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Abstract

Over the past three decades, interest in cheap yet competitive variance estimators
in nonparametric regression has grown tremendously. One family of estimators
which has risen to meet the task is the difference-based estimators. Unlike their
residual-based counterparts, difference-based estimators do not require estimat-
ing the mean function and are therefore popular in practice. This work further
develops the difference-based estimators in the repeated measurement setting for
nonparametric regression models. Three difference-based methods are proposed
for the variance estimation under both balanced and unbalanced repeated mea-
surement settings: the sample variance method, the partitioning method, and the
sequencing method. Both their asymptotic properties and finite sample perfor-
mance are explored. The sequencing method is shown to be the most adaptive
while the sample variance method and the partitioning method are shown to
outperform in certain cases.
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1 Introduction

Consider the nonparametric regression model with repeated measurement data,

Yij = f(xi) + εij, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (1)

where Yij are observations, xi are design points, f is an unknown mean function, and

εij are independent and identically distributed (i.i.d.) random errors with mean zero

and variance σ2. In this paper we are interested in estimating the residual variance σ2.

Needless to say, an accurate estimate of σ2 is desired in many situations, e.g., in testing

the goodness of fit and in deciding the amount of smoothing (Carroll 1987, Carroll &

Ruppert 1988, Eubank & Spiegelman 1990, Gasser, Kneip & Kohler 1991). Over the

past three decades, interest in cheap yet competitive variance estimates in the nonpara-

metric setting has grown tremendously. One family of estimators which has generated

great interest and has become an important tool for this purpose is the difference-based

estimators. Unlike their residual-based counterparts, difference-based estimators do not

require the estimation of the mean function, which involves nonparametric estimation

procedures, and have therefore become quite popular in practice.

In the simple situation when m = 1, there already exist a large body of difference-

based estimators in the literature (Dette, Munk & Wagner 1998). In this case, model

(1) reduces to

Yi = f(xi) + εi, i = 1, 2, . . . , n, (2)

where Yi are observations, and εi are i.i.d. random errors with mean zero and variance

σ2. Assume that 0 ≤ x1 ≤ · · · ≤ xn ≤ 1, and define the order of a difference-based

estimator to be the number of observations involved in calculating a local residual. von

Neumann (1941) and Rice (1984) proposed the following first-order estimator,

σ̂2
R =

1

2(n− 1)

n∑
i=2

(Yi − Yi−1)
2. (3)

Gasser, Sroka & Jennen-Steinmetz (1986) and Hall, Kay & Titterington (1990) ex-

tended the idea behind the first-order estimator and proposed some higher order

difference-based estimators. Dette et al. (1998) pointed out that none of the fixed order

difference-based estimators can achieve the same asymptotically optimal rate as that

is achieved by the residual-based estimators (Hall & Marron 1990). Müller, Schick

& Wefelmeyer (2003), Tong, Liu & Wang (2008) and Du & Schick (2009) proposed

covariate-matched U-statistic estimators for the residual variance.
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Recently, Tong & Wang (2005) and Tong, Ma & Wang (2013) proposed some least

squares methods for estimating the residual variance, motivated by the fact that the

Rice estimator (3) is always positively biased. For the equally-spaced design, let

σ̂2
R(r) =

1

2(n− r)

n∑
i=r+1

(Yi − Yi−r)
2, r = 1, 2, . . . .

Assuming that f has a bounded first derivative, they showed that E{σ̂2
R(r)} l σ2 +

Jdr + o(dr), where dr = r2/n2 and J =
∫ 1

0
{f ′(x)}2dx/2. To reduce the positive bias

Jdr, they constructed a linear regression model

σ̂2
R(r) = σ2 + Jdr + ξr, r = 1, 2, . . . , r0, (4)

where ξr are random errors and r0 = o(n) is the chosen bandwidth. Let N = nr0 −
r0(r0 + 1)/2 as the total number of difference pairs involved in (4). They assigned

wr = (n − r)/N as the weight of σ̂2
R(r), and estimated the residual variance as the

intercept through the weighted least squares regression. They further showed that the

asymptotic optimal bandwidth is hopt = {28nσ4/Var(ε2)}1/2 with the corresponding

mean squared error (MSE) as

MSE(hopt) =
1

n
Var(ε2) +

9
√
7

28n3/2
σ2{Var(ε2)}1/2 + o(

1

n3/2
).

When m > 1, we have repeated measurements. Repeated measurement data are

commonly available in many statistical problems. How to take advantage of the re-

peated measurements and develop a variance estimator that has the same advantage of

not requiring a mean estimation is of great importance. Despite the rich literature on

difference-based variance estimation for model (2), very little attention has been paid

to model (1) with m ≥ 2. Gasser et al. (1986) encountered the multiple measurements

issue, but they decided to order the data sequentially and treat them as if they came

from different design points. Thus, the multiple measurements feature is ignored. This

is quite a pity, since intuitively the repeated measurement data contain different type

of information, and this new information should be taken into account in constructing

estimators. We suspect that one reason very few work is available for treating multiple

observations in difference based variance estimation literature is that it is not easy

to combine the between-design-point difference and the within-design-point difference

properly. In addition, even if a certain new treatment is proposed, it is not straightfor-

ward to analyze how effective this treatment is in theory. For example, it is difficult to

know if the treatment has optimal large sample property, in other words, it is difficult
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to know if a better method can be found in treating the multiple measurements, either

within the difference based method family or overall. In this work, we will fill this liter-

ature in both aspects. Specifically, we will propose three new difference based methods

to utilize the multiple measurements, respectively the sample variance method, the

partitioning method and the sequencing method. We analyze these methods and illus-

trate the practical advantages of each method under different data structures and/or

model assumptions. In addition, we will show that one of our proposals, the sequencing

method is indeed optimal in that it is root-n consistent and it reaches the minimum

asymptotic estimation variability among all possible consistent estimators.

The rest of the paper is organized as follows. In Section 2, we propose three

difference-based methods for estimating σ2 in nonparametric regression with repeated

measurement data: the sample variance method, the partitioning method, and the

sequencing method. We also explore their asymptotic properties, especially for the

proposed sequencing estimator, where we derive its MSE, its optimal bandwidth and

its asymptotic normality. In Section 3, we derive the optimal efficiency bound of

any estimation procedure and show that the proposed sequencing estimator reaches

this universal optimal efficiency bound. Extensive simulation studies are conducted

in Section 4 to evaluate and compare the finite sample performance of the proposed

estimators to the residual-based estimator. We then extend the methods to the non-

parametric regression models with unbalanced repeated measurement data in Section

5. Also, we demonstrate the practical application of proposed methods with one real

data example in Section 6. Finally, we conclude the paper in Section 7 with a brief

discussion and provide all the technical proofs in the Appendices.

2 Main Results

To estimate σ2 in model (1), a naive approach is to evade the issue of repeated mea-

surements by taking average of the observations at each design point. Assume that

xi = i/n for all i. Let the averaged observations be

Ȳi =
1

m

m∑
j=1

Yij = f(xi) +
1

m

m∑
j=1

εij, i = 1, . . . , n.

Given that εij are i.i.d. random errors with variance σ2, we have Var(Ȳi) = σ2/m.

Then to estimate σ2, we multiply the sequence Ȳi by
√
m and then apply Tong &

Wang (2005)’s method to the new sequence to get the estimation. We name this

estimator the averaging estimator, written as σ̂2
naive. At the asymptotically optimal
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bandwidth hopt = {28nσ4/Var(ε2)}1/2 in Tong & Wang (2005), the MSE of σ̂2
naive is

MSE{σ̂2
naive(hopt)} =

1

n
Var(ε2) +O(n−3/2). (5)

The number of repeats m does not appear in (5), hence the naive method clearly

does not take advantage of the repeated measurement data. Specifically, by taking

averages, this method sacrifices the information contained in the repeated measurement

data for simplicity. Further, multiplying the average sequence by
√
m enlarged the

mean function. As a consequence, the trend in the mean function is less negligible

in finite sample settings. The analysis on the naive method above indicates that in

nonparametric regression with repeated measurement data, there are two types of

information we can use and should probably treat differently: (i) the variation within

design points, and (ii) the variation between design points.

In what follows, we propose three new methods for estimating σ2 in nonparametric

regression with repeated measurement data. The first method is the sample variance

method where only the variation within design points is used. The second method

proposed is the partitioning method where only the variation between design points is

used. Whereas our third method, the sequencing method, uses both types of variations.

The statistical properties of all three methods will be investigated.

2.1 Sample Variance Method

Our first method aims to intelligently use the existence of repeated measurements for

the variance estimation. Let s2i =
∑m

j=1(Yij−Ȳi)
2/(m−1) be the sample variance of the

repeated measurements at the ith design point, i = 1, . . . , n. Given that Yi1, . . . , Yim are

i.i.d. random variables, we have E(s2i ) = σ2. Note also that s21, . . . , s
2
n are independent

of each other. We define the sample variance estimator of σ2 as

σ̂2
1 =

1

n

n∑
i=1

s2i . (6)

It is clear that σ̂2
1 is an unbiased estimator of σ2. By Rose & Smith (2002), we have

Var
(
s2i
)
=

1

m
Var(ε2) +

2

m(m− 1)
σ4.

This leads to

MSE(σ̂2
1) = Var(σ̂2

1) + Bias2(σ̂2
1) =

1

mn
Var(ε2) +

2

m(m− 1)n
σ4.
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Note that Hall & Marron (1990) showed that the residual-based estimators can achieve

an optimal estimation variance Var(ε2)/(nm), hence σ̂2
1 is not optimal. When m is

large, the discrepancy can be very small. Specifically, when m → ∞, the second term

in the above display is negligible and σ̂2
1 is asymptotically the best unbiased estimator

of σ2. However, when m is small, the sample variance estimator is clearly suboptimal.

In this paper, we are particularly interested in the scenario where m is fixed but n is

large.

An especially nice feature of σ̂2
1 is that it is completely free from any assumptions

on the mean function f . This makes the sample variance estimator robust in the most

general nonparametric settings, especially when the mean function is nonsmooth, non-

continuous or highly oscillating so that other difference-based methods fail to perform

well. Finally, the sample variance estimator is extremely easy to implement in practice.

2.2 Partitioning Method

Our second method is a partitioning method. We first partition the observations Yij

into m groups according to the following sampling-based algorithm.

(i) Sample one observation from the set {Yi1, . . . , Yim} for each i to form the first

response group G(1) = {Y1g1 , . . . , Yng1}.

(ii) Sample one observation from the remaining set {Yi1, . . . , Yim} \ {Yig1} for each i

to form the second response group G(2) = {Y1g2 , . . . , Yng2}.

(iii) Repeat Step (ii), until we obtain the last response groupG(m) = {Y1gm , . . . , Yngm}.

We then apply Tong & Wang (2005)’s method to each group G(j) to get the estimates

σ̂2
(j), j = 1, . . . ,m. The final estimator is defined as

σ̂2
2 =

1

m

m∑
j=1

σ̂2
(j). (7)

We refer to it as the partitioning estimator of variance.

Under the model assumption, the groups G(1), . . . , G(m) are independent of each

other. Therefore, the estimators σ2
(j) are also independent of each other. Then with

the optimal bandwidth hopt = {28nσ4/Var(ε2)}1/2, the MSE of σ̂2
2 is given as

MSE{σ̂2
2(hopt)} =

1

nm
Var(ε2) +

9
√
7

28mn3/2
σ2{Var(ε2)}1/2 + o(

1

n3/2
). (8)

This shows that the proposed partitioning estimator achieves the same asymptotically

optimal estimation variance as that for the residual-based estimators.
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2.3 Sequencing Method

Our third method is proposed to combine two kinds of variation properly. To achieve

this, we treat all the repeated observations as if they are generated from different design

points. We then build a linear regression model to estimate σ2 systematically. Specifi-

cally, we order the observations as {Y11, . . . , Y1m, . . . , Yn1, . . . , Ynm} and also relabel the

indices as l = 1, 2, . . . , nm. With this notation, model (1) can be written as

Zl = f(tl) + ϵl, l = 1, . . . , nm, (9)

where {Z1, Z2, . . . , Znm} = {Y11, . . . , Y1m, . . . , Yn1, . . . , Ynm}, {t1, t2, . . . , tnm} = {x1, . . . , x1,

. . . , xn, . . . , xn}, and {ϵl, ϵ2, . . . , ϵnm} = {ε11, . . . , ε1m, . . . , εn1, . . . , εnm}.
For model (9), we define the lag-p Rice estimator

σ̂2
R(p) =

1

2(nm− p)

nm∑
l=p+1

(Zl − Zl−p)
2, for p = 1, . . . , nm− 1.

Note that the first m lag-p Rice estimators only use differences of the identical or

consecutive design points, i.e., none of the f(xi)−f(xi−r) terms with r ≥ 2 are involved

in the first m lag-p Rice estimators. We thus combine them and define a new Rice-type

estimator using the weighted average of the first m lag-p Rice estimators,

σ̂2
Rt =

1

m2n−m(m+ 1)/2

m∑
p=1

(nm− p)σ̂2
R(p)

=
1

2m2n−m(m+ 1)

{
m−1∑
k=1

n∑
i=1

m∑
j=k+1

(Yij − Yi,j−k)
2 +

m∑
k=1

n∑
i=2

k∑
j=1

(Yij − Yi−1,m−k+j)
2

}
,

where the weight for σ̂2
R(p) is assigned because the lag-p Rice estimator uses (nm− p)

pairs of data.

Some algebra yields

E(σ̂2
Rt) = σ2 +

1

2m2n−m(m+ 1)

m∑
k=1

n∑
i=2

k∑
j=1

{f(xi)− f(xi−1)}2

= σ2 +
m(m+ 1)/2

2m2n−m(m+ 1)

n∑
i=2

{f(xi)− f(xi−1)}2 .

This reveals that the Rice-type estimator σ̂2
Rt is always positively biased, unless f is

a constant function. Suppose that f has a bounded first derivative. By the Taylor

expansion we have

E(σ̂2
Rt) = σ2 +

(n− 1)m(m+ 1)

n2{2m2n−m(m+ 1)}
J + o(

1

n2
), (10)

7



where J =
∫ 1

0
{f ′(x)}2dx/2. To eliminate the bias term in (10), we further define the

lag-r Rice-type estimators

σ̂2
Rt(r) =

1

cr

rm∑
p=(r−1)m+1

(nm− p)σ̂2
R(p) (11)

=
1

2cr

{
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(Yij − Yi−r+1,j−k)
2 +

m∑
k=1

n∑
i=r+1

k∑
j=1

(Yij − Yi−r,m−k+j)
2

}
,

where r = 1, 2, n− 1, and cr =
∑rm

p=(r−1)m+1(nm− p) = m2n− rm2 +m(m− 1)/2. By

definition, σ̂2
Rt = σ̂2

Rt(1). Similar calculation at any fixed r = o(n) yields

E
{
σ̂2

Rt(r)
}

= σ2 +
1

2cr

[
m−1∑
k=1

n∑
i=r

m∑
j=k+1

{f(xi)− f(xi−r+1)}2 +
m∑
k=1

n∑
i=r+1

k∑
j=1

{f(xi)− f(xi−r)}2
]

= σ2 + Jdr + o(r2/n2), (12)

where

dr =
m {(m− 1)(n− r + 1)(r − 1)2 + (m+ 1)(n− r)r2}

2crn2
. (13)

The relation in (12) indicates that the lag-r Rice-type estimator σ̂2
Rt(r) has a linear

relationship with the quantity dr. Taking advantage of this relation, we fit a linear

regression model by treating σ̂2
Rt(r) as the response variable and dr as the covariate,

and estimate σ2 as the intercept of the linear model.

We choose the first b pairs of {dr, σ̂2
Rt(r)} to perform the regression, where b = o(n).

The choice of b will be discussed in Sections 2.3.2 and 2.3.3. In performing the linear

regression estimation, because σ̂2
Rt(r) involves cr pairs of data, we assign weight wr =

cr/sb to the rth observation, where sb =
∑b

r=1 cr = m2nb−m2b(b+1)/2+m(m−1)b/2.

The advantage of such weight assignment will be investigated in Section 2.3.5. We then

minimize the weighted sum of squares
∑b

r=1 wr{σ̂2
Rt(r)−α−βdr}2 to fit the linear model

σ̂2
Rt(r) = α+ βdr + er, r = 1, . . . , b. (14)

For ease of notation, let σ̄2
w =

∑b
r=1 wrσ̂

2
Rt(r) and d̄w =

∑b
r=1 wrdr. Then the sequencing

estimator of σ2 is given as

σ̂2
3 = α̂ = σ̄2

w − β̂d̄w, (15)

where β̂ =
∑b

r=1 wrσ̂
2
Rt(r)(dr − d̄w)/

∑b
r=1 wr(dr − d̄w)

2 is the fitted slope. In Appendix

1 we prove that
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Theorem 1. For the equally spaced design, σ̂2
3 is an unbiased estimator of σ2 when f

is a linear function, regardless of the choice of b.

In what follows we establish further statistical properties of the sequencing estima-

tor σ̂2
3. For notational convenience, we let Y = (Y11, . . . , Y1m, . . . , Yn1, . . . , Ynm)

T , f =

{f(x1), . . . , f(x1), . . . , f(xn), . . . , f(xn)}T , and ε = (ε11, . . . , ε1m, . . . , εn1, . . . , εnm)
T . Then

Y = f+ε. Also let u = (1, . . . , 1)T , γi = E(εi/σi) for i = 3, 4, and assume that γ4 > 1.

2.3.1 Quadratic Form Representation

Let τ0 = 0 and τr = 1− d̄w(dr − d̄w)/
∑b

r=1 wr(dr − d̄w)
2, r = 1, . . . , b. By (15),

σ̂2
3 =

b∑
r=1

τrwrσ̂
2
Rt(r) =

1

2sb

b∑
r=1

τr

rm∑
p=(r−1)m+1

nm∑
l=p+1

(Zl − Zl−p)
2

 .

With some algebra, we can write σ̂2
3 as

σ̂2
3 =

1

2sb
Y TDY ,

where D is an (nm)× (nm) symmetric matrix with elements

Dij =


dii(a), (a− 1)m < i = j ≤ am with a = 1, . . . , n,
−τa, (a− 1)m < |i− j| ≤ am with a = 1, . . . , b,
0, otherwise,

where dii(a) = m
∑b

r=1 τr +m
∑a−1

r=0 τr + {i− 1− (a− 1)m}τa for a = 1, . . . , b; dii(a) =

2m
∑b

r=1 τr for a = b+1, . . . , n−b; and dii(a) = m
∑b

r=1 τr+m
∑n−a

r=0 τr+(am−i)τn+1−a

for a = n− b+ 1, . . . , n.

Note that D depends on the design points only. By letting f = 0, we have

E(σ̂2
3) =

1

2sb
E(Y TDY ) =

1

2sb
E(εTDε) =

σ2

2sb
tr(D),

Now because of Theorem 1, σ̂2
3 is unbiased when f = 0, we have tr(D) = 2sb. This

shows that the proposed sequencing estimator possesses a quadratic form,

σ̂2
3 = Y TDY /tr(D). (16)

2.3.2 Asymptotic MSE and Optimal Bandwidth

The quadratic form representation (16) of σ2
3 enables us to take advantage of the

existing results in Dette et al. (1998) and directly obtain

MSE(σ̂2
3) =

[
(fTDf)2 + 4σ2fTD2f + 4fT{D · diag(D)u}σ3γ3

+ σ4(γ4 − 3)tr[diag(D)2] + 2σ4tr(D2)
]
/{tr(D)}2, (17)
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where diag(D) denotes the diagonal matrix of the diagonal elements of D. The first

term in (17) represents the squared bias, and the last four terms represent the variance

term of the estimator. In the case when the random errors are normally distributed,

γ3 = 0 and γ4 = 3 so that the third and fourth terms vanish.

Theorem 2. Assume that f has a bounded second derivative. For the equally spaced

design with b → ∞ and b/n → 0, we have

Bias(σ̂2
3) = O(b3n−3), (18)

Var(σ̂2
3) =

Var(ε2)

mn
+

9σ4

4m2nb
+

9bVar(ε2)

112mn2
+ o{(nb)−1 + bn−2}, (19)

MSE(σ̂2
3) =

Var(ε2)

mn
+

9σ4

4m2nb
+

9bVar(ε2)

112mn2
+ o{(nb)−1 + bn−2}+O(b6n−6). (20)

Theorem 2 indicates that σ̂2
3 is a consistent estimator of σ2, and its MSE reaches the

asymptotically optimal rate (Dette et al. 1998). By (20), the asymptotically optimal

bandwidth in terms of minimizing the MSE is given as

bopt =

{
28nσ4

mVar(ε2)

}1/2

. (21)

It is interesting to point out that bopt does not depend on the mean function f . We

also note that bopt is a decreasing function of m. Substituting (21) into (20) leads to

MSE{σ̂2
3(bopt)} =

1

nm
Var(ε2) +

9
√
7

28m3/2n3/2
σ2{Var(ε2)}1/2 + o(1/n3/2). (22)

Comparing (8) and (22), we have MSE{σ̂2
3(bopt)} < MSE{σ̂2

2(hopt)} for any m ≥ 2.

This implies that the sequencing estimator behaves asymptotically better than the

partitioning estimator in the presence of repeated measurement data. Note also that

bopt = hopt/m
1/2. When m = 1, bopt = hopt and the two estimators are identical.

2.3.3 Adaptive Choice of Bandwidth

For simplicity, we use normal random errors to illustrate the choice of bandwidth in the

finite sample situation. When the errors are not normal, the only additional complexity

is to estimate the ratio γ4 = Var(ε2)/σ4; all other aspects of the bandwidth selection

procedure remain the same as in the normal error case.

For normal random errors, Var(ε2) = 2σ4 so that bopt is simplified as (14n/m)1/2,

which does not depend on the smoothness of the mean function and the magnitude of

residual variance. We caution here that the above bopt applies for large n only. When
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n is small or when f is rough, the performance of bopt is sometimes not satisfactory in

practice. This was also observed in Tong & Wang (2005) for m = 1. This is because

some higher order terms ignored in the calculation of the asymptotic MSE for the

estimator (20) indeed depend on the smoothness of the function. Consequently, we

need a smaller bandwidth to diminish the impact of the mean function in the finite

sample case. Simulation studies (not shown) indicate that the bandwidth choices for

m = 1 in Tong & Wang (2005) often work well for m ≥ 2, as long as m is not too

large (say, m ≤ 20). In summary, we suggest to use (i) bs = n1/2 for large n, and (ii)

bt = n1/3 for small n or for rough f . In the remainder of this article, we take the integer

part of bs and bt whenever necessary.

A cross validation (CV) strategy can also be applied to select the bandwidth. Specif-

ically, we first split the whole data set into V disjoint subsamples {S1, . . . , SV }, and
then select b = bCV that minimizes CV(b) =

∑V
v=1{σ̂2

3(b) − σ̂2
3,v(b)}2, where σ̂2

3(b) and

σ̂2
3,v(b) are the estimates of σ2 based on the whole sample ∪V

i=1Si and the subsample

∪i ̸=vSi with bandwidth b, respectively. Note that the design points in ∪i ̸=vSi are not

equally spaced on [0, 1]. Thus to compute σ̂2
3,v(b), we need to use the formula devel-

oped in the general design; see more details in Section 2.3.6. Finally, the CV method

requires much more expensive computation compared to bs and bt.

2.3.4 Asymptotic Normality

We have the following asymptotic normality for the Rice-type estimators σ̂2
Rt(r) in (11)

and for the sequencing estimator σ̂2
3 in (16). Let

D→ denote convergence in distribution.

Theorem 3. Assume that f has a bounded second derivative and E(ε4) is finite. Then

for any r = nϑ with 0 ≤ ϑ < 1/2, the lag-r Rice-type estimator satisfies

√
n{σ̂2

Rt(r)− σ2} D−→ N{0, (γ4 − 1 + 1/m)σ4/m} as n → ∞.

Theorem 4. Assume that f has a bounded second derivative and E(ε4+2δ) is finite for

some δ in (0, 1). Then for any b = nϑ with 0 < ϑ < 1/2, the sequencing estimator σ̂2
3

satisfies

√
n(σ̂2

3 − σ2)
D−→ N{0, (γ4 − 1)σ4/m} as n → ∞.

Proofs of Theorems 3 and 4 are given in Appendices 3 and 4, respectively. Theorem

3 indicates that σ̂2
Rt(r) has the same asymptotic property as “the m-order optimal

difference-based estimator” proposed in Hall et al. (1990). Given that E(ε4+2δ) is finite

11



for some δ in (0, 1), Theorems 3 and 4 show that the sequencing estimator is more

efficient than the Rice-type estimators for any fixed m. Specifically, the efficiency of

σ̂2
Rt(r) relative to σ̂2

3 is given as (γ4 − 1)/(γ4 − 1 + 1/m), which is an increase function

of m. When the random errors are normally distributed, the relative efficiency reduces

to 2m/(2m + 1). As illustration, the relative efficiency is 66.7% when m = 1, 80%

when m = 2, and 90.9% when m = 5. Finally, σ̂2
Rt(r) and σ̂2

3 become asymptotically

equivalent as m → ∞.

Theorem 4 can be easily used to construct confidence intervals for σ2. For example,

when mn > (γ4 − 1)z2α/2, an approximate 1− α confidence interval for σ2 is

[σ̂2
3/{1 + zα/2

√
(γ4 − 1)/mn}, σ̂2

3/{1− zα/2
√
(γ4 − 1)/mn}],

where zα is the upper α-th percentile of the standard normal distribution. For normal

data, the parameter γ4 = 3 so the confidence interval is fully specified. In general, γ4

needs to be replaced by an estimate.

2.3.5 Generalized Least Squares Estimator

In constructing the Rice-type estimators at different lags, we have used the same ob-

servations to form different pairs. Thus, our linear regression model (14) concerns cor-

related data. When the responses are correlated, the proper way of performing linear

regression is the generalized least squares (GLS) method, where the optimal weighting

matrix is the inverse variance-covariance matrix of the observations. In our problem,

the variance-covariance matrix is found to have very special property. Specifically, in

Appendix 5 we prove the following results.

Lemma 1. Assume that f has a bounded second derivative and E(ε4) is finite. Then

for any b = nϑ with 0 ≤ ϑ < 1/2, the variance-covariance matrix of {σ̂2
Rt(1), . . . , σ̂

2
Rt(b)}

has leading order Σ = (σpr)b×b, where σpp = (γ4 − 1 + 1/m)σ4/(mn) for any 1 ≤ p ≤ b

and σrp = σpr = (γ4 − 1)σ4/(mn) for any 1 ≤ r < p ≤ b.

Lemma 1 states that the leading order of the variance-covariance matrix has the

same value on the diagonal, even though each diagonal element corresponds to a dif-

ferent lag. In addition, the off-diagonal elements are also identical, hence the matrix

Σ is compound symmetric. These properties yield great simplification of GLS. Specif-

ically, let z = {σ̂2
Rt(1), . . . , σ̂

2
Rt(r)}T , β = (α, β)T , e = (e1, . . . , eb)

T , d = (d1, . . . , db)
T ,

and X = (u,d) be the design matrix. With these notations, the linear model (14) is

12



equivalent to z = Xβ + e, and to the first order, the optimal GLS estimator of β is

β̂GLS = (XTΣ−1X)−1XTΣ−1z.

From Lemma 1, we have Σ = (γ4 − 1 + 1/m)σ4{(1 − ρ)I + ρuuT}/(mn), where ρ =

(γ4 − 1)/(γ4 − 1+ 1/m) and I is the identity matrix. Due to the compound symmetry

structure of Σ and the fact that the first column of X is u, it is not difficult to show

that (XTΣ−1X)−1XTΣ−1z = (XTX)−1XTz ( McElroy (1967) and Kariya & Kurata

(2004)). This implies that the optimal GLS estimator β̂GLS is in fact the same as the

ordinary least squares estimator β̂OLS to the first order. In other words, the simplest

OLS is already the most efficient way of perform the linear regression.

However, the sequencing method we proposed in Section 2.3 is not the optimal

GLS or OLS. In fact, the estimator σ̂2
3 is a GLS with a special weighting strategy.

Specifically, let W = diag(w1, . . . , wb) be the weight matrix and write the weighted

least squares (WLS) estimator of β as

β̂WLS = (α̂WLS, β̂WLS)
T = (XTW−1X)−1XTW−1z.

Then the sequencing estimator corresponds to the intercept estimation of β̂WLS, i.e.,

σ̂2
3 = α̂WLS. It is not difficult to see that when n → ∞, the weights wi converge to

a constant uniformly. Thus, β̂WLS is asymptotically the same as β̂OLS and hence is

also optimal. The reason we propose WLS instead of the simplest OLS to form the

sequencing estimator is based on small sample consideration. When n is not too large,

WLS takes into account the higher order difference of the variabilities at different lags

hence it adapts better to the data and tends to have more stable numerical performance.

3 Optimal Bound for Estimating σ2

We now consider the optimal bound on the variance in estimating σ2 regardless how

the estimation is carried out. We only assume that the regression errors ϵij = Yij −
f(Xi), i = 1, . . . , n, j = 1, . . . ,m are independent and identically distributed with mean

0 and variance σ2, and are independent of Xi’s. Denote the probability density function

of ϵij as η(ϵij).

The probability density function (pdf) of (xi, yi1, . . . , yim) is fX(xi)
∏m

j=1 η(ϵij),

where fX(·) is the marginal pdf of Xi and η is a pdf that ensures E(ϵij) = 0. Be-

cause σ2 = E(ϵ2ij) is our parameter of interest, fX , η, f are pure nuisance parameters.

This leads us to a semiparametric problem and the semiparametric tools developed in

Bickel et. al (1994) can be readily applied to derive the efficient influence function
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through projecting an arbitrary influence function onto the tangent space associated

with fX , η and f .

Following standard calculation, the tangent space is

ΛT =

{
h(xi) +

m∑
j=1

g(ϵij) +
m∑
j=1

η′0(ϵij)

η0(ϵij)
a(xi)

: ∀h, g such that E(h) = 0, E(g) = E(ϵijg) = 0,∀a} , (23)

where η0(·) is the true probability density function of ϵij. We identify m−1
∑m

j=1 ϵ
2
ij−σ2

as one valid influence function. To see this, consider an arbitrary parametric submodel,

denoted η(ϵij,µ), where µ is a finite dimensional vector of parameters such that there

exists µ0, so that η(ϵij,µ0) = η0(ϵij). In addition, η(ϵij,µ) is a valid probability density

function and
∫
ϵijη(ϵij;µ)dϵij = 0 for all µ in a local neighborhood of µ0. We have

∂
∫
ϵ2ijη(ϵij,µ)dϵij/∂µ

∣∣∣
µ=µ0

=
∫
ϵ2ij

∂ log η(ϵij ,µ)

∂µ η(ϵij,µ)dϵij

∣∣∣
µ=µ0

. Consequently,

∂σ2

∂µ

∣∣∣
µ=µ0

= m−1 ∂

∂µ

∫
(

m∑
j=1

ϵ2ij)
m∏
j=1

η(ϵij,µ)dϵi1 . . . dϵim

∣∣∣
µ=µ0

= m−1

m∑
j=1

∂

∂µ

∫
ϵ2ijη(ϵij,µ)dϵij

∣∣∣
µ=µ0

= m−1

m∑
j=1

∫
ϵ2ij

∂ log η(ϵij,µ)

∂µ
η(ϵij,µ)dϵij

∣∣∣
µ=µ0

= m−1

m∑
j=1

∫
ϵ2ij

∂ log
∏m

j=1 η(ϵij,µ)

∂µ

m∏
j=1

η(ϵij,µ)dϵi1 . . . dϵim

∣∣∣
µ=µ0

= E(m−1

m∑
j=1

ϵ2ijSµ),

where Sµ ≡ ∂ log
∏m

j=1 η(ϵij,µ)/∂µ is the score with respect to µ. From Section 4 of

Tsiatis (2006), m−1
∑m

j=1 ϵ
2
ij − σ2 is thus a valid influence function. Writing

m−1

m∑
j=1

ϵ2ij − σ2 = m−1

m∑
j=1

{ϵ2ij − σ2 + γ3σ
3η′0(ϵij)/η0(ϵij)} −m−1

m∑
j=1

γ3σ
3η′0(ϵij)/η0(ϵij),

we can easily verify that ϵ2ij − σ2 + γ3σ
3η′0(ϵij)/η0(ϵij) satisfies the requirement on

g in (23). Letting h = 0 and a(xi) = −γ3σ
3, we can see that m−1

∑m
j=1 ϵ

2
ij − σ2

is an element of the tangent space, hence it is in fact the efficient influence func-

tion. The corresponding efficient estimation variance is n−1E{(m−1
∑m

j=1 ϵ
2
ij −σ2)2} =

(nm)−1E{(ϵ2ij−σ2)2} = (nm)−1(γ4−1)σ4, which agrees with the asymptotic estimation
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variance established in Theorem 4. This shows that the proposed sequencing estimator

is indeed optimal in terms of its first order estimation variance among the class of all

consistent estimators.

In the above derivation, we did not take into consideration that Xi’s are actually

equally spaced instead of being random. However, assuming fX(x) to be uniform or

more generally assuming fX(x) to have any particular form does not change the effi-

ciency result. This is because the efficiency bound calculation is conducted conditional

on X, and is decided by the property of ϵ only, which is assumed to be independent of

xi. The property of fX is thus masked out.

4 Simulation Studies

We now conduct simulation studies to evaluate the finite sample performance of the

aforementioned estimators: the naive estimator σ̂2
naive, the sample variance estimator

σ̂2
1, the partitioning estimator σ̂2

2, and the sequencing estimator σ̂2
3. For comparison,

we also include a residual-based estimator, where we use the cubic smoothing spline to

estimate the mean function and then use the squared residuals to estimate the variance.

During the procedure, the smoothing parameter is selected via the generalized cross

validation, and the resulting variance estimator is written as σ̂2
SS.

We consider the following two mean functions:

f1(x) = 10x(1− x),

f2(x) = 3x sin(4πx),

where f1 is a low-frequency function and f2 is an irregular high-frequency function

(see Figure 1). The coefficients 10 in f1 and 3 in f2 are chosen so that the two mean

functions have similar amplitudes. We set the design points xi = i/n and simulate

εij independently from N(0, σ2). For each mean function, we consider n = 30 and

200 corresponding to small and large sample sizes respectively, and σ2 = 0.25 and

4 corresponding to small and large variances respectively. Further, we choose m =

2, 3, 4, 5 and 10 to represent different levels of repeated measurements. In total, we

have 40 combinations of simulation settings.

We choose the bandwidths bs = n1/2 and bt = n1/3 for both σ̂2
2 and σ̂2

3. The

corresponding estimators are referred to as σ̂2
2(bt), σ̂

2
2(bs), σ̂

2
3(bt) and σ̂2

3(bs) respectively.

The CV method can also be used for estimating σ2, and we find it generally performs

as well as bt and bs. However, because CV is computationally more expensive, we do

not recommend it and hence do not present its corresponding results in the remainder
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Figure 1: The mean functions f1(x) and f2(x), where 0 ≤ x ≤ 1.

of the paper. For σ̂2
naive, we use the bandwidth bt = n1/3 throughout the simulations.

Also note that the quadratic matrix D is not guaranteed to be positive definite. This

means that σ̂2
naive, σ̂

2
2(bt), σ̂

2
2(bs), σ̂

2
3(bt) and σ̂2

3(bs) may take negative estimates, though

it happens very rarely in our simulations. We replace negative estimates by zero in the

calculation of the relative mean squared errors.

We repeat the simulation 10, 000 times for each setting. The relative mean squared

errors, (mn)MSE/(2σ4), are reported in Table 1 for n = 30 and in Table 2 for n = 200.

Based on the simulation results, we summarize the findings below. (i) The sequencing

estimator σ̂2
3(bs) or σ̂

2
3(bt) exhibits the best performance in all but one setting; it even

outperforms the residual-based estimator σ̂2
SS when an appropriate bandwidth is used.

(ii) The relative performance of σ̂2
3(bs) and σ̂2

3(bt) depends on the smoothness of f ,

the sample size n and the signal-to-noise ratio. In general, σ̂2
3(bs) performs slightly

better than σ̂2
3(bt) for most settings; whereas for small n and rough f , σ̂2

3(bt) is much

better than σ̂2
3(bs). (iii) The sequencing estimator always performs better than the

partitioning estimator. Specifically, σ̂2
3(bs) always outperforms σ̂2

2(bs) and σ̂2
3(bt) always

outperforms σ̂2
2(bt). (iv) The sample variance estimator σ̂2

1 does not suffer from the

bias term caused by the lack of smoothness of f and the large signal-to-noise ratio.

As a consequence, it outperforms all other methods when n is small (30), σ2 is small

(0.25) and f is rough (f2). (v) The naive estimator σ̂2
naive is always the worst among

all the estimators. (vi) When m increases, all the proposed estimators, except the

naive estimator, have a decreased relative MSE. In particular, the MSE of σ̂2
1 decreases

dramatically as m increases. When m = 10, σ̂2
1 always performs well and is among the

best of all the estimators. This demonstrates again the importance of extracting the
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information contained in the repeated measurement data.

f σ2 m σ̂2
naive σ̂2

1 σ̂2
2(bt) σ̂2

2(bs) σ̂2
3(bt) σ̂2

3(bs) σ̂2
SS

f1 0.25 2 3.17 2.07 1.57 1.45 1.31 1.28 1.80
3 4.92 1.55 1.61 1.50 1.24 1.25 1.58
4 6.84 1.37 1.64 1.57 1.19 1.24 1.42
5 8.67 1.25 1.61 1.58 1.15 1.22 1.31
10 21.15 1.14 1.64 1.79 1.12 1.28 1.17

4 2 3.09 2.07 1.55 1.33 1.28 1.18 1.53
3 4.65 1.55 1.58 1.33 1.21 1.14 1.37
4 6.29 1.37 1.61 1.35 1.16 1.11 1.26
5 7.70 1.25 1.57 1.32 1.12 1.07 1.19
10 15.83 1.14 1.59 1.34 1.08 1.07 1.14

f2 0.25 2 8.79 2.07 2.98 16.42 2.18 11.08 2.69
3 22.84 1.55 3.63 23.71 2.21 13.63 2.17
4 49.36 1.37 4.30 31.03 2.29 16.28 1.90
5 90.14 1.25 4.90 38.27 2.37 18.97 1.71
10 658.93 1.14 8.02 74.46 2.98 33.04 1.42

4 2 3.17 2.07 1.57 1.43 1.30 1.26 2.16
3 4.78 1.55 1.60 1.46 1.23 1.22 1.77
4 6.62 1.37 1.63 1.49 1.18 1.19 1.55
5 8.21 1.25 1.60 1.51 1.14 1.17 1.43
10 19.23 1.14 1.62 1.66 1.10 1.21 1.27

Table 1: Relative mean squared errors for the seven estimators under various settings
with n = 30.

5 Nonparametric Regression with Unbalanced Re-

peated Measurements

In this section, we consider the nonparametric regression model with unbalanced re-

peated measurements,

Yij = f(xi) + εij, i = 1, 2, . . . , n, j = 1, 2, . . . ,mi,

where Yij, xi, f and εij are defined as before. We assume that mi are not all the same,

where mi = 1 represents a single observation at the ith design point.

17



f σ2 m σ̂2
naive σ̂2

1 σ̂2
2(bt) σ̂2

2(bs) σ̂2
3(bt) σ̂2

3(bs) σ̂2
SS

f1 0.25 2 2.55 2.02 1.29 1.12 1.15 1.07 1.13
3 3.89 1.48 1.27 1.08 1.07 1.03 1.06
4 5.08 1.31 1.27 1.11 1.06 1.03 1.06
5 6.24 1.25 1.27 1.11 1.05 1.03 1.05
10 12.86 1.10 1.24 1.08 1.01 1.01 1.02

4 2 2.55 2.02 1.29 1.11 1.15 1.07 1.10
3 3.89 1.48 1.27 1.08 1.07 1.02 1.05
4 5.08 1.31 1.27 1.10 1.06 1.03 1.05
5 6.23 1.25 1.27 1.10 1.05 1.03 1.04
10 12.83 1.10 1.24 1.07 1.01 1.00 1.01

f2 0.25 2 2.56 2.02 1.29 1.36 1.15 1.28 1.40
3 3.90 1.48 1.27 1.45 1.08 1.31 1.25
4 5.13 1.31 1.28 1.59 1.07 1.41 1.21
5 6.30 1.25 1.27 1.70 1.06 1.48 1.17
10 13.24 1.10 1.24 2.23 1.01 1.83 1.09

4 2 2.55 2.02 1.28 1.11 1.15 1.07 1.23
3 3.89 1.48 1.27 1.08 1.08 1.02 1.14
4 5.08 1.31 1.27 1.11 1.06 1.03 1.12
5 6.23 1.25 1.27 1.10 1.05 1.03 1.10
10 12.83 1.10 1.24 1.08 1.01 1.00 1.05

Table 2: Relative mean squared errors for the seven estimators under various settings
with n = 200.

18



5.1 Methodology

We first point out that when mi’s are not identical, the averaged observations Ȳi no

longer have homogeneous variances. Instead, Var(Ȳi) = σ2/mi. Consequently, the

naive method is no longer applicable for unbalanced repeated measurements, simply

because Tong & Wang (2005) does not apply to heterogeneous variances. For the

other three proposed methods, we derive the following corresponding results. Their

numerical performance will be studied in Section 5.2.

The sample variance method still yields a valid estimator. For the ith design point,

let s2i =
∑mi

j=1(Yij − Ȳi)
2/(mi − 1) when mi ≥ 2 and s2i = 0 when mi = 1. The sample

variance estimator is then

σ̃2
1 =

1

M − n

n∑
i=1

(mi − 1)s2i ,

where M =
∑n

i=1 mi. We note that σ̃2
1 is an unbiased estimator for σ2. In the special

case when mi ≥ 2 and are identical, σ̃2
1 reduces to σ̂2

1.

The partitioning method continues to work for unbalanced repeated measurements

with slight modification. First, we sample one observation Y1g1 from the set {Y11, . . . , Y1m1},
one observation Y2g1 from the set {Y21, . . . , Y2m2}, . . . , and one observation Yng1 from

the set {Yn1, . . . , Ynmn}. Second, we apply Tong & Wang (2005)’s method on the se-

lected group G(1) = {Y1g1 , . . . , Yng1} to get one estimate σ̂2
(1). We then repeat the

process B times and estimate σ2 by

σ̃2
2 =

1

B

B∑
j=1

σ̂2
(j).

Unlike the partitions in Section 2.2, the groups G(1), . . . , G(B) are not fully separated

so that the estimators σ2
(1), . . . , σ

2
(B) may not be independent of each other. In the

special case whenmi are all the same, it can be shown that σ̃2
2 and σ̂2

2 are asymptotically

equivalent as B → ∞. In general, the larger the B value, the closer performance

between σ̂2
2 and σ̃2

2. We suggest to choose a B value that is at least larger than

max{m1, . . . ,mn} in practice.

The sequencing method can also be adjusted to apply for unbalanced repeated mea-

surements. Let di1i2 = (xi2 − xi1)
2 be the squared distances between design points xi2

and xi1 , and Si1i2 = {si1(j1)i2(j2) = (Yi2j2 − Yi1j1)
2/2 : j1 = 1, . . . ,mi1 , j2 = 1, . . . ,mi2}

be the set of size mi1mi2 for the half squared differences associated with di1i2 . We col-

lect all di1i2 values so that di1i2 ≤ (b/n)2, and let A = {(i1, i2) : di1i2 ≤ (b/n)2, 1 ≤ i1 <

i2 ≤ n}. Correspondingly, we collect all the si1(j1)i2(j2) values for each (i1, i2) ∈ A. Now
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for each paired data {(di1i2 , si1(j1)i2(j2)) : (i1, i2) ∈ A, j1 = 1, . . . ,mi1 , j2 = 1, . . . ,mi2},
we fit a simple regression model si1(j1)i2(j2) = α+di1i2β+ηi1i2 by least squares and then

estimate σ2 by the fitted intercept,

σ̃2
3 = α̃ =

1

NT2 − T 2
1

∑
(i1,i2)∈A

(T2 − T1di1i2)

mi1∑
j1=1

mi2∑
j2=1

si1(j1)i2(j2).

where N =
∑

A mi1mi2 , T1 =
∑

A mi1mi2di1i2 and T2 =
∑

Ami1mi2d
2
i1i2

. When mi are

all the same, it is easy to verify that σ̃2
3 is equivalent to a least squares estimator with

s̃r =
1

2m2(n− r)

n∑
i=r+1

m∑
j1=1

m∑
j2=1

(Yi,j2 − Yi−r,j1)
2

as the dependent variable and d̃r = r2/n2 as the independent variable. Our analytical

and simulation studies (not shown) indicate that under equally spaced and balanced

design, σ̃2
3 and σ̂2

3 are equivalent asymptotically and similar in finite sample perfor-

mance. Note that σ̃2
3 also works for unequally spaced designs. In view of this, we claim

that σ̃2
3 generalizes the sequencing estimator σ̂2

3 not only from balanced repeated mea-

surements to unbalanced repeated measurements, but also from equally spaced designs

to unequally spaced designs.

5.2 A Simulation Study

We now study the finite sample performance of the proposed estimators under the

unbalanced repeated measurement setting. The estimators considered for comparison

are σ̃2
1, σ̃

2
2(bt), σ̃

2
2(bs), σ̃

2
3(bt), σ̃

2
3(bs), and σ̂2

SS, where B is set to be 50 for the estimator

σ̃2
2. We consider the mean functions f1(x) and f2(x), the sample sizes n = 30 and

n = 200, and the residual variances σ2 = 0.25 and 4 as in Section 4. The design points

are xi = i/n and εij are simulated independently from N(0, σ2). For the different

measurements repetitions, we set mi = r if i = 5k + r, where k is a non-negative

integer and r is an integer in [1, 5]. In total, there are a total of 3n observations.

We repeat the simulation 10, 000 times for each setting, and report in Table 3 the

relative mean squared errors, i.e., (3n)MSE/(2σ4). Based on the simulation results,

we summarize the following findings. First, σ̃2
3(bs) or σ̃2

3(bt) performs the best in all

but one settings, where f is rough (f2), σ
2 is small (0.25) and n is small. In this case,

σ̃2
1 works the best. The comparative performance of σ̃2

3(bs) and σ̃2
3(bt) is similar to

that of σ̂2
3(bs) and σ̂2

3(bt) in the balanced repeated measurement setting. Second, the

sequencing estimator always outperforms the partitioning estimator, regardless what
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bandwidth is used. Third, the finite sample performance of the sequencing estimator

is superior to that of the residual-based estimator in all settings except for the case

(n, f, σ2) = (30, f2, 0.25).

Finally, it is interesting to compare the simulation results in Table 3 with those for

the setupm = 3 in Tables 1 and 2, wherem = 3 reflects the average number of repeated

measurements. (i) For the sample variance method, we note that σ̃2
1 works as well as or

even better than σ̂2
1 in most settings. This indicates that σ̃2

1 successfully adapts to the

unbalanced measurements by putting more weights (i.e., mi − 1) on the more accurate

sample variances obtained from large mi values. (ii) The partitioning method is less

efficient when the repeated measurement data are unbalanced. We believe that this is

caused by the finite choice of B. (iii) For the sequencing method, we note that σ̃2
3 and

σ̂2
3 are comparable in most settings. This indicates that the pairwise adjustment of the

sequencing method successfully generalizes the methodology and works effectively for

the unbalanced repeated measurement settings.

n f σ2 σ̃2
1 σ̃2

2(bt) σ̃2
2(bs) σ̃2

3(bt) σ̃2
3(bs) σ̂2

SS

30 f1 0.25 1.46 1.79 1.81 1.25 1.21 1.49
4 1.46 1.75 1.62 1.16 1.10 1.31

f2 0.25 1.46 3.78 24.22 4.98 16.75 2.06
4 1.46 1.77 1.75 1.22 1.20 1.68

200 f1 0.25 1.49 1.60 1.48 1.08 1.05 1.08
4 1.49 1.58 1.46 1.09 1.04 1.07

f2 0.25 1.48 1.59 1.82 1.09 1.44 1.26
4 1.48 1.58 1.46 1.09 1.04 1.15

Table 3: Relative mean squared errors for the six estimators under various settings
with unbalanced repeated measurements.

6 Real Data Examples

The data set was reported by University of Oxford via the department of statistics con-

sulting service (Venables & Ripley 2002). The data were collected on the concentration

of a chemical GAG in the urine, and the aim of the study was to produce a chart to

help a pediatrician to assess if a child’s GAG concentration is normal or not. The

data set is in the data frame “GAGurine” and it can be downloaded in the R package

“MASS”. The following two variables are included: age as the child age in years and

GAG as the concentration of GAG. To estimate the residual variance, we use all the
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Figure 2: The GAGurine data together with the fitted curve by smoothing spline.

167 children aged from 2 to 17 years. From the scatter plot and its fitted curve, we

observe a slightly nonlinear pattern between the two variables. In addition, a constant

variance assumption seems not unreasonable and therefore we adopt this assumption

in this study. For the proposed methods and the residual-based method, the estimated

variances are: σ̃2
1 = 5.89, σ̃2

2(bt) = 5.10, σ̃2
2(bs) = 5.41, σ̃2

3(bt) = 5.87, σ̃2
3(bs) = 5.97,

and σ̂2
SS = 5.57, where σ̃2

2(bt) and σ̃2
2(bs) are computed using B = 50. Overall, we note

that there is not large discrepancy among these estimates. Since for small n and large

m, our simulation indicates that the sample variance estimator usually performs the

best, we can evaluate the performance of other estimators by inspecting the difference

from σ̃2
1. To this end, the two sequencing estimators are again the winner against other

methods including the residual-based estimator.

7 Conclusion

We have proposed three difference-based methods for estimating the residual variance

in nonparametric regression with repeated measurement data: the sample variance

method by using only the variation within design points, the partitioning method by

using only the variation between design points, and the sequencing method by using

both between and within variations. We have investigated the statistical properties of

the proposed estimators for fixed m and large n and have established the optimality of

the sequencing estimator. When n is fixed while m is large, it is seen that the sample
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variance estimator is an efficient estimator and is recommended in practice. We fur-

ther conducted extensive simulation studies to assess the finite sample performance.

In terms of implementation specifics, for large n, we recommend the sequencing esti-

mator with the bandwidth bt = n1/3 when f is rough; otherwise, we recommend the

sequencing estimator with bandwidth bs = n1/2. For small n, we recommend the sam-

ple variance estimator when f is rough or whenm is large; otherwise we recommend the

sequencing estimator with the bandwidth bt = n1/3. We have also extended the pro-

posed difference-based methods to handle unbalanced repeated measurement settings

and found them work well in practice. Further work might be needed to investigate

the statistical properties under the unbalanced design.

Finally, we note that the difference-based methods have been extended to more

general settings, e.g., to multivariate covariates models (Hall, Kay & Titterington

1991, Kulasekera & Gallagher 2002, Munk, Bissantz, Wagner & Freitag 2005, Bock,

Bowman & Ismail 2007, Liitiäinen, Corona & Lendasse 2010) and to semiparametric

regression models (Xu & You 2007, Wang, Brown & Cai 2011). Note also that a

constant variance assumption may not be realistic in practice and the difference-based

methods have been applied to the variance function estimation in the literature (Müller

& Stadtmüller 1993, Levine 2006, Brown & Levine 2007, Cai, Levine & Wang 2009).

Further research is warranted in these directions when repeated measurement data are

presented.
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Appendix 1: Proof of Theorem 1

Assume that the linear function is f(x) = µ + δx. For ease of notation, denote fi =

f(xi), i = 1, . . . , n. Then

E
[
σ̂2

Rt(r)
]

= σ2 +
δ2

2cr

{
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(r − 1)2

n2
+

m∑
k=1

n∑
i=r+1

k∑
j=1

r2

n2

}

= σ2 +
δ2

2crn2

[
(n− r + 1)(r − 1)2

m−1∑
k=1

(m− k) + (n− r)r2
m∑
k=1

k

]
= σ2 +

1

2
drδ

2.

Note that
∑b

r=1 wr = 1 and d̄w =
∑b

r=1 wrdr. We have

E(σ̄2
w) =

b∑
r=1

wrE
[
σ̂2

Rt(r)
]
= σ2 +

1

2
δ2d̄w. (24)

Further, we have

E(β̂) =

∑b
r=1 wr(dr − d̄w)E [σ̂2

Rt(r)]∑b
r=1 wr(dr − d̄w)2

=
(δ2/2)

(∑b
r=1 wrd

2
r − d̄2w

)
∑b

r=1 wrd2r − d̄2w
=

1

2
δ2, (25)
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where
∑b

r=1 wr(dr − d̄w)
2 =

∑b
r=1 wrd

2
r − d̄2w and

b∑
r=1

wr(dr − d̄w)E
[
σ̂2

Rt(r)
]

=
b∑

r=1

wrdrE
[
σ̂2

Rt(r)
]
− d̄wE(σ̄2

w)

= σ2d̄w +
1

2
δ2

b∑
r=1

wrd
2
r − d̄w

(
σ2 +

1

2
δ2d̄w

)

=
1

2
δ2

(
b∑

r=1

wrd
2
r − d̄2w

)
.

Finally, by (24) and (25), we have E(σ̂2
3) = E(σ̄2

w) − E(β̂)d̄w = σ2. This finishes the

proof.

Appendix 2: Proof of Theorem 2

Proof of (18): Instead of using the formula Bias(σ̂2
3) = fTDf/tr(D), we calculate

this quantity directly from (15) which gives a more accurate approximation. For ease

of notation, denote fi = f(xi), f
′
i = f ′(xi), and f ′′

i = f ′′(xi), i = 1, . . . , n. Similarly as

Appendix 1, we have

E
[
σ̂2

Rt(r)
]

= σ2 +
m

2cr

[
(m− 1)

n∑
i=r

(fi − fi−r+1)
2 + (m+ 1)

n∑
i=r+1

(fi − fi−r)
2

]

= σ2 +
m

2cr

{
(m− 1)

n∑
i=r

[
(r − 1)2

n2
(f ′

i)
2 +O(

(r − 1)3

n3
)

]

+(m+ 1)
n∑

i=r+1

[
r2

n2
(f ′

i)
2 +O(

r3

n3
)

]}

= σ2 + Jdr +O(
r3

n3
).

Consequently, we have E(σ̄2
w) =

∑b
r=1 wrE [σ̂2

Rt(r)] = σ2+Jd̄w+O(b3/n3). In addition,

it is easy to verify that

d̄w =
1

sb

b∑
r=1

crdr =
b2

3n2
− b3

12n3
− (m− 1)b

2mn2
+ o(

b3

n3
) + o(

b

n2
), (26)

and

b∑
r=1

wr(dr − d̄w)
2 =

b∑
r=1

wrd
2
r − d̄2w =

4b4

45n4
+ o(

b4

n4
). (27)

27



This leads to

b∑
r=1

wr(dr − d̄w)E
[
σ̂2

Rt(r)
]

=
b∑

r=1

wrdr

[
σ2 + Jdr +O(

r3

n3
)

]
− d̄w

[
σ2 + Jd̄w +O(

b3

n3
)

]

= J

(
b∑

r=1

wrd
2
r − d̄2w

)
+O(

b5

n5
).

Finally, we have

E(σ̂2
3) = E(σ̄2

w)−
d̄w∑b

r=1 wr(dr − d̄w)2

b∑
r=1

wr(dr − d̄w)E
[
σ̂2

Rt(r)
]

=

[
σ2 + Jd̄w +O(

b3

n3
)

]
−
[
Jd̄w +O(

b3

n3
)

]
= σ2 +O(

b3

n3
).

To achieve the variance of σ̂2
3, we need Lemmas 2 and 3.

Lemma 2. For the equally spaced design with b → ∞ and b/n → 0, we have

(i)
b∑

r=1

τr = b− 5b2

16n
+ o(

b2

n
) + o(1).

(ii)
b∑

r=1

τ 2r =
9

4
b+ o(b).

(iii)
b∑

r=1

rτr =
3

16
b2 + o(b2).

(iv)
b∑

r=1

r2τr = o(b3).

(v)
i∑

r=1

τr =
9

4
i− 5i3

4b2
+ o(i) + o(

i3

b2
), 1 ≤ i ≤ b.

(vi)
i∑

r=1

rτr =
9

8
i2 − 15i4

16b2
+ o(i2) + o(

i4

b2
), 1 ≤ i ≤ b.

Proof. (i) Let η = d̄w/
∑b

r=1 wr(dr − d̄w)
2. Then τr = 1 − η(dr − d̄w). By (26)

and (27), we have η = 15n2/(4b2) + o(n2/b2) and
∑b

r=1(dr − d̄w) =
∑b

r=1 dr − bd̄w =
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b4/(12n3) + o(b4/n3) + o(b2/n2). This leads to

b∑
r=1

τr = b− η
b∑

r=1

(dr − d̄w) = b− 5b2

16n
+ o(

b2

n
) + o(1).

(ii) By
∑b

r=1 dr = b3/(3n2) + o(b3/n2) and
∑b

r=1 d
2
r = b5/(5n4) + o(b5/n4), we have∑b

r=1(dr − d̄w)
2 =

∑b
r=1 d

2
r − 2d̄w

∑b
r=1 dr + bd̄2w = 4b5/(45n4) + o(b5/n4). This leads to

b∑
r=1

τ 2r = b− 2η
b∑

r=1

(dr − d̄w) + η2
b∑

r=1

(dr − d̄w)
2 =

9

4
b+ o(b).

(iii) Note that
∑b

r=1 rdr = b4/(4n2) + o(b4/n2). We have

b∑
r=1

rτr = (1 + ηd̄w)
b∑

r=1

r − η

b∑
r=1

rdr =
3

16
b2 + o(b2).

(iv) Note that
∑b

r=1 r
2dr = b5/(5n2) + o(b5/n2). We have

b∑
r=1

r2τr = (1 + ηd̄w)
b∑

r=1

r2 − η

b∑
r=1

r2dr = o(b3).

(v) Note that
∑i

r=1 dr = i3/(3n2) + o(i3/n2). For any 1 ≤ i ≤ b, we have

i∑
r=1

τr = (1 + ηd̄w)i− η
i∑

r=1

dr =
9

4
i− 5i3

4b2
+ o(i) + o(

i3

b2
).

(vi) Note that
∑i

r=1 rdr = i4/(4n2) + o(i4/n2). For any 1 ≤ i ≤ b, we have

i∑
r=1

rτr = (1 + ηd̄w)
i∑

r=1

r − η

i∑
r=1

rdr =
9

8
i2 − 15i4

16b2
+ o(i2) + o(

i4

b2
).

Lemma 3. Under the same conditions as in Theorem 2, we have

(i) fTD2f = O(
b5

n2
) +O(

b2

n
).

(ii) fT [D · diag(D)u] = O(
b4

n
) +O(b2).

(iii) tr[diag(D)2] = 4m3nb2 − 103m3

28
b3 + o(b3).

(iv) tr(D2) = 4m3nb2 − 103m3

28
b3 +

9m2

2
nb+ o(b3) + o(nb).
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Proof. (i) Noting that the matrix D is symmetric, we have

fTD2f = fTDTDf = (Df)TDf = ξTξ,

where ξ = Df = (ξ1, . . . , ξnm)
T . Let l = (i − 1)m + j, where i = 1, . . . , n and

j = 1, . . . ,m. Note that f has a bounded second derivative. When i ∈ [b + 1, n − b],

by Lemma 2 (i), (iii) and (iv), we have

ξl = (j − 1)
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= O(
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When i ∈ [1, b], by Lemma 2 (i), (iii), (v) and (vi), we have

ξl = (j − 1)
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r − 1
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When i ∈ [n− b+ 1, n], similar argument leads to ξl = O(b2/n). Finally,

fTD2f = ξTξ =
mb∑
l=1

ξ2l +

m(n−b)∑
l=mb+1

ξ2l +
nm∑

l=m(n−b)+1

ξ2l = O(
b5

n2
) +O(

b2

n
).
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(ii) Note that fT [D · diag(D)u] = ξT · diag(D)u. By part (i) and Lemma 2 (i) and

(v), we have

fT [D · diag(D)u] =
b∑

i=1

m∑
j=1

ξ(i−1)m+j

[
m

b∑
r=1

τr +m
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r=0

τr + (j − 1)τi

]

+

m(n−b)∑
l=mb+1

ξl
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= O(
b4

n
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(iii) By Lemma 2 (i) and (v), we have
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+ 2
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= 4m3(n− 2b)

(
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16n
+ o(

b2

n
) + o(1)

)2

+ 2m3

b∑
i=1

[
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9

4
i− 5i3
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]2
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28
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(iv) By part (iii) and Lemma 2 (ii), we have

tr(D2) =

m(n−b)∑
l=mb+1

(2m b∑
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4
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28
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2
nb+ o(b3) + o(nb).

Proof of (19): Note that the last four terms in (17) make up the variance of σ̂2
3. Note

that σ4(γ4 − 3) = Var(ε2) − 2σ4, tr(D) = 2sb, and sb = m2nb − m2b2/2 + o(b2). By
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Lemmas 2 and 3, we have

Var(σ̂2
3) =

1

[tr(D)]2
{
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1

4s2b

[(
4m3nb2 − 103m3

28
b3
)
Var(ε2) + 9m2nbσ4 + o(b3) + o(nb)

]
=

1

mn
Var(ε2) +

9

4m2nb
σ4 +

9b

112mn2
Var(ε2) + o(

1

nb
) + o(

b

n2
).

Proof of (20): The MSE in (20) is an immediate result from (18) and (19).

Appendix 3: Proof of Theorem 3

Let fi = f(xi), i = 1, . . . , n. To prove the asymptotic normality for σ̂2
Rt(r), we first

partition it into three parts, σ̂2
Rt(r) = L1 + L2 + L3, where

L1 =
1

2cr

[
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(fi − fi−r+1)
2 +

m∑
k=1

n∑
i=r+1

k∑
j=1

(fi − fi−r)
2

]
,

L2 =
1

cr

[
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(fi − fi−r+1)(εij − εi−r+1,j−k) +
m∑
k=1

n∑
i=r+1

k∑
j=1

(fi − fi−r)(εij − εi−r,m−k+j)

]
,

L3 =
1

2cr

[
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(εij − εi−r+1,j−k)
2 +

m∑
k=1

n∑
i=r+1

k∑
j=1

(εij − εi−r,m−k+j)
2

]
.

(i) Note that J = O(1) and dr = O(r2/n2). For L1, by Taylor series we have

L1 = Jdr + o(r2/n2) = O(r2/n2). This shows that L1 = o(n−1/2) when r = nϑ with

0 ≤ ϑ < 3/4.
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(ii) For L2, by Cauchy-Schwarz inequality we have

L2
2 ≤ 2

c2r

[
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(fi − fi−r+1)(εij − εi−r+1,j−k)

]2

+
2

c2r

[
m∑
k=1

n∑
i=r+1

k∑
j=1

(fi − fi−r)(εij − εi−r,m−k+j)

]2

≤ 2

c2r

[
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(fi − fi−r+1)
2

][
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(εij − εi−r+1,j−k)
2

]

+
2

c2r

[
m∑
k=1

n∑
i=r+1

k∑
j=1

(fi − fi−r)
2

][
m∑
k=1

n∑
i=r+1

k∑
j=1

(εij − εi−r,m−k+j)
2

]
.

This leads to

E(L2
2) ≤

4σ2

cr

[
m−1∑
k=1

n∑
i=r

m∑
j=k+1

(fi − fi−r+1)
2 +

m∑
k=1

n∑
i=r+1

k∑
j=1

(fi − fi−r)
2

]
= O(

r2

n2
).

This shows that L2 = op(n
−1/2) for any r = nϑ with 0 ≤ ϑ < 1/2.

(iii) We represent the term L3 as L3 = σ2 +
∑n

i=r+1 ζi(r)/(n− r) +O(1/n), where

ζi(r) =
1

2m2

[
m−1∑
k=1

m∑
j=k+1

(εij − εi−r+1,j−k)
2 +

m∑
k=1

k∑
j=1

(εij − εi−r,m−k+j)
2

]
− σ2. (28)

We have E(ζi(r)) = 0. Treat {ζi(r), i = r + 1, . . . , n} as a stochastic process. With

some straightforward algebra, we have (a) for r = 1,

Cov(ζi(r), ζl(r)) =


[(8m2 − 3m+ 1)γ4 − (8m2 − 15m+ 1)]σ4/(12m3), l − i = 0,
(4m2 + 3m− 1)(γ4 − 1)σ4/(24m3), l − i = 1,
0, l − i ≥ 2;

(b) for r = 2,

Cov(ζi(r), ζl(r)) =


[(5m2 + 1)γ4 − (5m2 − 12m+ 1)]σ4/(12m3), l − i = 0,
(4m2 − 3m− 1)(γ4 − 1)σ4/(24m3), l − i = 1,
(m+ 1)(γ4 − 1)σ4/(8m2), l − i = 2,
0, l − i ≥ 3;

and (c) for any r ≥ 3,

Cov(ζi(r), ζl(r)) =


[(5m2 + 1)γ4 − (5m2 − 12m+ 1)]σ4/(12m3), l − i = 0,
(m2 − 1)(γ4 − 1)σ4/(24m3), l − i = 1,
(m− 1)(γ4 − 1)σ4/(8m2), l − i = r − 1,
(m+ 1)(γ4 − 1)σ4/(8m2), l − i = r,
0, otherwise.
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Note that the above covariances depend on i and l only through the difference l − i,

regardless of the choice of r. This shows that for any given r ≥ 1, {ζi(r), i = r +

1, . . . , n} is a strictly stationary sequence of random variables with mean zero and

autocovariance function C(τ) = C(s, s + τ) = Cov(ζs(r), ζs+τ (r)). Also note that

{ζi(r), i = r + 1, . . . , n} is an m-dependent sequence with m = r. Thus by Brockwell

and Davis (1991), we have the following asymptotic normality for L3,

√
n(L3 − σ2)

D−→ N(0, ν2
r ) as n → ∞, (29)

where ν2
r = C(0) + 2

∑r
τ=1 C(τ). For the covariance functions in (a)-(c), it is easy to

verify that ν2
1 = ν2

2 = ν2
r = [γ4/m− (m− 1)/m2]σ4 for any r ≥ 3.

Finally, noting that σ̂2
Rt(r) = L1 + L2 + L3 = L3 + op(n

−1/2), by (29) and Slutsky’s

theorem we have for any r = nϑ with 0 ≤ ϑ < 1/2,
√
n(σ̂2

Rt(r)− σ2)
D−→ N(0, [γ4/m−

(m− 1)/m2]σ4) as n → ∞.

Appendix 4: Proof of Theorem 4

To prove Theorem 4, we need the following lemma which was originated from Whittle

(1964).

Lemma 4. Assume that the matrix A = (aij)n×n satisfies aij = ai−j and
∑∞

−∞ a2k < ∞.

Also assume that E(ε2) = σ2 and E(ε4+2δ) is finite for some δ in (0, 1). Then

1

n
εTAε =

1

n

n∑
i=1

n∑
j=1

ai−jεiεj
D−→ N(a0σ

2, σ2
A), as n → ∞,

where σ2
A = (γ4 − 3)a20σ

4/n+ 2σ4
∑n

i=1

∑n
j=1 a

2
i−j/n

2.

Proof of Theorem 4: By Y = f + ε and tr(D) = 2sb, we have

σ̂2
3 =

1

2sb
fTDf +

1

sb
fTDε+

1

2sb
εTDε. (30)

(i) For the first term in (30), noting that it corresponds to the bias term E(σ̂2
3),

By Theorem 2 we have fTDf/(2sb) = O(b3/n3) = o(n−1/2) for any b = nϑ with

0 < ϑ < 5/6.

(ii) For the second term in (30), by Lemma 3 and the fact sb = O(nb) we have

E
(
fTDε/sb

)2
= (fTD2f)σ2/s2b = O(b3/n4) +O(1/n3).

This implies that fTDε/sb = op(n
−1/2) for any b = o(n).
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(iii) Now we derive the asymptotic normality for the last term in (30). Let (mn/2sb)D =

C −H, where C = (cij)n×n is an (mn)× (mn) matrix with elements

cij =

 m2n
∑b

r=1 τr/sb, 1 ≤ i = j ≤ mn,
−mnτa/(2sb), (a− 1)m < |i− j| ≤ am with a = 1, . . . , b,
0, otherwise,

and H = diag(h1, h2, . . . , hmn) is an (mn)× (mn) diagonal matrix with elements hi =

{m2n
∑b

r=1 τr −m2n
∑a−1

r=0 τr −mn[i− 1− (a− 1)m]τa}/(2sb) for (a− 1)m < i ≤ am

with a = 1, . . . , b; hi = 0 for (a − 1)m < i ≤ am with a = b + 1, . . . , n − b; and

hi = {m2n
∑b

r=1 τr −m2n
∑n−a

r=0 τr −mn(am− i)τn+1−a}/(2sb) for (a− 1)m < i ≤ am

with a = n− b+ 1, . . . , n. Then

1

2sb
εTDε =

1

mn
εTCε− 1

mn
εTHε. (31)

For the symmetric matrix C, let cij = ci−j with c0 = m2n
∑b

r=1 τr/sb; ci−j = cj−i =

−mnτa/(2sb) for (a − 1)m < |i − j| ≤ am with a = 1, . . . , b; and ci−j = cj−i = 0 for

|i− j| > bm. By Lemma 2, for any b = nϑ with 0 < ϑ < 1,

∞∑
−∞

c2k = c20 + 2
bm∑
k=1

c2k =
m4n2

s2b

(
b∑

r=1

τa

)2

+
m3n2

2s2b

b∑
a=1

τ 2a = O(1) < ∞.

Now given that E(ε4+2δ) is finite for some δ in (0, 1), by Lemma 4 we have

√
mn

(
1

mn
εTCε− c0σ

2

)
D−→ N(0, σ2

c ), as n → ∞,

where σ2
c = (γ4 − 3)σ4c20 + 2σ4

∑mn
i=1

∑mn
j=1 c

2
i−j/(mn). For the second term in (31), by

Lemma 2 it is easy to verify that for any b = nϑ with 0 < ϑ < 1/2, E(εTHε/mn)2 =

O(b2/n2) and further εTHε/(mn) = op(n
−1/2).

By (i)-(iii) and Slutsky’s theorem, we have for any b = nϑ with 0 < ϑ < 1/2,

√
mn(σ̂2

3 − c0σ
2)

σc

D−→ N(0, 1), as n → ∞. (32)

Note that c0 = m2n
∑b

r=1 τr/sb = 1 + O(b/n). This leads to
√
mn(c0 − 1) = o(1) for

any b = nϑ with 0 ≤ ϑ < 1/2. In addition, it is easy to verify that

σ2
c =

m4n2(γ4 − 1)σ4

s2b

(
b∑

r=1

τr

)2

+
m3n2σ4

s2b

b∑
r=1

τ 2r = (γ4 − 1)σ4 + o(1).
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This leads to (γ4 − 1)σ4/σ2
c → 1 as n → ∞. Finally, by (32) and Slutsky’s theorem,

√
mn(σ̂2

3 − σ2)√
(γ4 − 1)σ4

=
σc√

(γ4 − 1)σ4

{√
mn(σ̂2

3 − c0σ
2)

σc

+

√
mn(c0 − 1)σ2

σc

}
D−→ N(0, 1), as n → ∞,

for any b = nϑ with 0 < ϑ < 1/2.

Appendix 5: Proof of Lemma 1

For any 1 ≤ r < p ≤ b, by Appendix 3 it is easy to verify that

Cov(σ̂2
Rt(r), σ̂

2
Rt(p)) =

1

(n− r)(n− p)

n∑
i=r+1

n∑
l=p+1

Cov(ζi(r), ζl(p)) + o(
1

n
), (33)

where ζi(r) is defined in (28).

Let Q =
∑n

i=r+1

∑n
l=p+1 Cov(ζi(r), ζl(p)). When r ≥ 2 and p ≥ r + 2, the term Q

can be calculated as follows,

Q =
n∑

i=r+p+1

Cov(ζi(r), ζi−r(p)) +
n∑

i=r+p

Cov(ζi(r), ζi−r+1(p)) +
n∑

i=p+1

Cov(ζi(r), ζi(p))

+

n−p+r+1∑
i=r+2

Cov(ζi(r), ζi+p−r−1(p)) +

n−p+r∑
i=r+1

Cov(ζi(r), ζi+p−r(p))

+

n−p+r−1∑
i=r+1

Cov(ζi(r), ζi+p−r+1(p)) +

n−p+1∑
i=r+1

Cov(ζi(r), ζi+p−1(p)) +

n−p∑
i=r+1

Cov(ζi(r), ζi+p(p))

= (γ4 − 1)σ4

[
n∑

i=r+p+1

m+ 1

8m2
+

n∑
i=r+p

m− 1

8m2
+

n∑
i=p+1

1

4m
+

n−p+r+1∑
i=r+2

m2 − 1

24m3

+

n−p+r∑
i=r+1

2m2 + 1

12m3
+

n−p+r−1∑
i=r+1

m2 − 1

24m3
+

n−p+1∑
i=r+1

m− 1

8m2
+

n−p∑
i=r+1

m+ 1

8m2

]

=
1

2m
(2n− 2p− r)(γ4 − 1)σ4 +O(1). (34)

Similarly, we can verify that Q = (2n − 2p − r)/(2m) + O(1) holds for r ≥ 2 and/or

p = r + 1. We omit their derivations here for saving space. Plugging (34) into (33)

leads to

Cov(σ̂2
Rt(r), σ̂

2
Rt(p)) =

2n− 2p− r

2m(n− r)(n− p)
(γ4 − 1)σ4 + o(

1

n
)

=
1

mn
(γ4 − 1)σ4 + o(

1

n
).

Finally, we note that Var(σ̂2
Rt(p)) = [γ4−1+1/m]σ4/(mn)+o(1/n) for any 1 ≤ p ≤ b

is an immediate result from Theorem 3.
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