onset

of HD, and Xi denotes the covariate of interest (i.e., CAG repeats length). Specifically, their

model is

logit{pr(Ti ≤ t|Xi)} = {t− µ(Xi;α)}/s(Xi; γ),

where µ(Xi;α) and s(Xi; γ) are exponential functions with parameters α and γ. In Langbehn

et al. [6] these functions are µ(x;α) = α1+exp(α2−α3x) and s(x; γ) =
√
γ1 + exp(γ2 − γ3x).

The correlation between the estimated parameters may be high, causing numerical difficulties

in practice. We fitted Langbehn’s model on COHORT data and the results were reported in

an earlier paper [7]. Other ad-hoc parametric models are also proposed for HD data, with

no consensus on the best model to use [8].

In this work, we consider a varying-coefficient proportional odds model

logit{pr(Ti ≤ t|Xi)} = β0(t) + β1(t)Xi. (1)

To provide flexibility and protect against misspecification, β0(t) and β1(t) are left as un-

known nonparametric functions. The interpretation of β1(t) is then directly related to the

cumulative risk of disease, since exp{β1(t)} is the odds ratio of experiencing disease onset by

age t for subjects with one unit difference in X. Since pr(Ti ≤ t|Xi) is a cumulative distribu-

tion function, β0(t) and β0(t) + β1(t)Xi are constrained to be non-decreasing functions of t.

In applications where Xi’s are positive, we require β1(t) to be non-decreasing as well. When

β0(t) and β1(t) take some parametric form of t, model (1) reduces to a standard proportional

odds model.

An extension to model (1) is a nonparametric varying-coefficient model of the cumulative

risk using a logistic link

logit{pr(Ti ≤ t|Xi)} = β0(t) + c0(Xi) + β1(t)c1(Xi), (2)
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where c0(x) and c1(x) are known parametric functions of covariates. Note that when c1(x) =

1/s(x; γ), c0(x) = −µ(x;α)/s(x; γ), β0(t) = 0, and β1(t) = t, model (2) reduces to that in

Langbehn et al. [6].

In the literature, Jung [9] directly modeled survival function using regression model at a

fixed time point without considering temporal effect. There are a number of other works on

extending proportional hazards or proportional odds model to account for temporal covariate

effect or time-varying covariates. Peng and Huang [10] proposed an alternative extension

of Cox proportional hazards model to account for a nonparametric temporal effect of a

covariate. The procedure involves solving a series of estimating equations sequentially. In

contrast, our method is proposed for a proportional odds model with a nonparametric time-

varying effect. Chen et al. [11] proposed methods to extend transformation models considered

in for example, Zeng and Lin [12], to account for external time-varying covariates.

Here, we take a completely different approach that does not involve counting process and

with straightforward and simple computational algorithm. When there is no censoring, to

estimate the cumulative risk function at a time point t0 given a covariate, e.g., pr(Ti ≤ t0|Xi),

a straightforward analysis is to fit a logistic regression of I(Ti ≤ t0) on the covariates Xi.

When the outcome is subject to censoring, I(Ti ≤ t) may not be observed for some of the

censored subjects. Let Ci denote the censoring time, Efron [13] proposed a nonparametric

estimator of a survival function by re-distributing the conditional masses for the censored

subjects, pr(Ti > Ci|Ci), equally to all the non-censored observations above Ci, where the

common weight for these subjects depends on the number of at-risk subjects at Ci. Portnoy

[14] and Wang and Wang [15] used similar ideas to fit a quantile regression with covariates Xi,

where the conditional point masses pr(Ti > Ci|Ci, Xi) for censored subjects are re-distributed

to the right. For quantile regression, the estimator only depends on the signs of residuals

and thus the point masses for censored subjects are re-distributed to +∞. Since there are

covariates involved, the conditional masses to be estimated depend on the covariates and the

unknown distribution function.
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In this work, to estimate β(t0) from (1) or (2), we fit a pseudo-logistic regression of

I(Ti ≤ t0) through redistributing weights to the right to account for censoring. We apply

the procedure to estimate the coefficient function at distinct uncensored event times, and

smooth the coefficient functions across the entire support of event times when necessary. This

type of smoothing was found to be equivalent to applying local kernel smoothing directly

[16]. The proposed computational procedure is extremely easy to implement and can be

handled by standard softwares. We investigate the asymptotic properties of the proposed

estimator to show consistency and normality, and conduct simulation studies to examine its

finite sample performance. The proposed methods are applied to estimating the cumulative

risk of developing HD from subjects with huntingtin gene mutation using the COHORT data

and illustrate an positive relationship between the cumulative risk of HD and the length of

CAG repeats in the huntingtin gene. We compare the estimates under model (1) with fully

nonparametric Kaplan-Meier estimates using subjects with the same CAG values and reveal

consistent results.

2 Methods

For the purpose of illustration, we mainly focus on the varying coefficient model (1). Exten-

sion to the more general model (2) is discussed in Section 4.

2.1 Uncensored data

First we investigate estimation at a fixed time point t0 when the outcome is not subject to

censoring. Let β(t) = {β0(t), β1(t)}T , let βt0 = β(t0) denote β(·) evaluated at t0, and let

Zi = (1, Xi)
T . When there is no censoring, the likelihood for {I(Ti ≤ t0), Xi, i = 1, · · · , n}

under a logistic link takes the standard form,
∏
i

exp{I(Ti ≤ t0)Z
T
i βt0}

1 + exp{ZT
i βt0}

. To estimate βt0 , we
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solve the estimating equation

n∑
i=1

m(Xi, Ti; t0,βt0) = 0,

where m(Xi, Ti; t0,βt0) =
{
I(Ti ≤ t0)− µ(Xi;βt0)

}
Zi, and µ{Xi;βt0} =

exp{ZT
i βt0}

1 + exp{ZT
i βt0}

.

The influence function for the estimate β̂t0 is

φ(Xi, Ti; t0,βt0) = A(Xi;βt0)
{
I(Ti ≤ t0)− µ(Xi;βt0)

}
Zi,

where A(Xi;βt0) =
(
E[µ(Xi;βt0){1 − µ(Xi;βt0)}ZiZ

T
i ]
)−1

. We fit a logistic regression of

I(Ti ≤ t0) on Xi and repeat this process while varying t0 at all distinct values of observed

Ti’s. One can then smooth the estimates as a function of t0 [16] subject to the monotonicity

constraint. An alternative is to fit a nonparametric regression (for example using splines)

treating I(Ti ≤ t) as generalized outcomes. This method was shown to have similar perfor-

mance as the post-hoc smoothing above [16], but is more difficult to implement under the

monotonicity constraint, therefore we do not further explore here.

2.2 Censored data

When a subject is right censored (i.e., Ti > Ci) and Ci ≥ t0, we still observe I(Ti ≤ t0) = 0.

Ambiguity occurs when a subject is censored and Ci < t0. One type of estimator for β(·)

can be obtained by the inverse probability of censoring weighting (IPW) proposed in Bang

and Tsiatis [17], which weights subjects having an event by the inverse of their probabilities

of not being censored. To be specific, we can obtain the IPW estimator by solving the

estimating equation

Sn(β) = n−1
n∑
i=1

I(Ti ≤ Ci)m(Xi, Ti; t0,β)

G(Ti)
= 0,
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where G(·) is the survival function for the censoring times Ci. Estimating G(·) by the

Kaplan-Meier of the censoring process, the estimating equation for β(·) is

n∑
i=1

I(Ti ≤ Ci)m(Xi, Ti; t0,β)

Ĝ(Ti)
= 0. (3)

This process is repeated for t0 on a grid (u1, · · · , uM). Alternatively, one can let the grid

points include only uncensored observations, which is equivalent to creating the grid.

Here we propose a new type of estimator that re-distributes weights to the right for

ambiguous subjects based on self-consistency equations similar to Efron [13] and Wang and

Wang [15]. Let Oi = {Xi, Ti ∧ Ci,∆i ≡ I(Ti ≤ Ci)} denote the ith observation. We solve

the following weighted estimating equation

Sn(βt0 ,β) = n−1
n∑
i=1

s(Oi; t0,βt0 ,β) = 0, (4)

where

s(Oi; t0,βt0 ,β) = w{Oi; t0,β(·)}m(Xi, Ti ∧ Ci; t0,βt0) + [1− w{Oi; t0,β(·)}]m(Xi,+∞; t0,βt0),

and

w{Oi; t0, ,β(·)} =

{
1, ∆i = 1 or (∆i = 0 and Ci ≥ t0)

F (t0|Xi)− F (Ci|Xi)

1− F (Ci|Xi)
, ∆i = 0 and Ci < t0.

(5)

Here F (t|x) = µ{x;β(t)} is the conditional distribution of Ti given Xi introduced in model

(1), and the weight for the ith subject depends on β(·) evaluated at t0 and Ci.

To gain insights on the weights, note that subjects with observed I(Ti ≤ t0) will receive

a weight of one for their contributions to the estimating equation. Subjects with missing

I(Ti ≤ t0) have conditional probability masses

E{I(Ti ≤ t0)|Ti > Ci, Xi} =
F (t0|Xi)− F (Ci|Xi)

1− F (Ci|Xi)
.
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Treating (Xi, Ci) as pseudo-observations for censored subjects with censoring time less than

t0, they receive weights w{Oi; t0,β(·)} = pr(Ti ≤ t0|Ti > Ci, Xi). We re-distribute their

complementary weights 1 − w{Oi; t0,β(·)} = pr(Ti > t0|Ti > Ci, Ci, Xi) to the right.

Since the outcomes are binary variables, the complementary masses 1 − w{Oi; t0,β(·)}

for pseudo-observations (Xi, Ci) can be re-distributed to any point that is greater than

all observations that is not specific to any observation above Ci (also see Portnoy [14] and

Wang and Wang [15]). Thus, any point above Ci contributes the same information to

the estimating equation. Without loss of generality, we re-distribute the complementary

mass to +∞, and the contribution from these observations to the estimating equation is

m(Xi,+∞; t0,βt0) = −µ(Xi;βt0)Zi.

In practice, the weights w{Oi; t0,β(·)} in (5) depend on unknown distribution function

F (·|X) which needs to be estimated. We substitute β(·) with the IPW estimators, denoted

as β̃(·), to obtain the weights w{Oi; t0, β̃(·)} to be redistributed. The REW estimator β̂t0

then solves the weighted estimating equation

Sn(O; t0,βt0 , β̃(·)) = n−1
n∑
i=1

s(Oi; t0,βt0 , β̃(·)) = 0. (6)

It is extremely easy to implement this weighting scheme. Without loss of generality, assume

the first n0 subjects have unobserved outcomes I(Ti ≤ t0). Create pseudo-observations

Õ1 = (X1,+∞,∆1), · · · , Õn0 = (Xn0 ,+∞,∆n0). Append all pseudo-observations to the

original observations to obtain observations (O1, · · · , On, Õ1, · · · , Õn0) with weights

[w{O1; t0, β̃(·)}, · · · , w{On; t0, β̃(·)}, 1− w{O1; t0, β̃(·)}, · · · , 1− w{On0 ; t0, β̃(·)}].

Then β̂t0 is estimated by a weighted logistic regression. The weights w{O; t0, β̃(·)} extract

information at multiple time points simultaneously, and thus pool information across time

points to estimate the distribution function at t0.
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2.3 Asymptotic properties

To show consistency and asymptotic normality of β̂(t) at fixed t obtained from (6), we will

need the following technical conditions:

A1. Assume that β(t) is right continuous with left-hand limits (cadlag) componentwise.

A2. Assume that for t ∈ [a, b] with b < ∞ to be finite, and there exists subjects with

P (min(Ci, Ti) > b) > 0. Also assume β(t) is uniformly bounded on [a, b] component-

wise, that is, supt∈[a,b] |β(t)| ≤ c <∞ componentwise.

A3. Assume that the covariates Xi are not degenerate, i.e., pr(Xi = x0) 6= 1 and are

bounded in probability, i.e., pr(|Xi| < c) = 1.

A4. Assume that the censoring times are bounded, i.e., pr(Ci < c) = 1.

A5. Assume that E
(
ZiZ

T
i exp{ZT

i β(t)}/[1 + exp{ZT
i β(t)}]2

)
is positive definite.

The conditions A1-A2 control the size of the parameter space. The condition A2 states

that one can only estimate distribution function in the time range where there are still

subjects with positive probability of being at risk. The conditions A3-A4 exclude some

degenerate cases. The condition A5 ensures a unique solution to the estimating equation.

For the simplicity of notation we let θ = β(t0) denote β(·) evaluated at t0 in this subsection.

The following theorem establishes the consistency of the estimator θ̂.

Theorem 1 Assume that {Oi, i = 1, · · · , n} are i.i.d. random samples, and Ti and Ci are

independent given Xi. Then under model (2) and assumptions A1-A5, θ̂ → θ in probability

as n→∞ for any t0 ∈ (a, b).

The proof of this theorem uses the semiparametric asymptotic results developed in Newey

[18] and Chen et al. [19].

Since the final estimator involves estimates β̂(·) in the entire range of Ti, uniform con-

sistency of the initial estimator is required. The next theorem establishes the asymptotic

normality of θ̂.
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Theorem 2 Under the assumptions of Theorem 1, as n→∞,

√
n(θ̂ − θ)→ N(0, A−1V A−1)

in distribution, where A = E[µ(Xi;θ){1−µ(Xi;θ)}ZiZT
i ], V = cov{s(Oi; t0,θ,β)+ξ(Ti; t0,θ,β)},

ξ(Ti; t0,θ,β) =

∫ t0

0

g(u)

∫
h(x)zzT

[
F (t0|x){1− F (t0|x)}ψ(x, Ti; t0,θ)

−F (u|x){1− F (t0|x)}ψ{x, Ti;u,β(u)}
]
dxdu,

g(u) is the density function for Ci, h(x) is the density function for Xi, z = (1, x)T , and

ψ{x, Ti;u,β(u)} is defined in the appendix.

The proof of this theorem is in the appendix and it also uses the results in Newey [18].

3 Numeric results

In this section, we provide Monte Carlo results on simulation experiments and application

of the method to a real world study.

3.1 Simulation studies

To study the finite sample performance of the proposed estimator, we ran two sets of

simulation studies. In each set, the true survival times were generated from the model

(1) with β0(t) = β00 + β01log(t), β1(t) = β10 + β11log(t) and (β00, β01, β10, β11)
T =

(−80, 21.5,−1.4, 0.7)T . The parameters were designed such that the cumulative risk func-

tions resembles the fit from COHORT data in Section 3.2. In simulation setting A (Tables

1 and 2), we simulated Xi from a multinomial distribution with support on integer values

between 41 and 50 representing CAG repeats. CAG 41-45 were simulated with an equal

probability, which is two times of the equal probability that CAG 46-50 were simulated

from. The censoring times were generated from a Beta distribution where the overall cen-
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soring rate is about 35%. We simulated two samples sizes n = 1000 and n = 2000 since the

real data has a sample size of 1151.

We compared two types of estimators. The first is the initial inverse probability weighted

estimator (IPW) β̃(t) from (3) and the second is the proposed redistribution to the right

weighted estimator (REW) β̂(t) from (6). Since the theoretical variance estimator involves

integrations and unknown quantities which are difficult to compute, we used bootstrap to

obtain the mean estimated standard errors of the two estimators in each simulation repe-

tition. The empirical standard errors based on the total 400 repetitions and the empirical

MSEs were also summarized in tables 1 and 2, where we presented the estimated distribution

functions obtained from the two estimators at various ages and CAG values (42 and 46).

It can be seen that both IPW and REW estimators have small finite sample biases. The

mean estimated standard errors and empirical standard errors are close to each other over

most age range with some exceptions at the extreme tail area. The empirical standard error

of REW is smaller than that of IPW, especially at older ages. For example, the efficiency

gain of REW over IPW is 10% at age 50 for CAG=42 and n = 1000. The coverage of the

95% confidence interval is close to the nominal level when age is below 60 for both IPW and

REW. At age 60, since censoring is heavier, the coverages of both IPW and REW are lower

than the nominal level, with the performance of REW slightly better between the two. The

mean estimated standard error of IPW estimator at age 55 and CAG=42 in table 1 is very

large because the IPW estimator has unstable weights at that age range due to a turning

point in the distribution function. It is a limitation of the IPW estimator and the increased

variance when the weights are unstable was reported in the literature [? ]. This issue is

relieved when we increased the sample size as seen in table 2. In addition, the proposed

estimator does not suffer from the high variability of the IPW initial estimator.

We presented the true and the mean estimated cumulative distribution functions (CDFs)

obtained from the REW estimator and their empirical 95% CI at various CAGs in figure

1. The estimated curves coincide with the true curves in most cases. When CAG=42
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and n = 1000, there appears to be a small bias at the tail area, for example, at t = 65

(bias=0.0051, empirical SE=0.0015). However, this bias is within the variability range,

which may be explained by the higher censoring rate within this range for subjects with

CAG=42 (about 45%). When we increase the sample size to n = 2000, the bias decreased

to almost zero.

In simulation setting B (table 3), we basically kept the same setting as in A, but increased

the censoring rate to 45% and also increased the number of simulations to 2000. Due to the

computation burden we didn’t conduct the bootstrap on each simulation repetition to get

the mean estimated SEs and MSEs, as well as the coverage probabilities. Only the empirical

SEs and MSEs are reported in table 3. The results are similar to those in tables 1 and 2,

where the empirical SEs and MSEs of REW are consistently smaller than those of IPW.

In addition to the above estimators, we also investigated a smoothed REW estimator,

where β̂(t) were smoothed across the range of t subject to monotone constraint using a

Generalized Pooled-Adjacent-Violators Algorithm [20]. The mean estimated cumulative dis-

tribution functions and empirical standard errors are almost identical to those of the non-

smoothed estimator. The maximum absolute difference in the mean of the two estimators

averaged across simulations was very small. Therefore we omit the results of the smoothed

estimator here.

3.2 Application to COHORT data

As introduced in Section 1, despite identification of the causative gene for HD, there is

currently no effective treatment that delays HD onset or stops disease progression. To

improve the care of HD patients and inform the development of effective treatment, a large

genetic epidemiological study on HD, the Cooperative Huntington’s Observational Research

Trial (COHORT), was started in 1996. This is a study organized by 42 Huntington Study

Group research centers in North America and Australia [3, 4]. Participants in COHORT

underwent a clinical evaluation where blood samples are genotyped for huntingtin gene
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mutation and their CAG repeats lengths were obtained. Modeling the inverse association

between the CAG repeats length and age-at-onset of HD accurately is important.

In this section, we fit the COHORT data by the model (1) where we do not assume

a parametric form of β0(t) or β1(t) and the censoring distribution G()̇. In our analysis,

information on CAG repeats length, age at the time of evaluation, and age at diagnosis of

HD onset (if a subject had been diagnosed) were available for 1151 subjects recruited in

COHORT. In the study, both HD affected carriers and pre-symptomatic carriers (24%) were

included. Their ages-at-first-motor-symptom were also recorded. Among 1151 subjects, 876

(76%) subjects had experienced HD motor sign onset and the average age of the diagnosis

was 44 years of age. There were 280 (24%) participants who did not develop HD by the

end of study and were treated as censored. All the participants were alive at the baseline in

order to participate in the study, and none of them died without HD during the follow up

years. Censoring was assumed to be independent of HD diagnosis.

To estimate the distribution of age-at-onset of HD given a subject’s CAG repeats length,

we fit three estimators: IPW, REW, and the Kaplan-Meier (KM) estimator using only

subjects with a particular CAG repeats length at a time. Figure 2 presents the estimated

CDFs at various CAG values. The results show a positive correlation between the onset

probability and the CAG repeats, that is, the cumulative risk of HD onset by a given age

increases with increasing number of CAG repeats. Subjects with longer CAG repeats have a

higher probability of developing HD by a certain age, which is consistent with the literature

[6]. We summarize numerical results of estimated CDFs at a few CAGs and ages in table 4.

As a comparison, we see that IPW and REW provides point estimates of CDFs similar to

KM using only subjects with the same CAG values. However, the standard errors of REW at

different ages and CAGs are smaller than both KM and IPW, suggesting an efficiency gain.

For example, at CAG=42 and age 50, the standard error of the cumulative risk estimated by

IPW is 18% larger than REW, and KM is 40% larger than REW. The post-hoc smoothing

of β̂(t) leads to a CDF close to the non-smoothed CDF and therefore not reported here. We
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also modeled the survival function for the censoring times G(·) based on CAG repeats using

a Cox model. The estimates are identical to those in table 4 up to the third decimal place

and therefore not reported here.

4 Discussion

We propose methods to estimate cumulative disease risk from a known mutation (i.e., also

referred as the penetrance function in genetic epidemiology) from a nonparametric varying-

coefficient model. For most complex diseases, predicting the age-at-onset of a disease from

genetic markers such as single-nucleiotide polymorphisms continues to be a challenging issue

[21]. The proposed method explores a pseudo-logistic regression and redistributes the prob-

ability mass at the censored outcomes to the right. The procedure has desirable numerical

and asymptotic properties and is extremely easy to implement. Although we focused on

assessing the effect of CAG repeats on HD onset, it is easy to include other covariates with

time-invariant effect through a backfitting procedure for models such as

logit{pr(Ti ≤ t|Xi)} = β0(t) + β1(t)Xi + γTZi.

or model (2). The proposed methods have computational advantages compared to, for ex-

ample, Peng and Huang [10]. In addition to the logistic link as discussed here, the developed

methods can be adapted to transformation models with a known link function.

Satten and Datta [22] showed an equivalence between IPW-based and self-consistency-

equation-based methods for Kaplan-Meier estimator for a pure nonparametric model. It is

less clear whether such equivalence still holds for our model (1) which is equivalent to a

proportional odds model with nonparametric time-varying coefficients. This may be worth

future exploration. In some applications, investigators may be interested in testing the dis-

tribution function at more than one time point or building confidence bands. We proposed a

procedure to test a distribution function in a sequence of pre-specified time points simulta-
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neously in Ma and Wang [23], which can be adapted here. The construction of simultaneous

confidence bands may rely on theoretical properties of supremes of Gaussian processes (e.g.,

Fine et al. [24]). However, such confidence bands may be conservative and the details are

beyond the scope of this work.

Lastly, in practice it may not be easy to correctly specify a biologically meaningful

parametric form for c0(Xi) and c1(Xi) as in model (2). In these situations, using a two-

dimensional nonparametric function of Xi and t may be helpful. To assist determining a

parametric (e.g., Langbehn et. al. 2004) versus a semiparametric model or nonparametric

model, a goodness-of-fit statistic is useful. For example, one may consider test statistic based

on supremem norm such as supt |F̂ 1(t)− F̂ 0(t)|, where F̂ 1(t) is fitted under a nonparametric

or semiparametric model, and F̂ 0(t) is fitted under a parametric model. The critical value

or the p-value of the test will be computed empirically based on simulations under the null

hypothesis.
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Appendix

A.1 Proof of Theorem 1

We show consistency by Lemma 5.2 in Newey [18]. We need to show uniform consistency of

the initial IPW estimator, i.e., supt∈[a,b] |β̂(t)−β(t)| = op(1), and verify assumption 5.4 and

5.5 in Newey [18]. First show uniform consistency of the initial IPW estimator. Wang et al.
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[25] showed that the IPW estimator can be expanded as

β̂(t)− β(t) =
1

n

n∑
i=1

ψ{Xi, Ti; t,β(t)}+ op(n
−1/2), (7)

where

ψ{Xi, Ti; t,β(t)} = φ{Xi, Ti; t,β(t)} −
n∑
i=1

∫
[φ{Xi, Ti; t,β(t)} − B(φ, u)]dM c

i (u)

G(u)
,

B(φ, u) = E[φ{Xi, Ti; t,β(t)}|Ti ≥ u,Xi], and dM c
i (u) is the martingale of the censoring

process. To show uniform consistency, we need to show that the set
{
ψ{Xi, Ti; t,β(t)} : t ∈

[a, b]
}

is a Glivenko-Cantelli class. Note that φ{Xi, Ti; t,β(t)} = A{Xi;β(t)}[I(Ti ≤ t) −

µ{Xi;β(t)}]Zi. Indicator functions are cadlag processes which are bounded in total variation

and belong to the Vapnic-Červonencis class. Thus they are bounded in uniform entropy

integral with square-integrable envelope. It follows that they belongs to a Donsker class, and

hence Glivenko-Cantelli. In addition, µ{Xi;β(t)} is Lipschitz continuous. By assumption

A1, β(t) belongs to a cadlag processes therefore are also bounded in uniform entropy integral.

Since Lipschitz continuous functions of classes bounded in uniform entropy integral and

pointwise measurable are also bounded in uniform entropy integral and pointwise measurable,{
µ{Xi;β(t)}, t ∈ [a, b]

}
, is Glivenko-Cantelli. From A{Xi;β(t)} =

{
E(µ{Xi;β(t)}[1 −

µ{Xi;β(t)}]ZiZT
i )
}−1

, under assumption A5, A{Xi;β(t)} is bounded from below and above

by positive constants component-wise and bounded in uniform entropy integral, therefore is

Glivenko-Cantelli. Lastly, since Xi is bounded and products of classes with bounded uniform

entropy integral also have bounded uniform entropy integral, we have
{
φ{Xi, Ti; t,β(t)} :

t ∈ [a, b]
}

is Glivenko-Cantelli.

16



Now we check the second term in ψ{Xi, Ti; t,β(t)}. Note that

B(φ, u) = E[φ{Xi, Ti; t,β(t)}|Xi, Ti ≥ u]

=
E[φ{Xi, Ti; t,β(t)}I(Ti ≥ u)|Xi]

E(Ti ≥ u|Xi)

=

∫∞
u
A{Xi;β(t)}[I(s ≤ t)− µ{Xi;β(t)}]ZidF (s|Xi)

1− F (u|Xi)

=
A{Xi;β(t)}[F (t|Xi)− F (u|Xi)− µ{Xi;β(t)}{1− F (u|Xi)}]Zi

1− F (u|Xi)
.

Therefore

n∑
i=1

∫
[φ{Xi, Ti; t,β(t)} − B(φ, u)]dM c

i (u)

G(u)

=
n∑
i=1

(1− δi)
G(Ci)

{
φ{Xi, Ti; t,β(t)}

−A{Xi;β(t)}[F (t|Xi)− F (Ci|Xi)− µ{Xi;β(t)}{1− F (Ci|Xi)}]Zi
1− F (Ci|Xi)

}
. (8)

Under condition A4, G(Ci) > 0. Under model (2) and conditions A1, A2, the above term

indexed by t is also Glivenko-Cantelli. This proves that
{
ψ{Xi, Ti; t, β(t)} : t ∈ [a, b]

}
is

Glivenko-Cantelli. It follows that

sup
t∈[a,b]

∣∣∣∣∣n−1
n∑
i=1

ψ{Xi, Ti; t,β(t)} − E[ψ{Xi, Ti; t,β(t)}]

∣∣∣∣∣→ 0.

Since E[ψ{Xi, Ti; t,β(t)}] = 0, we have shown the uniform consistency of the IPW estimator,

sup
t∈[a,b]

|β̂(t)− β(t)| = 0.

Now we verify assumptions 5.4 and 5.5 in Newey [18]. In what follows, we use θ and β(·)

to denote true parameter values and use θ̃ and β̃(·) to denote other values different from the

truth. For assumption 5.4 (i), it is straightforward to see that s(Oi; t0, θ̃,β) is continuous in

17



θ̃ and is bounded under the assumptions A1, A3, and A4. For the assumption 5.4 (ii), note

s(Oi; t0, θ̃, β̃)− s(Oi, ; t0, θ̃,β)

= I(Ti > Ci)I(Ci < t0){w(Oi; t0, β̃)− w(Oi; t0,β)}Zi

= I(Ti > Ci)I(Ci < t0)Zi

[
µ{Xi; β̃(t0)} − µ{Xi; β̃(Ci)}

1− µ{Xi; β̃(Ci)}
− µ{Xi;β(t0)} − µ{Xi;β(Ci)}

1− µ{Xi;β(Ci)}

]

= I(Ti > Ci)I(Ci < t0)ZiZ
T
i

(
µ{Xi; β̌(t0)}[1− µ{Xi; β̌(t0)}]

1− µ{Xi; β̌(Ci)}
{β̃(t0)− β(t0)}

−µ{Xi; β̌(Ci)}[1− µ{Xi; β̌(t0)}]
1− µ{Xi; β̌(Ci)}

{β̃(Ci)− β(Ci)}

)
, (9)

where β̌(u) is on the line segment between β̃(u) and β(u). Here the last equality is obtained

by taking pathwise derivative with respect to β. See also (10). Since 0 < µ{x; β̌(u)} < 1 for

u ∈ [a, b], it follows that there exists b(Oi) such that component-wise we have

||s(Oi; t0,θ, β̃)− s(Oi, ; t0,θ,β)|| ≤ b(Oi)||β̃ − β||.

By condition A5, the assumption 5.5 in Newey (1994) is satisfied. Finally, by Lemma 5.2 of

Newey [18], we have θ̂ = θ + op(1).

A.2 Proof of Theorem 2

We show the asymptotic normality of θ̂ by Lemma 5.3 of Newey [18]. For assumption 5.1(i),

note again

s(Oi; t0,θ, β̃)− s(Oi; t0,θ,β) = I(Ti > Ci)I(Ci < t0){w(Oi; t0, β̃)− w(Oi; t0,β)}Zi.

18



We now compute a pathwise derivative of w(Oi; t0,β) w.r.t. β evaluated at the true β in the

direction [β̃ − β]. Let βε(u) = β(u) + ε{β̃(u)− β(u)}. We can verify that

limε→0
1

ε

{
F (t0|Xi;βε)− F (Ci|Xi;βε)

1− F (Ci|Xi;βε)
− F (t0|Xi)− F (Ci|Xi)

1− F (Ci|Xi)

}
=

F (t0|Xi){1− F (t0|Xi)}ZT
i

1− F (Ci|Xi)
{β̃(t0)− β(t0)}

−F (Ci|Xi){1− F (t0|Xi)}ZT
i

1− F (Ci|Xi)
{β̃(Ci)− β(Ci)}. (10)

Let

D(Oi; β̃ − β) = I(Ti > Ci)I(Ci < t0)ZiZ
T
i

[F (t0|Xi){1− F (t0|Xi)}
1− F (Ci|Xi)

{β̃(t0)− β(t0)}

−F (Ci|Xi){1− F (t0|Xi)}
1− F (Ci|Xi)

{β̃(Ci)− β(Ci)}
]
. (11)

From (9), we can verify

s(Oi; t0,θ, β̃)− s(Oi; t0,θ,β)−D(Oi; β̃ − β)

= I(Ti > Ci)I(Ci < t0)ZiZ
T
i

(
µ{Xi; β̌(t0)}[1− µ{Xi; β̌(t0)}]

1− µ{Xi; β̌(Ci)}
{β̃(t0)− β(t0)}

−µ{Xi; β̌(Ci)}[1− µ{Xi; β̌(t0)}]
1− µ{Xi; β̌(Ci)}

{β̃(Ci)− β(Ci)}

)
−D(Oi; β̃ − β)

= I(Ti > Ci)I(Ci < t0)ZiZ
T
i

×

([µ{Xi; β̌(t0)}[1− µ{Xi; β̌(t0)}]
1− µ{Xi; β̌(Ci)}

− F (t0|Xi){1− F (t0|Xi)}
1− F (Ci|Xi)

]
{β̃(t0)− β(t0)}

−
[µ{Xi; β̌(Ci)}[1− µ{Xi; β̌(t0)}]

1− µ{Xi; β̌(Ci)}
− F (Ci|Xi){1− F (t0|Xi)}

1− F (Ci|Xi)
{β̃(Ci)− β(Ci)}

])
,

where again β̌(u) is on the line segment of β̃(u) and β(u). It is now easy to see that

||s(Oi; t0,θ, β̃)− s(Oi; t0,θ,β)−D(Oi; β̃ − β)|| ≤ b(Oi)||β̃ − β||2.

For (ii) in assumption 5.1, we need to show that the convergence rate of the IPW estimator
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β̂ is at least n1/4. Let F denote all cadlag functions uniformly bounded on [a, b]. By adapting

the proof in the previous item, we know that {ψ{Xi, Ti;β(t)} : t ∈ [a, b],β ∈ F} belongs

to a Donsker class. Therefore
√
n{β̂(·) − β(·)} converges weakly to a Gaussian process.

Therefore this assumption is satisfied.

We now prove assumption 5.2 (stochastic equicontinuity). Note

∫
D(o; β̃ − β)dGdH

=

∫ t0

0

g(u)

∫
h(x)

[F (t0|x){1− F (t0|x)}zzT{β̃(t0)− β(t0)}
1− F (u|x)

{1− F (u|x)}

−F (u|x){1− F (t0|x)}zzT{β̃(u)− β(u)}
1− F (u|x)

{1− F (u|x)}
]
dxdu

=

∫ t0

0

g(u)

∫
h(x)zzT

[
F (t0|x){1− F (t0|x)}{β̃(t0)− β(t0)}

−F (u|x){1− F (t0|x)}{β̃(u)− β(u)}
]
dxdu.

A sufficient condition for stochastic equicontinuity is provided in Chen et al. [19], Remark

2. To be specific, we need to show for δn = op(1),

sup
||β̃−β||≤δn

|| 1
n

n∑
i=1

D(Oi, β̃ − β)−
∫
D(o, β̃ − β)dGdH|| = op(n

−1/2).

This can be proved by showing the process {D(Oi, β̃−β) : t ∈ [a, b], β̃−β ∈ F} belongs to

a Donsker class. Note the form of D(Oi, β̃ − β) in (11), again by adapting proof in item 4

this holds under the conditions A1-A5.

A sufficient condition for assumption 5.3 in Newey (1994) is

√
n

∫
D(o; β̂ − β)dGdH −

n∑
i=1

α(Oi)/
√
n→ 0,

for some α(·) (p.1366, 18). Using the expansion (7) for β̂(t), we obtain

∫
D(o; β̂ − β)dGdH =

1

n

n∑
i=1

ξ(Ti; t0,θ,β) + op(n
−1/2),
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where

ξ(Ti; t0,θ,β) =

∫ t0

0

g(u)

∫
h(x)zzT

[
F (t0|x){1− F (t0|x)}ψ(x, Ti; t0,θ)

−F (u|x){1− F (t0|x)}ψ{x, Ti;u,β(u)}
]
dxdu.

Therefore assumption 5.3 holds.

For assumption 5.6, it is straightforward that (i) and (ii) are satisfied. We have

A = E

{
∂s(Oi; t0,θ,β)

∂θ

}
= E[µ(Xi;θ){1− µ(Xi;θ)}ZiZT

i ],

which is nonsingular under the assumption A5. It is easy to see that (iv) holds. For (v),

since
∂s(Oi; t0,θ,β)

∂θ
is continuous in θ, assumption 5.4 (i) holds for

∂s(Oi; t0,θ,β)

∂θ
. The

assumption 5.4 (ii) holds for
∂s(Oi; t0,θ,β)

∂θ
since it does not depend on β.

By Lemma 5.3 of Newey [18], we obtain

√
n(θ̂ − θ)→ N(0, A−1V A−1).
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Table 3: Mean estimated CDFs by IPW and REW estimators, their empirical SEs, and
empirical MSEs (all in 100 fold scale). n = 1000 or 2000, 2000 simulations, CAG=42 and
46.

n=1000 CAG=42
EMP EMP EMP EMP

Age TRUE IPW† REW‡ SE(IPW)? SE(REW) MSE(IPW) MSE(REW)

30 0.005 0.011 0.010 0.018 0.016 <0.001 <0.001
35 0.108 0.120 0.109 0.065 0.060 <0.001 <0.001
40 1.426 1.427 1.344 0.457 0.428 0.002 0.002
45 12.447 12.367 12.066 2.531 2.386 0.064 0.058
50 52.329 52.721 52.275 5.504 4.828 0.305 0.233
55 87.460 89.497 89.032 5.837 4.979 0.382 0.273
60 97.418 99.577 99.451 1.633 1.535 0.073 0.065

n=1000 CAG=46
EMP EMP EMP EMP

Age TRUE IPW REW SE(IPW) SE(REW) MSE(IPW) MSE(REW)

30 0.275 0.285 0.265 0.230 0.216 0.001 <0.001
35 7.790 7.817 7.543 1.621 1.581 0.026 0.026
40 62.084 62.298 62.091 3.704 3.589 0.138 0.129
45 95.722 95.683 95.726 1.384 1.282 0.019 0.016
50 99.571 99.476 99.501 0.414 0.336 0.002 0.001
55 99.948 99.854 99.883 0.292 0.198 0.001 <0.001
60 99.992 99.970 99.974 0.171 0.111 <0.001 <0.001

n=2000 CAG=42
EMP EMP EMP EMP

Age TRUE IPW REW SE(IPW) SE(REW) MSE(IPW) MSE(REW)

30 0.005 0.008 0.007 0.010 0.009 <0.001 <0.001
35 0.108 0.111 0.101 0.044 0.040 <0.001 <0.001
40 1.426 1.447 1.359 0.326 0.304 0.001 0.001
45 12.447 12.419 12.104 1.773 1.691 0.031 0.030
50 52.329 52.348 51.981 3.637 3.265 0.132 0.108
55 87.460 88.330 88.061 3.791 3.263 0.151 0.110
60 97.418 99.052 98.933 1.923 1.752 0.064 0.054

n=2000 CAG=46
EMP EMP EMP EMP

Age TRUE IPW REW SE(IPW) SE(REW) MSE(IPW) MSE(REW)

30 0.275 0.273 0.253 0.163 0.153 <0.001 <0.001
35 7.790 7.713 7.432 1.126 1.092 0.013 0.013
40 62.084 62.084 61.891 2.635 2.588 0.069 0.067
45 95.722 95.712 95.747 0.953 0.884 0.009 0.008
50 99.571 99.529 99.539 0.251 0.216 0.001 <0.001
55 99.948 99.903 99.916 0.144 0.105 <0.001 <0.001
60 99.992 99.959 99.969 0.136 0.093 <0.001 <0.001

†: CDF by inverse probability weighting (IPW) estimator, β̃t, solving (3).
‡: CDF by re-distributed to right (REW) weighted estimator, β̂t, using IPW as initial estimator for weight
to solve (6).
?: Empirical SE of CDF by IPW estimator.
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Table 4: COHORT data: Estimated CDFs by KM, IPW and REW estimators and their
estimated SEs at CAG=42, 44, 46 and 48 (all in 100 fold scale).

CAG=42
Age KM IPW‡ REW∗ SE(KM) SE(IPW) SE(REW)

30 <0.001 0.424 0.319 NA 0.170 0.139
35 1.005 1.197 1.028 0.707 0.331 0.303
40 4.210 3.916 3.417 1.458 0.700 0.635
45 10.521 9.520 8.754 2.289 1.350 1.232
50 26.769 28.646 24.286 3.442 2.422 1.989
55 53.365 54.668 50.085 4.015 3.576 2.574
60 74.294 78.742 74.661 3.692 30.086 2.343

CAG=44
Age KM IPW REW SE(KM) SE(IPW) SE(REW)

30 2.458 1.347 1.053 1.214 0.394 0.339
35 5.663 4.754 3.747 1.834 0.828 0.729
40 15.638 15.912 13.670 2.938 1.480 1.349
45 36.492 37.504 34.121 3.979 2.140 1.960
50 73.225 68.592 64.816 3.773 2.264 2.251
55 91.844 88.395 86.837 2.436 1.743 1.731
60 96.737 96.008 95.439 1.596 6.436 1.079

CAG=46
Age KM IPW REW SE(KM) SE(IPW) SE(REW)

30 4.104 4.195 3.419 2.010 0.867 0.776
35 15.220 17.052 12.731 3.753 1.836 1.557
40 42.329 46.766 41.475 5.230 2.860 2.650
45 82.296 77.389 73.656 4.128 2.779 2.837
50 91.829 92.236 91.364 3.102 1.421 1.493
55 93.872 97.964 97.746 2.923 0.628 0.637
60 97.957 99.364 99.332 1.932 1.014 0.296

CAG=48
Age KM IPW REW SE(KM) SE(IPW) SE(REW)

30 13.889 12.314 10.535 5.764 2.078 1.876
35 47.826 45.848 35.347 8.407 4.204 3.594
40 83.437 80.309 76.028 6.469 3.064 3.336
45 93.375 95.127 93.786 4.457 1.271 1.487
50 96.687 98.476 98.381 3.233 0.472 0.478
55 100.000 99.672 99.651 NA 0.157 0.153
60 100.000 99.901 99.905 NA 0.155 0.062

†: CDF by inverse probability weighting (IPW) estimator, β̃t, solving (3).
‡: CDF by re-distributed to right (REW) weighted estimator, β̂t, using IPW as initial estimator for weight
to solve (6).
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Figure 1: True and REW CDF curves evaluated at CAG=50, 48, 46, 44, 42 (left to right).
The true and mean estimated curves are indistinguishable for most cases. n = 1000 (top)
and n = 2000 (bottom), 400 simulations.
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Figure 2: Estimated CDF curves (KM, IPW and REW) on COHORT proband data (n =
1151) evaluated at CAG=50, 48, 46, 44, 42 (left to right).
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