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ABSTRACT. Logistic models with a random intercept are prevalent in medical and social research
where clustered and longitudinal data are often collected. Traditionally, the random intercept in
these models is assumed to follow some parametric distribution such as the normal distribution.
However, such an assumption inevitably raises concerns about model misspecification and mislead-
ing inference conclusions, especially when there is dependence between the random intercept and
model covariates. To protect against such issues, we use a semiparametric approach to develop a
computationally simple and consistent estimator where the random intercept is distribution-free.
The estimator is revealed to be optimal and achieve the efficiency bound without the need to pos-
tulate or estimate any latent variable distributions. We further characterize other general mixed
models where such an optimal estimator exists.

Key words: exponential model, logistic regression, random intercept, robustness, semiparamet-
ric estimator, sufficiency and completeness

1. Introduction

Logistic models with a random intercept are frequently used in medical and social research
when clustered or longitudinal data are analysed. Often the random intercept is assumed to
follow a certain distribution (i.e., normal distribution) or be independent of model covariates.
Such assumptions, however, inevitably raise concerns about model misspecification and
misleading inference conclusions, especially when the random intercept depends on the
covariates (Heagerty & Kurland, 2001). To circumvent these concerns, we consider a logistic
random intercept model where no distributional assumption is made on the random intercept,
and there may be dependence between the covariates and random intercept. We then use
semiparametric methods (Tsiatis, 2006) to develop a computationally simple estimator for the
model parameters with the following useful properties.

(i) The estimator is guaranteed to be consistent.
(ii) The estimator achieves optimal efficiency. Our estimator is most efficient among the

class of consistent estimators that make no distributional assumptions about nor inde-
pendence assumptions between the covariates and random intercept. We show this holds
even though the random intercept distribution or quantities that rely on it are never
estimated in our estimator.

(iii) Our estimator outperforms the simple penalized quasi-likelihood (PQL) estimator
(Schall, 1991; Breslow & Clayton, 1993), which only assumes the random intercept to
have zero mean and finite variance, but is biased for binary data (Breslow & Clayton,
1993; Breslow & Lin, 1995; Lin & Breslow, 1996).

(iv) Comparing our estimator with the traditional normal-based maximum likelihood esti-
mator provides a practical way to assess whether the covariates and random intercept
are independent (Section 2.3).
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We consider data collected from n independent clusters where each cluster i D 1; : : : ; n

contains mi subjects indexed by j D 1; : : : ; mi . For each subject, we observe a binary ran-
dom variable Yij and a p-dimensional covariate vector Xij D

�
Xij1; : : : ; Xijp

�T
. We suppose

individuals within a cluster share a common random intercept Ri so that a within-cluster cor-
relation is induced. We further assume that conditional onRi , observations from the i th cluster
are independent.

A logistic random intercept model is then

logit
®
P
�
Yij D 1jXij D xij;Ri D ri

�¯
D xTijˇ C ri D

pX
kD1

ˇkxijk C ri (1)

with logit.p/ D log¹p=.1� p/º. Here, ˇ is the p-dimensional parameter of interest where each
ˇk , k D 1; : : : ; p, measures the effect of increasing xijk by one unit on the log-odds ratio.

For notational simplicity, we let Yi D
�
Yi1; : : : ; Yimi

�T
and Xi D

�
Xi1; : : : ; Ximi

�
denote a

p �mi matrix.
The model in (1) is frequently used in medical applications as in binary symptom data

(Heagerty, 1999) and binary cardiac injury data (Tung et al., 2004). For example, in a
longitudinal study of people with schizophrenia (Heagerty, 1999), a key interest is in mod-
elling the relationship between presence/absence of apathy (a negative symptom) in relation to
schizophrenia onset and gender. Here, Yij represents the presence/absence of apathy for patient
i in month j , Xij1 is age of onset, Xij2 is gender and Ri captures the within-person correla-
tion induced from the repeated measures. A second example is a repeated measures study of
cardiac injury (Tung et al., 2004). Investigators at UC San Francisco were interested in study-
ing which cardiac measures would affect whether or not troponin (an enzyme observed after
heart damage) exceeds a certain threshold. One viable approach is to construct a mixed logis-
tic model for subject i at time j where Yij represents whether or not the troponin level exceeds
the threshold, Xij1 is a measure of heart performance via ejection fraction of the heart, Xij2
is systolic blood pressure, Xij3 is heart rate and Ri is a random intercept capturing the effect
of the i th subject. In Section 4, we estimate the effects of these features and address which of
them indeed affect troponin levels.

In these examples and others, estimating the covariate effects ˇ begins with the likeli-
hood based on model (1). Using f to denote various (conditional) densities described by the
subindices, the likelihood for the i th cluster is

fY;X .yi ; xi Iˇ/ D

Z
fY jX;R .yi j xi ; ri Iˇ/ fX;R .xi ; ri / d� .ri /

D

Z miY
jD1

expŒyij
�
xT
ijˇCri

�
� log

®
1C exp

�
xT
ijˇ C ri

�¯
�fX;R .xi ; ri / d� .ri / :

(2)

Here, �.�/ denotes the dominating measure. Even when fX;R.xi ; ri / is known, the integral
in (2) has no closed form in general. Instead, numerical integration must be used. More seri-
ously, incorrectly assuming that the random intercept (or random effects in general) has a
specific parametric form or that X and R are uncorrelated can be problematic for infer-
ence. For example, the covariate effect can be strongly biased when the random effect is
correlated with the model covariates and estimation is performed under independence. In the
earlier schizophrenia example, for instance, Heagerty (1999) demonstrated that the variabil-
ity of the random intercept depended on the covariate gender and that ignoring this feature
resulted in completely misleading conclusions for the schizophrenia study. Misspecifying the
random effect distribution can also seriously alter the variance estimate of the random effects
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distribution (Turner et al., 2001). When the random effects distribution is truly heavy tailed
(Pinheiro et al., 2001) or skewed (Fernandez & Steel, 1998), variance estimates of the random
effect can be largely inflated if the random effect distribution is falsely assumed to be normal.
Empirical evidence also suggests that efficiency loss occurs when one incorrectly assumes a nor-
mal random effects distribution, although the true random effects distribution is a two-point
discrete distribution (Agresti et al., 2004) or the true distribution is a mixture of normals
(Zhang & Davidian, 2001).

To avoid misspecifying the random effects distribution, more flexible methods have
been developed. These include modelling the random effects using a mixture of normals
(Lesaffre & Molenberghs, 2001), combinations of parametric distributions (Piepho &
McCulloch, 2004), a seminonparametric approach (Zhang & Davidian, 2001; Chen et al.,
2002); and a nonparametric maximum likelihood method (Aitkin, 1999; Agresti et al.,
2004). These methods either assume a more flexible random effect distribution form or esti-
mate the distribution nonparametrically. Therefore, the methods either do not resolve the
misspecification problem completely or involve even more intense computation.

In this paper, we completely bypass the estimation of the random intercept distribution,
either parametrically or nonparametrically. Through viewing the random intercept distribu-
tion as a nuisance parameter, we factor out its effect via semiparametric projection. Our
approach yields a consistent estimator that also achieves the efficiency bound without estimat-
ing the random intercept distribution, nor specifying a working model for its form. In addition,
we demonstrate how the flexibility of our method reveals other settings where a similar
estimator exists.

The remainder is organized as follows. Section 2 describes our estimation procedure that
yields a consistent and efficient estimator without relying on any assumption of the random
intercept distribution. We describe the features and limitations of our approach and the general
setting for which our estimator is valid. Simulation studies in Section 3 and an application to a
cardiac injury study in Section 4 demonstrate the advantages of our estimator over traditional
maximum likelihood estimators. Section 5 concludes the paper. All derivations are provided in
the Supporting Information.

2. Main results

2.1. Semiparametric estimation

We assume throughout that fX;R .xi ; ri / in (2) is an unknown density. We do not restrict the
random intercept Ri to have mean zero, nor that fX;R .xi ; ri / D fX .xi / fR .ri /. Using semi-
parametric theory (Tsiatis, 2006), we demonstrate in Section S.1 (Supporting Information) that
a consistent and efficient semiparametric estimator for ˇ is the root of the estimating equationPn
iD1 Seff .Yi ; Xi Iˇ/ D 0. Here,

Seff .Yi ; Xi Iˇ/ D Sˇ .Yi ; Xi / �E¹h .Xi ; Ri / j Yi ; Xi º;

with

Sˇ .Yi ; Xi Iˇ/ D @ logfY;X .Yi ; Xi Iˇ/ =@ˇ

D E¹@ logfY jX;R .Yi j Xi ; Ri Iˇ/ =@ˇ j Yi ; Xi º;

and h is an unknown, p-dimensional function that satisfies

E¹Sˇ .Yi ; Xi / j Xi ; Ri º D EŒE¹h .Xi ; Ri / j Yi ; Xi º j Xi ; Ri �: (3)
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In the terminology of semiparametric theory, Seff is known as the efficient score vector so that
estimators based on Seff will have the smallest variance. Estimators based on Seff are also consis-
tent because E¹Seff .Yi ; Xi Iˇ/º D EŒE¹Seff .Yi ; Xi Iˇ/ j Xi ; Ri º� D 0. The last equality holds
from the definition of Seff and because h is constructed to satisfy (3). Unfortunately, finding h
to satisfy (3) is not a simple task. Directly solving (3) is computationally slow and numerically
unstable. It requires solving an ill-posed problem similar to that in (Tsiatis & Ma, 2004), which
can be cumbersome. Fortunately, however, these numerical issues can be avoided because Seff

actually has a closed-form solution as shown next.

2.2. Explicit estimator

To formulate an explicit estimator, our key idea is to construct an intermediate quantity that
plays a similar role as the classical sufficient and complete statistic. To this end, we let 1mi
and 0mi be an mi -dimensional vector of ones and zeros, respectively, and Imi be an mi � mi
identity matrix. We also define Wi D 1T

mi
Y i D

Pmi
jD1

Yij , and Vi D
�
0mi�1; Imi�1

�
Yi D�

Yi2; : : : ; Yimi
�T

. The variables Wi and V i satisfy
�
W i ;V

T
i

�T
D AiY i , where

Ai D

 
1Tmi

0mi�1Imi�1

!
:

An immediately useful property ofWi and Vi is that they satisfy sufficiency and completeness
conditions as stated in the proposition as follows.

Proposition 1. In a logistic model with distribution-free random intercept,Wi D 1TmiYi and V i D�
0mi�1; Imi�1

�
Yi satisfy

(i) Sufficiency: fV jW;X;R .vi j wi ; xi ; ri / D fV jW;X .vi j wi ; xi / and fRjW;X;V
.ri j wi ; xi ; vi / D fRjW;X .ri j wi ; xi /.

(ii) Completeness: E¹g .Wi ; Xi / j xi ; ri º D 0 implies g .Wi ; Xi / D 0 for any p-dimensional
function g.

The proof of proposition 1 in Section S.2 (Supporting Information) uses calculations based
on a change of variables. The result is of utmost importance as it allows us to show that Seff

actually has a closed-form solution as shown in proposition 2 (see Supporting Information,
Section S.3 for a proof).

Proposition 2. Because Wi and Vi satisfy the sufficiency and completeness properties in proposi-
tion 1, the efficient semiparametric estimator is

Seff .Yi ; Xi Iˇ/ D E¹Sˇ .Yi ; Xi ; Ri / j Wi ; Vi ; Xi º �E¹Sˇ .Yi ; Xi ; Ri / j Wi ; Xi º;

where Sˇ .Yi ; Xi ; Ri / D @ logfY jX;R .Yi j Xi ; Ri Iˇ/ =@ˇ with fY jX;R given in (2).

The result in proposition 2 thus provides a simple way to construct Seff. First,

@ logfY jX;R .Yi j Xi ; Ri Iˇ/ =@ˇ D
miX
jD1

YijXij � k .Xi ; Ri / D XiYi � k .Xi ; Ri / ;

where k .Xi ; Ri / D
Pmi
jD1

exp
�
XT
ij
ˇ CRi

�
Xij =

°
1C exp

�
XT
ij
ˇ CRi

�±
.
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Second, because of the sufficiency property in proposition 1, we have that E¹k .Xi ; Ri / j

Wi ; Vi ; Xi º D E¹k .Xi ; Ri / j Wi ; Xi º. This simplification along with Yi D A�1
i

�
Wi ; V

T
i

�T
then implies that

Seff .Yi ; Xi Iˇ/ D E¹XiYi � k .Xi ; Ri / j Wi ; Vi ; Xi º �E¹XiYi � k .Xi ; Ri / j Wi ; Xi º

D XiE

²
A�1i

�
Wi ; V

T
i

�T
j Wi ; Vi ; Xi

³
�XiE

²
A�1i

�
Wi ; V

T
i

�T
j Wi ; Xi

³
D XiA

�1
i

°
0; V Ti �E

�
V Ti j Wi ; Xi Iˇ

�±T
:

Therefore, a consistent and efficient estimator for ˇ is the root of

nX
iD1

Seff .Yi ; Xi Iˇ/ D

nX
iD1

XiA
�1
i

°
0; V Ti �E

�
V Ti j Wi ; Xi Iˇ

�±T
D

nX
iD1

miX
jD2

�
Xij �Xi1

� ®
Vi;j�1 �E

�
Vi;j�1jWi ; Xi Iˇ

�¯
D 0:

(4)

2.3. Features of proposed estimator

The estimator Ǒ obtained from (4) has several key advantages including its simplicity, consis-
tency and optimal efficiency, flexibility to non-standard distributions of the random intercept
and possible dependence between the random intercept and covariates. We now discuss these
advantages in more detail.

Theoretical advantages. The proposed estimator completely avoids all terms involving the
random intercept. This contrasts from traditional maximum likelihood estimators (MLE)
where computations rely on assuming a particular distribution for the random effect (e.g.,
normal). With our estimator, however, the sufficiency and completeness property of proposi-
tion 1 allows the component containing the random intercept, k .Xi ; Ri /, to drop out from
the efficient score. Dropping this term is advantageous because it means that our proposed
estimator does not require positing a distribution fX;R nor does it require estimating this
unknown distribution. That is, the estimator is implemented without making any reference to
the true and unknown fX;R. As such, our estimator is valid even when the variance of the
random intercept is not finite, unlike other estimators that may assume the variance must be
finite (Schall, 1991).

Eliminating the random effect term automatically excludes the possibility of estimating any
quantity related to the random effect. This includes, for example, the random effect variance
when it exists. A potential estimator to remedy this concern is the PQL estimator of Schall
(1991) and Breslow & Clayton (1993). The PQL makes minimal modelling assumptions (i.e.,
the random effects are only assumed to have mean zero and finite variance) and obtains esti-
mates of random effects parameters and their variances. Although this estimator performs well
for a variety of mixed models, it unfortunately has bias for binary data from small clusters
(Breslow & Clayton, 1993; Breslow & Lin, 1995; Lin & Breslow, 1996) and for models with
heterogeneous random effects (i.e., the variability of the random effect depends on covariates)
(Jang & Lim, 2009). Our own simulation study (Section 3) confirms this bias for the logistic
random intercept model of interest.

Dropping the term k .Xi ; Ri / also leads to the consistency and efficiency of the proposed
estimator being completely free of the unknown distribution fX;R.

© 2015 Board of the Foundation of the Scandinavian Journal of Statistics.
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Theorem 1. The estimator Ǒ solving
Pn
iD1 Seff .Yi ; Xi Iˇ/ D 0 in (4) satisfies

p
n
�
Ǒ � ˇ0

�
! Normal

�
0; B�1

�
when n ! 1. Here ˇ0 is the true parameter value and B D var¹Seff .Yi ; Xi Iˇ0/º. Because
Seff is free of the unknown fX;R .xi ; ri /, the consistency and efficiency of Ǒ are completely inde-
pendent of fX;R, and the estimator Ǒ achieves the optimal estimation efficiency bound. That is,
among the class of consistent estimators that do not make any distributional assumptions about
the random intercept or its possible dependence with covariates, our proposed estimator has the
smallest variability.

A proof of Theorem 1 is in the Supporting Information, Section S.4. Theorem 1 indicates
that fX;R .xi ; ri / does not need to be estimated nor do any working models need to be posited
in its place. This vastly differs from other semiparametric estimators where the estimator is
constructed under posited working models for the unknown distributions, which can affect
efficiency (Tsiatis & Ma, 2004; Ma & Carroll, 2006; Ma & Genton, 2010). For example, in
most situations, when one is lucky enough to obtain a consistent estimator using a working
model for the unknown distribution, the efficiency relies on the property of the working model.
A classical scenario is when the working model happens to be the truth, then optimal efficiency
is obtainable. Otherwise, only consistency is guaranteed. However, using our approach, the
proposed estimator achieves consistency and optimal efficiency without the knowledge of the
true random effect distribution or the attempt to estimate it. Therefore, the estimator is robust
to misspecification of the unknown fX;R .xi ; ri /.

It is important to note that our estimator is not necessarily more efficient than estimators
constructed under parametric fX;R .xi ; ri /. For example, the traditional normal-based MLE
assumes that the random intercept is normally distributed and that the random intercept is
uncorrelated with the covariates. In this case, the normal-based MLE may indeed have smaller
variability because stronger model assumptions always reduce the variability of the parameter
estimates. Despite this general phenomenon, we demonstrate in Section 3 that the reduction of
variability is not necessarily a favourable aspect. Specifically, we show cases where the assump-
tions of the normal-based MLE do not hold, and the results are short confidence intervals that
do not cover the truth.

Another advantage of our approach is that we do not require the covariates and random
intercept to be independent, which is a common assumption with the traditional MLE imple-
mented in standard software packages (e.g., glmer in the R package lme4 (Bates et al., 2011)).
AssumingX andR to be independent is not always valid, and testing for it may initially appear
difficult because random intercepts are unobservable. Fortunately, however, we may formally
test for independence along the lines of the Hausman chi-squared test (Hausman, 1978). It
tests for a feature of interest (i.e., independence) by comparing two estimators as follows: under
the null hypothesis, both estimators are consistent, and under the alternative, one estimator
is inconsistent. Statistically significant differences between the estimators are then evidence
against the feature of interest.

In our case, we will compare the difference between the estimate obtained assuming X and
R are independent (i.e., the standard estimator available in software packages and denoted
as ǑIND) and that obtained under no restrictions on the relationship between X and R

(i.e., our proposed estimator denoted as Ǒ). Under the null hypothesis that X and R are
independent, both ǑIND and Ǒ are consistent, whereas, under the alternative, Ǒ is consistent
and ǑIND is not. Therefore, a statistically significant difference between Ǒ and ǑIND is evi-
dence in favour of dependency between X and R. The Hausman chi-squared test statistic is
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�
Ǒ � ǑIND

�T °
var

�
Ǒ
�
� var

�
Ǒ
IND

�±�1 �
Ǒ � ǑIND

�
, and it follows a chi-squared distribu-

tion with k degrees of freedom, where k D rank
°
var

�
Ǒ
�
� var

�
Ǒ
IND

�±
. See Hausman (1978)

for the derivation of the test statistic.

Computational advantages. The proposed estimator is simpler and faster to compute than
the traditional MLE, which requires numerically integrating out the random intercept in
(2) and then maximizing. In comparison, the only integration in the proposed estimator is
E .Vi j Wi ; Xi Iˇ/, which is straightforward because Vi is discrete and

fV jW;X .vi j wi ; xi Iˇ/ D
exp

°Pmi
jD2

�
xij � xi1

�T
ˇvi;j�1

±
P
R.vi /

exp
°Pmi

jD2

�
xij � xi1

�T
ˇvi;j�1

± :
Here, R .vi / denotes the range of possible vi D

�
yi2; : : : ; yi;mi

�T
values such thatPmi

jD1
yij D wi . See Section S.5 (Supporting Information) for a simple algorithm to construct

R .vi /.
Comparing the proposed method to the traditional MLE (implemented in glmer in R) and

the PQL estimator (implemented in glmmPQL in R) yielded the execution times in Table 1.
Timings were carried out on an Intel Xeon 2.90 GHz processor. In general, our method
was at least 12 times faster than either the MLE or PQL estimators, even as the cluster
sizes increased. The fast performance of our method is attributed to the simple implementa-
tion of E .Vi j Wi ; Xi Iˇ/, which allows us to quickly establish the range R .vi / (Supporting
Information, Section S.5).

Limitations of the model. Relaxing the assumption on the random distribution does
yield some limitations. First, we cannot estimate parameters associated with time-invariant
covariates because time-invariant covariates cannot be distinguished from the random inter-
cept, whose distribution is now left totally unspecified. In other words, time-invariant covariates
form part of the random intercept and cannot be identified. Operationally, we can see the
lack of identifiability from Equation (4). Assuming, for example, the first component of the
covariate satisfies Xij1 D Xi11 for all j . Then the first component of the inner summand
in (4) is identically zero, and the first component of the efficient score function degenerates
to zero. This implies that the associated parameter ˇ1 is no longer estimable. Therefore, our
method requires that Xij ¤ Xij 0 for j ¤ j 0. Methods with added assumptions to handle
time-invariant covariates have been proposed in the economics literature. These include the
Hausman and Taylor hybrid linear model (Wooldridge, 2002; Cameron & Trivedi, 2005) and
quasi-differencing in some nonlinear models (Cameron & Trivedi, 2005).

Table 1. Execution time (in seconds) for proposed estimator, traditional
maximum likelihood estimator (implemented in glmer in R) and penalized
quasi-likelihood estimator (PQL, implemented in glmmPQL in R). Results
displayed for one simulation with cluster sizesm performed on an Intel Xeon
2.90 GHz processor

m Proposed estimator Normal-based MLE PQL

3 0.004 0.702 0.717
5 0.006 1.025 0.839
10 0.120 1.505 1.542
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Second, clusters with a single observation will not contribute to the estimating equation
in (4) because the estimating equation only involves observations from the second entry in
the cluster onward. When a single observation is observed from a cluster, one cannot tell
if this observation will change when a new observation from this cluster becomes available
or not. Without any assumption on the random effect, this means we cannot distinguish
if what we observe is a cluster property (random effect) or individual property (covariate
effect). In comparison, the standard normal-based MLE and PQL estimators would keep
those clusters with a single observation. For this reason, particular study design issues should
be assessed early so that enough data within each cluster is collected for the clusters to
be informative.

Note that the limitations are the price one must pay for relaxing the distributional assump-
tions on the random intercept.

3. Simulation study

3.1. Simulation design

We evaluated the performance of our estimator in comparison to two estimators: the traditional
MLE that assumes the random effect is normally distributed and the PQL estimator. Both
latter estimators also assume covariates are independent of the random intercept. All estimators
were evaluated in terms of consistency, efficiency and 95 percent coverages in settings where the
random intercept distribution is correctly specified and misspecified and when there is and is
not dependency between covariates and the random intercept.

We generated 1000 data sets with sample size n D 500 and mi D 3 for i D 1; : : : ; n for the
logistic random intercept model in (1). We evaluated the robustness of the estimators to dif-
ferent distributional forms of Ri by considering the following: (i) Ri is Normal.0; 1/; (ii) Ri
is a gamma distribution with shape parameter 1.5 and scale parameter 2; (iii) Ri is a mixture
of normals with 90 percent of the data being Normal.3; 1/ and 10 percent of the data being
Normal.�3; 0:25/; and (iv) Ri is a t -distribution with three degrees of freedom. These distri-
butions allow the random intercept to be the standard bell shape, skewed, bimodal or heavy
tailed. Finally, because the normal-based MLE and PQL estimators assume zero-mean random
effects, the random intercepts generated were centred to have mean zero.

To evaluate the robustness of the estimators to varying levels of dependency between
covariates and random intercept, we generated data according to three different dependency
situations. Let Xij D

�
Xij1; Xij2; Xij3

�T
. For k D 1; 2; 3, we considered the following:

(i) Xijk and Ri independent by generating Xijk as Normal.0; 1/; (ii) Xijk and Ri depen-
dent and corr

�
Xijk ; Ri

�
D 0 by generating Xijk as Normal

�
0;R2

i

�
; and (iii) Xijk and Ri

dependent and corr
�
Xijk ; Ri

�
¤ 0 by generating Xijk as Normal .Ri ; 1/. In this last case,

because Xijk � Normal .Ri ; 1/ and Ri is centred to have mean zero, we can easily show that

corr
�
Xijk ; Ri

�
D
q
E
�
R2
i

�
=

q
1CE

�
R2
i

�
. The exact value of corr

�
Xijk ; Ri

�
thus depends

on the distribution of Ri and is given in Table 4. Finally, the true ˇ0 D .�0:25;�0:5; 0:25/T .
In summary, we considered all combinations between random intercept distribution settings

(i)–(iv) and dependence settings (i)–(iii).

3.2. Simulation results

Results in Tables 2–4 show that regardless of the random intercept’s true distribution or its pos-
sible dependence with the covariates, our proposed estimator had negligible bias, high efficiency
and estimated coverage probabilities near the nominal 95 percent level. Such numerical results
thus demonstrate the estimator’s flexibility in handling a wide range of mixed model features:
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a non-normal random intercept and a random intercept that may share dependency with the
covariates. In addition, while the proposed estimator does have small variability, its variabil-
ity is not smaller than that of the normal-based MLE or PQL. This is within our expectation,
however, because stronger model assumptions always reduce the variability of the parameter
estimates. Despite this general phenomenon, we argue next that the reduction of the variability
is not necessarily a favourable aspect.

From Tables 2–4, we can see that the variance reduction from the proposed estimator to the
normal-based MLE is smaller in Table 2 (where the components in X and R are independent)
than in Tables 3 and 4 (where the components in X and R are dependent). Note also that the
bias inflation is almost absent in Table 2 while it is evident in Tables 3 and 4. In these latter
Tables, we see that estimates from the normal-based MLE are severely biased and result in
coverages as low as 0 percent.

This is suggesting that the combined assumptions of normality and independence between
covariates and the random intercept can have two effects simultaneously. The first effect is
that the normality assumption tends to shrink the variability. The second effect is that the
independence assumption tends to shift the estimator to the wrong place (unless the assumption
happens to be correct).

When the two effects are not evident, the variance shrinkage and the estimator shift are both
small, such as those in Table 2. In this case, assuming the additional normality and indepen-
dence are advantageous as the normal-based MLE yields the smallest bias, smallest variance
and the most unbiased variance estimate. When the two effects are evident, the variance shrink-
age and the estimator shift are both large, such as in Tables 3 and 4. In this case, the seemingly
advantageous small estimation variability can be very misleading, because the end result is a
very precise but wrong estimator. This would lead to wrong inference results, for example, a

Table 2. Simulation results when components of X are independent of R. Bias, empirical variance� (var),
average estimated variance� (cvar) and 95 percent coverage percentages (cov) for the proposed estimator,
normal based maximum likelihood estimator (MLE), and penalized quasi-likelihood (PQL) estimator when
the true random intercept distribution is as specified. ˇ0 D .�0:25;�0:5; 0:25/T , n D 500;mi D 3 and
1000 simulations

Proposed estimator Normal-based MLE PQL

bias var cvar cov bias var cvar cov bias var cvar cov

R � Normal (0,1)
ˇ1 �0.0091 6.0 5.7 93.9 �0.0061 4.2 4.1 94.6 0.0198 3.4 3.0 91.8
ˇ2 �0.0041 5.5 6.2 95.8 �0.0033 4.1 4.5 96.6 0.0479 3.3 3.2 84.5
ˇ3 0.0042 5.8 5.7 94.2 0.0029 4.0 4.1 95.5 �0.0228 3.2 3.0 91.6

� Gamma.1; 2/ and centered

ˇ1 �0.0036 7.4 7.0 94.6 �0.0037 5.6 5.5 94.6 0.0294 4.3 3.4 88.2
ˇ2 �0.0030 7.9 7.8 95.0 �0.0009 6.1 6.0 94.5 0.0642 4.8 3.5 77.0
ˇ3 0.0062 6.9 7.0 95.7 0.0036 5.1 5.5 96.0 �0.0292 4.0 3.4 89.9

R � 0:9.3; 1/C 0:1.�3; 0:25/ and centered

ˇ1 �0.0022 6.8 6.6 95.3 0.0002 4.8 5.1 95.9 0.0322 3.7 3.3 89.5
ˇ2 �0.0051 7.3 7.3 94.5 �0.0026 5.3 5.6 95.7 0.0619 4.1 3.4 78.6
ˇ3 0.0060 6.6 6.7 95.4 0.0036 5.2 5.1 95.7 �0.0288 4.0 3.3 89.3

R � t3

ˇ1 �0.0028 6.0 6.2 96.1 0.0002 4.4 4.6 95.4 0.0303 3.4 3.2 90.7
ˇ2 �0.0049 7.1 6.8 94.4 �0.0024 4.9 5.1 95.4 0.0584 3.8 3.3 78.6
ˇ3 0.0027 5.9 6.2 95.4 0.0004 4.5 4.6 96.2 �0.0298 3.5 3.2 90.1

*Variances and estimated variances are multiplied by 1000.
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Table 3. Simulation results when components ofX depend onR, but are uncorrelated withR. Bias, empirical
variance� (var), average estimated variance� (cvar) and 95 percent coverage (COV) for the proposed
estimator, normal based maximum likelihood estimator (MLE), and penalized quasi-likelihood (PQL)
estimator when the true random intercept distribution is as specified. ˇ0 D .�0:25;�0:5; 0:25/T , n D 500;
mi D 3 and 1000 simulations

Proposed estimator Normal-based MLE PQL

bias var cvar cov bias var cvar cov bias var cvar cov

R � Normal (0,1)

ˇ1 �0.0105 9.1 8.7 94.9 0.0499 3.9 4.2 89.2 0.0687 3.2 3.3 76.1
ˇ2 �0.0100 9.1 10.0 97.2 0.1041 4.2 4.7 66.2 0.1413 3.4 3.5 34.2
ˇ3 0.0044 8.7 8.7 94.0 �0.0529 3.8 4.2 88.6 �0.0714 3.1 3.3 75.5

R � Gamma.1; 2/ and centered

ˇ1 �0.0061 5.4 5.5 95.1 0.1048 1.6 1.7 28.1 0.1208 1.2 1.1 7.7
ˇ2 �0.0112 7.1 6.8 93.9 0.2140 2.3 2.1 1.7 0.2453 1.8 1.3 0
ˇ3 0.0070 5.4 5.5 94.6 �0.1059 1.8 1.7 26.9 �0.1216 1.4 1.1 9.1

R � 0.9 Normal (3,1)+0.1 Normal (-3,0.25) and centered

ˇ1 �0.0042 6.4 7.2 96.7 0.1419 1.2 1.4 3.4 0.1536 0.9 1.0 0.7
ˇ2 �0.0134 8.1 9.1 96.9 0.2815 1.3 1.6 0 0.3053 1.1 1.1 0
ˇ3 0.0103 6.8 7.3 96.3 �0.1399 1.1 1.4 3.4 �0.1518 0.9 1.0 0.3

R � t3

ˇ1 �0.0086 8.0 7.8 95.6 0.1183 2.4 2.0 26.6 0.1327 1.9 1.6 11.6
ˇ2 �0.0159 12.7 9.5 95.4 0.2391 3.4 2.4 1.4 0.2676 2.8 1.8 0.3
ˇ3 0.0065 8.9 7.8 95.3 �0.1218 2.6 2.0 2.6 �0.1357 2.0 1.6 11.3

*Variances and estimated variances are multiplied by 1000.

very short confidence interval that does not cover the truth at all, which is even worse than a
longer confidence interval that has a better chance to cover the truth.

These results suggest that there is no reason to make the additional normality or indepen-
dence assumption when there is no clear evidence that the random intercept is indeed normal
and independent of the covariates.

In comparison, the PQL estimator has more bias whetherX andR are independent (Table 2)
or not (Tables 3 and 4). The bias is larger when X and R are dependent, suggesting that the
PQL estimator is most sensitive to violations of independent X and R. However, even when X
and R are independent, the PQL estimates can have biases up to ten times more than the other
two estimators and coverages as low as 77 percent. The sensitivity of the PQL estimator may
just be due to the binary nature of the logistic model as suggested by earlier studies (Breslow &
Clayton, 1993; Breslow & Lin, 1995; Lin & Breslow, 1996; Jang & Lim, 2009).

In addition to evaluating consistency and efficiency, we also evaluated the performance
of the Hausman chi-squared test for independence (Section 2.3). We applied the test using
the comparison between the proposed estimator and normal-based MLE, as well as between
the proposed estimator and PQL estimator. Recall that the proposed estimator is consis-
tent whether X and R are independent or not, whereas, both the normal-based MLE and
PQL estimator are inconsistent when X and R are dependent. Therefore, when X and
R are independent, the Hausman chi-squared test should fail to reject the null hypoth-
esis of independence; conversely, when X and R are dependent, the test should reject
the null.

The results in Table 5 show the percentage of times the Hausman test rejects the null
across all combinations of random intercept distribution settings (i)–(iv) and dependence set-
tings (i)–(iii). The test results from using the normal-based MLE and from using the PQL
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Table 4. Simulation results when components of X depend on R and are correlated with R. Bias, empirical
variance� (var), average estimated variance� (cvar) and 95 percent coverage (COV) for the proposed
estimator, normal based maximum likelihood estimator (MLE) and penalized quasi-likelihood (PQL)
estimator when the true random intercept distribution is as specified. ˇ0 D .�0:25;�0:5; 0:25/T , n D 500,
mi D 3 and 1000 simulations

Proposed estimator Normal-based MLE PQL

bias var cvar cov bias var cvar cov bias var cvar cov

R � Normal (0,1), corr .X;R/ D 1=
p
2

ˇ1 �0.0085 5.3 5.0 93.8 0.2439 2.4 2.3 0 0.2436 2.3 2.2 0
ˇ2 �0.0054 5.1 5.5 95.7 0.2534 2.3 2.4 0 0.2573 2.2 2.2 0
ˇ3 0.0036 4.9 5.0 95.4 0.2335 2.5 2.6 0.02 0.2249 2.4 2.5 0.03

R � Gamma.1; 2/ and centred, corr .X;R/ D 0:926

ˇ1 �0.0025 5.6 5.5 95.5 0.2934 2.3 2.3 0 0.2925 2.2 2.2 0
ˇ2 �0.0020 5.8 6.1 95.7 0.3071 2.2 2.3 0 0.3088 2.1 2.2 0
ˇ3 0.0054 5.6 5.5 95.0 0.2780 2.6 2.7 0 0.2715 2.5 2.5 0

R � 0.9 Normal(3,1)+0.1 Normal (-3,0.25) and centred, corr .X;R/ D 0:535

ˇ1 �0.0029 5.4 5.5 95.5 0.2961 2.3 2.3 0 0.2952 2.2 2.2 0
ˇ2 �0.0050 6.0 6.1 96.2 0.3067 2.1 2.4 0 0.3086 2.1 2.2 0
ˇ3 0.0020 5.4 5.5 95.2 0.2766 2.7 2.8 0 0.2700 2.5 2.5 0.01

R � t3, corr .X;R/ D 0:896

ˇ1 �0.0036 5.2 5.2 95.6 0.2813 2.5 2.2 0 0.2804 2.4 2.1 0
ˇ2 �0.0026 5.6 5.8 95.1 0.2909 2.3 2.3 0 0.2933 2.2 2.2 0
ˇ3 0.0016 5.1 5.2 95.5 0.2606 2.8 2.7 0 0.2533 2.7 2.5 0

*Variances and estimated variances are multiplied by 1000.

Table 5. Percentage of time the Hausman chi-squared test rejects that null hypothesis that covariates and
the random intercept are independent. The test is applied using the comparison between proposed estima-
tor and normal-based maximum likelihood estimator (MLE) and between proposed estimator and penalized
quasi-likelihood (PQL) estimator. Results are based on different distributions for the random intercept
and different dependency between covariates and random intercept as specified in the main text. ˇ0 D
.�0:25;�0:5; 0:25/T , n D 500;mi D 3 and 1000 simulations

Proposed versus normal-based MLE Proposed versus PQL

Covariates Distribution ofR Distribution ofR

Depend Correlated Normal Gamma Mixed t Normal Gamma Mixed t

onR withR Normals Normals

No No 8.8 12.4 14.5 11.1 2.1 0.5 0.8 1.9
Yes No 22.8 93.0 97.6 85.3 30.6 97.5 99.1 90.0
Yes Yes 100 100 100 100 100 100 100 100

estimator are similar. When X and R are independent (Table 5, first row), the test correctly
fails to reject the null; an incorrect decision is made at most 15 percent of the time. Con-
versely, when X and R are dependent, the test largely rejects the null. When the covariates
depend on R, but the correlation is zero (Table 5, second row), the rejection rate is at least
85 percent when R is non-normal and is at least 22 percent when R is normal. The lower
percentage when R is normal is perhaps because only one of the assumptions (i.e., inde-
pendence of covariates and random intercept) is violated, and the correlation between the
covariates andR is zero. WhenR is normal, but the covariates andR have non-zero correlation
(Table 5, third row), the Hausman chi-squared test rejects the null 100 percent of the time.
This steep increase from 22 percent to 100 percent suggests that the non-zero correlation has a
strong impact. In fact, when the correlation between the covariates and R is non-zero (Table 5,
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third row), the null is rejected 100 percent of the time regardless of the distribution of R.
Therefore, these results suggest that the Hausman chi-squared test works well in detecting
dependence between the covariates and random intercept, especially when the correlation is
non-zero.

Finally, it is worth noting that for smaller sample sizes (i.e., n D 50;mi D 2), all estimators
perform similarly as with larger sample sizes. See Table 6 for results from our proposed esti-
mator and the normal-based MLE under the different dependency cases (i), (ii) and (iii), and
R is normally distributed or a mixture of normals. We exclude results from the PQL estimator
given that its bias has already been observed at larger sample sizes (n D 500;mi D 3), and its
bias only compounds further at smaller sample sizes.

In summary, our proposed estimator provides practical advantages in that it yields consistent
and optimally efficient estimates without needing to make assumptions about the random effect
distribution or its relationship to the model covariates.

4. Application to cardiology study

We applied our proposed method to a study of cardiac injury (Tung et al., 2004) from UC
San Francisco. The study involved 175 subjects who had undergone different cardiac measures

Table 6. Simulation results for small sample setting for different distributions of R and dependence with
X . Bias, empirical variance (var), average estimated variance (cvar) and 95 percent coverage percentages
(cov) for the proposed estimator and normal-based maximum likelihood estimator (MLE). ˇ0 D .0; 0; 0/T ,
n D 50;mi D 2 and 1000 simulations

Proposed estimator Normal-based MLE

bias var cvar cov bias var cvar cov

R � Normal (0,1)
X andR independent

ˇ1 �0.0118 0.2132 0.2455 98.7 �0.0058 0.0782 0.0717 95.2
ˇ2 �0.0057 0.2214 0.2464 98.6 0.0038 0.0788 0.0725 95.9
ˇ3 �0.0371 0.2398 0.2587 98.7 �0.0133 0.0757 0.0721 97.1

X andR dependent, uncorrelated
ˇ1 0.0023 0.5040 0.7761 99.8 �0.0065 0.0834 0.0828 97.2
ˇ2 �0.0155 0.4981 0.8560 99.8 0.0039 0.0842 0.0828 97.1
ˇ3 �0.0381 0.5134 0.8537 99.9 �0.0085 0.0807 0.0815 97.5

X andR dependent, correlated
ˇ1 �0.0118 0.2132 0.2455 98.7 0.2613 0.0540 0.0485 78.4
ˇ2 �0.0057 0.2214 0.2464 98.6 0.2632 0.0504 0.0484 79.3
ˇ3 �0.0371 0.2398 0.2587 98.7 0.2552 0.0475 0.0482 79.9

R � 0:9 Normal(3,1)+0.1 Normal(-3,0.25) and centred

X andR independent
ˇ1 0.0178 0.2984 0.3862 98.9 0.0030 0.1053 0.0975 95.8
ˇ2 �0.0269 0.2955 0.4334 99.3 �0.0117 0.1007 0.0968 96.8
ˇ3 �0.0107 0.2791 0.4327 99.7 �0.0033 0.0935 0.0971 97.3

X andR dependent, uncorrelated
ˇ1 0.0310 0.5526 1.2218 99.9 �0.0027 0.0363 0.0345 97.8
ˇ2 �0.0130 0.6049 1.3356 99.9 �0.0053 0.0313 0.0335 97.6
ˇ3 �0.0310 0.5517 1.2865 99.8 0.0081 0.0335 0.0347 97.7

X andR dependent, correlated
ˇ1 0.0178 0.2984 0.3862 98.9 0.3127 0.0585 0.0579 75.3
ˇ2 �0.0269 0.2955 0.4334 99.3 0.2923 0.0579 0.0568 77.5
ˇ3 �0.0107 0.2791 0.4327 99.7 0.2945 0.0608 0.0571 78.4
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Table 7. Results from the cardiology study based on the proposed estimator and normal-based maximum like-
lihood estimator (MLE). Parameter estimates (est), estimated variance (dvar) and 95% confidence interval
(CI) for the effects of ejection fraction (ˇejecfrac), systolic blood pressure (ˇsbp) and heart rate (ˇhrtrate)

Proposed estimator Normal-based MLE

est cvar 95% CI est cvar 95% CI

ˇejecfrac �2.7736 8.5965 (�8.5202, 2.9729) �3.3445 1.4077 (�5.6700, �1.0191)
ˇsbp �0.0264 0.0002 (�0.0558, 0.0030) �0.0157 4.25�10�5 (�0.0285, �0.0030)
ˇhrtrate �0.0225 0.0004 (�0.0614, 0.0163) 0.0215 0.0001 (0.0071, 0.0360)

repeatedly over the study period (at most three times). The measures included ejection fraction
that quantifies how much blood leaves the left ventricle with each contraction, systolic blood
pressure and heart rate. Doctors also took a binary measure of cardiac injury of the subjects:
whether or not troponin – an enzyme observed after heart damage – exceeded a specific thresh-
old. One key interest is investigating the impact of ejection fraction, systolic blood pressure
and heart rate on the binary measure of cardiac injury while accounting for the within-person
correlation induced from the repeated measures.

To study this impact, we considered the logistic random intercept model in (1) where for
subject i at time j , Yij is whether or not the troponin level exceeded the specified threshold,
Xij1 is ejection fraction, Xij2 is systolic blood pressure and Xij3 is heart rate. Lastly, Ri is the
random intercept to account for the subject effect.

The effects of these cardiac measures were estimated using both our proposed method and
the normal-based MLE for comparison. The PQL estimator was not applied because of its
observed bias from the simulation study. Results for both estimators are given in Table 7.
The proposed estimator suggests that none of the cardiac measures is statistically significant
as all 95% confidence intervals include the null effect. In stark contrast, the normal-based
MLE suggests that all measures are statistically significant. To better compare the estimates,
we applied the Hausman chi-squared test and obtained a p-value of 2:42�10�5. This suggests
evidence of dependence between the covariates and the random intercept and indicates that
results from the proposed estimator are more reliable. Therefore, in terms of troponin impact,
it appears that none of the cardiac measures has a significant effect. Such results agree with ear-
lier analysis results (Vittinghoff et al., 2005) that another feature, the severity of neurological
injury, has an overwhelmingly dominating effect on troponin levels.

5. Discussion

For a logistic model with random intercept, our semiparametric approach yields a consistent
and optimally efficient estimator that does not require estimating or modelling the random
effect distribution. It does not even require proposing a working model in the process of esti-
mation and inference. In our construction, the complete insensitivity of the estimator to the
random effect is especially novel given that for most semiparametric estimators, efficiency loss
is observed for misspecified working models (Tsiatis & Ma, 2004; Ma & Carroll, 2006). Our
estimator also has practical advantages in detecting dependence between the covariates and
random intercept via the Hausman chi-squared test. Our extensive simulation study also sug-
gests that when there is doubt about the assumptions for traditional estimators, it is better to
proceed with the proposed estimator that is consistent, efficient and simple to compute.

Our proposed estimator has similarity to the conditional likelihood estimator of Breslow
& Day (1980) and Neuhaus & McCulloch (2006). However, the derivation leading to their
estimator focuses on separating the between-cluster and within-cluster covariate effects and
maximizing fV jW;X to achieve consistency. In comparison, we use a semiparametric approach
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that has the flexibility to reveal other potential settings where a consistent and optimally effi-
cient estimator exists. For example, one may consider mixed models where the density for the
i th cluster can be written as

fY;X;Z .yi ; xi ; ´i / D

Z
fY jX;Z;R .byi jxi ; ´i ; ri / fX;Z;R .xi ; ´i ; ri / d� .ri /

D

Z miY
jD1

exp

8<:yij
�
xT
ij
ˇ C ´T

ij
ri

�
� b

�
xT
ij
ˇ C ´T

ij
ri

�
�ij

C c
�
yij ; �ij

�9=;
� fX;Z;R .xi ; ri / d� .ri / :

Here, the conditional density fY jX;Z;R .yi jxi ; ´i ; ri / belongs to the exponential family
where b.�/; c.�/ are known functions, and the unknown parameters are now ˇ and disper-
sion parameters �ij . We let R be a pr -dimensional vector of random effects associated with

covariates ´ij D
�
1; ´ij;1; : : : ; ´ij;pr

�T
. For example, in a simple case, R D .R0; R1/

T with
R0; R1 denoting the random intercept and slope, respectively. In this more general setting, we
believe similar calculations to those carried out in Section 2.2 can be applied. However, given
the added generality of an exponential model with pr random effects, a careful investigation is
needed and is beyond the scope of the current paper.

For binomial data, one may also be interested in considering other links such as pro-
bit, log–log and complementary log–log. While these links are useful in various applications,
we unfortunately cannot use sufficiency and completeness properties to derive an optimally
efficient estimator. The reason is that the terms xT

ij
ˇ C ´T

ij
ri in the aforementioned condi-

tional density fY jX;Z;R are now replaced with q
�
xT
ij
ˇ C ´T

ij
ri

�
for a nonlinear function

q.�/. For example, the probit link would have q.t/ D logit¹˚.t/º with ˚.�/ being the stan-
dard normal distribution; the log-log link would have q.t/ D logitŒexp¹� exp.�t /º�; and the
complementary log–log link would have q.t/ D logitŒ1� exp¹� exp.t/º�. For such a ‘nonlinear-
exponential’ model, the results of propositions 1 and 2 do not hold because the nonlinear q.�/
completely hinders the sufficiency property: No statistic exists that is independent of the ran-
dom effect. Therefore, for these more complex link functions, other estimation procedures are
needed. A semiparametric approach may still be applied, but it would most likely involve more
intense computation. Details into this problem are of interest, but again are beyond the scope
of this paper.

Lastly, an issue not considered is the potential colinearity among explanatory variables,
which does occur frequently in medical and social research. This problem is not addressed
by the traditional MLE and cannot be immediately addressed by our proposed method
because the entire approach is conditional on the covariates. However, it is worth considering
in the future.

Supporting information Additional information for this article is available online, including
proofs and details of the proposed algorithm.
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